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Global modes in falling capillary jets

S. LE DIZES *

ABSTRACT. — The global linear stability analysis of falling capillary jets is carried out when the density of ambient
gas is negligible. The jet is assumed to be dominated by inertia (ie. Re = Rollp /v > 1 and e = gRo /U < 1,
where ¢ is the gravity, Ry and Uy are the radius and the speed of the jet at the orifice, v the viscosity of the
liquid) so that it evolves on a larger scale than Rayleigh instability wavelengths. If the basic jet is approximately
an axisymmetric plug profile in each section, it becomes locally absolutely unstable at the orifice for a critical
value W, == 0.32 of the Weber number Wy = 7/pRyUg where + is the surface tension between the liquid and
the gas, and p the liquid density. Just above that value, it is demonstrated that there exists a discrete number of
unstable global modes, i.e. time-harmonic perturbations satisfying homogeneous boundary conditions at the orifice
and causal conditions at infinity. These modes differ from the Airy-type global modes obtained by Monkewitz
et al. (1993): They are composed of three spatial branches interacting at the orifice. The critical Weber number
for the global transition is obtained as a function of ¢ and Re. It is computed for the jet of water in air for
Reynolds numbers ranging from 100 to 200, and compared to experimental data for the transition to dripping.
The conjecture by Monkewitz (1990) that the transition to dripping could be related to a global instability is
discussed in light of these results.

1. Introduction

Falling capillary jets are known to break up into drops at a distance from the orifice
that varies with the flow rate and disturbance level. As the flow rate is decreased, the
breakup comes closer to the orifice and the jet eventually exhibits a transition to dripping,
Le. drops form at the orifice. Monkewitz (1990) conjectured that this transition could be
related to a global linear instability of the basic jet. The goal of this article is to justify this
interpretation by calculating the global stability characteristics of a falling capillary jet.

So far, stability analyses have mostly focused on homogeneous jets. The temporal
stability properties of a plug profile have been calculated by Rayleigh (1878) in the
non-viscous regime and by Chandrasekhar (1961) in the viscous regime. Leib and
Goldstein (1986a, b) have considered the impulse response problem and determined
the absolute/convective nature of the instability (Bers, 1983; Huerre and Monkewitz,
1990) for the definition of absolute and convective instabilities). They have proved that
plug profiles exhibit a transition to absolute instability as the flow rate is decreased in
both viscous and non-viscous regime. Yakubenko (1997a) focused on the role played
by the boundaries. He analysed the instability generated by the wave reflections at the
boundaries of a long but finite jet.

The results for homogeneous jets can be applied to a spatially-evolving jet if the spatial
evolution scale is much larger than typical instability wavelengths. Indeed, they allow
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definition of local stability properties at each position, and consequently a classification
of each flow according to the nature of the loca behavior. Such a classification has been
very successful in shear flow (Huerre and Monkewitz, 1990; Monkewitz, 1990). The
link between the local stability properties and the global behaior of the flow has been
the subject of numerous studies but is still not clear. Neverheless, most observations
support the idea that flows that are locally convectively unstable everywhere, are in
general strong noise amplifiers while flows with a region of local absolute instability
can exhibit intrinsic global dynamics.

From the stability results for homogeneous jets, falling capillary jets are found to
be at least convectively unstable everywhere. Below a critical flow rate, they become
absolutely unstable in the neighborhood of the orifice, and then could be subject to a
global instability.

Global instability is in general studied by considering global modes, i.e. linear time-
harmonic perturbations of the entire flow subject to boundary conditions. As soon as
there exists a global mode frequency w,, of positive growth rate Jm (wy) > 0, the basic
flow is considered as globally unstable. The weak inhomogeneity assumption allows a
global mode description in the WKBJ framework (Huerre and Monkewitz, 1990). In the
that framework, the spatial structure of the global modes is prescribed at leading order
by the local dispersion relation that defines the local stability properties. The spatial
branches of the local dispersion relation give the wavenumbers of the local plane waves
that approximate the global mode. As long as these spatial branches are distinct, there is
no wave interaction: the global mode is then a sum of local plane wave approximations
(WKBJ approximations). At the turning points where waves interact, the local plane
wave approximation breaks down, and a specific local approximation describing the
wave interactions has to be developed. The local plane wave decomposition of the global
modes is prescribed at the flow boundaries (in particular at infinity) by the boundary
conditions. In principle, the full global mode problem is then to determined the (global)
frequencies for which the wave interactions are in agreement with the prescribed wave
decomposition at the flow boundaries.

The very few rigorous results on global instability have been obtained when the local
dispersion relation is particularly simple and reduces to a single temporal branch with two
spatial branches. In such a case, the global dynamics is governed by a Ginzburg-Landau
equation (GLE) in the direction of propagation of the local perturbations. Global modes
have been analysed in both semi-infinite and double-infinite domains. But it is only in
double-infinite domains that a general characterisation of the most unstable global modes
has been obtained (Chomaz et al., 1991: Le Dizés er al., 1996; Le Dizes, 1997). In semi-
infinite domains, such a characterisation is not available without additional assumptions
concerning the local stability properties (Chomaz er al., 1988).

For falling capillary jets, it seems more appropriate to work in a semi-infinite domain,
and to impose homogeneous boundary conditions on one side (the orifice). In such
a configuration but in a different context, Monkewitz er al. (1993) have obtained a
frequency selection criterion which states that the complex frequencies of the most
unstable global modes are given at leading order by the local absolute frequency at the
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boundary. The analysis of global modes in falling capillary jets is similar in many ways
to the analysis developed in Monkewitz et al. (1993). To clarify that study, it is useful
briefly to review the results and underlying assumptions of Monkewitz et al. (1993). The
global modes obtained in Monkewitz et al. (1993) admit two distinct approximations:
far from the boundary (in a so-called Outer Region), each global mode is a local plane
wave propagating to the right as prescribed by causality (Kulikovskii, 1985); close to
the boundary (in a Inner Region), it is Airy function describing the interaction at a
turning point of two waves propagating in opposite directions. The frequencies of the
global modes are selected by the condition of matching of Inner and Outer solutions.
In Monkewitz et al. (1993) analysis, the full global mode problem is then reduced to a
local eigenvalue problem in the Inner region. The physical consequence is that global
modes are governed by a small region near the boundary which plays the role of an
oscillating source for the whole flow. The conditions of validity of Monkewitz er al.
(1993)’s frequency selection criterion have not been discussed so far. But it is clear that
they would require that wave interactions are exclusively between two waves propagating
in opposite directions and that these interactions occur only close to the boundary. It is
interesting to note that these two conditions are satisfied in the GLE framework if the
most unstable regions are close to the boundary.

Yakubenko (1997b) recently analysed the global mode problem for an inclined capillary
Jet. He obtained the surprising result that the jet could become globally unstable without
any locally absolutely unstable region. In this analysis, the unstable global modes are
composed of three waves which interact at several points in the flow.

For falling capillary jets, the most unstable regions are close to the boundary, so we
expect wave interactions to be localised near the orifice as in Monkewitz et al. (1993) and
not as in Yakubenko (1997b). But, the wave interactions can not be limited to two waves
since the third wave that intervenes in Yakubenko’s analysis is also present. The goal of
this paper is to show that, despite that third wave, there still exist global modes whose
frequencies are given at leading order by the local absolute frequency at the orifice.

The paper is organized as follows. In section 2, the falling capillary jet model is
presented. Section 3 is concerned with the reduction of the global mode problem to a
local eigenvalue problem near the orifice. The three waves that compose the global mode
are studied in the Outer region far from the orifice in section 3.1, while the interaction
process in the Inner region near the orifice is analysed in section 3.2. The local eigenvalue
problem is solved in the Appendix. The results are presented in section 4, first in a general
setting (section 4.1), then in the case of a jet of water in air (section 4.2). In particular,
the critical curve for the global transition is drawn and compared to experimental data
for the transition to dripping. Section 35 briefly summarizes the main results and discusses
the link between global instability and the transition to dripping.

2. Basic flow and local dispersion relation

Consider an incompressible liquid with surface tension and viscosity falling from a
circular exit under the force of gravity into an ambient gas of negligible density. This
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falling capillary jetis controlled by three parameters, the Weber number Wo = /pRo U& ,
the Reynolds number Re = RolUy/v and the Froude number ' = Uo /gty where
is the surface tension between the liquid and the gas, p and v the density and the
viscosity of the liquid, U, the velocity of the liquid at the orifice. and Rq the radius
of the orifice. The jet is assumed to be dominated by inertia such that both Re and I’
are considered large below.

If all velocities and distances are non-dimensionaﬁzed with respect o Up and Ry
respectively, a simple approximation for the basic jet can be derived: at leading order, the
velocity remains oriented along the vertical direction and uniform in each section while
it stowly evolves with respect to the downstream coordinate X = ex where £ is a small
parameter related to the Froude number through ¢ = 1/ F? = gRo/ Ug. The z-axis is
chosen to be oriented downstream and x = 018 the orifice. If one denotes by U(X, Wa)
the velocity of the jet at a streamwise station X, the (non~dimensionalized) radius of
the jet evolves according to R (X, Wo) =1/ VU X, Wp) and the local Weber number
formed with these quantities is related to Wy through W (X, Wo) = Wo/lU(X, RS
As the velocity U(X, Wp) increases downstream, the local Weber number W decreases
and the jet becomes locally more and more stable.

The most unstable local modes are axisymmetric. Their frequency w and wavenumber
L are linked by a local dispersion relation D (w, k. X, Wo, Re, €) = 0 which can be
expanded for large Reynolds numbers and small ¢ as

(D D (w, k, X, Wo, Re, ¢) = Do (v, k, X, Wy)
1

b o= Da (. by X Wo) +0 (Re™/2, €).
The leading order term Dg has been derived by Rayleigh (1878):

- / : : I (K)
2 Do (w, k. X, We - (0 - K)? K- K ,
2) o (w, k, X, Wo) ( K) +W(K ) Ty ()’

where Ip and I; are the usual Bessel functions and

(3a) K = k/\/U (X, Wo),
(3b) Q= w/[U (X, Wo)l'*,
(3¢) W= Wo/[Uo (X, Wo)I*?.

The first correction term Dy is obtained by expanding Chandrasekhar’s dispersion relation
(Chandrasekhar, 1961):

@ Di(w kX, Wo)

AT 10 N LEONTR
— 2iK ( WK (K*—1) IQ(K)(Q*K)JFIU(K) (Q A)).
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Note that the spatial dependency in (2) and (4) only appears through the velocity
U(X, W) in the rescaled variables (3a.b. ¢).

The local dispersion relation defines the local stability properties of the jet: the jet is
locally unstable for any positive Weber number and becomes locally absolutely unstable
for Weber numbers above the (non-viscous) critical value W, ~ 0.32 (Leib and Goldstein,
1986a). For a Weber number Wy just above the critical value W,, the jet is then locally
absolutely unstable in a small neighbourhood near the orifice and convectively unstable
everywhere else.

Guided by the analysis of Monkewitz et al. (1993), we look for the global frequencies
close to the local absolute frequency wy (0, Wy) at the orifice. The Weber number W)
will be chosen close to the critical value W, such that the possible global modes are
almost neutral. As explained in the introduction, these global modes are expected almost
everywhere to be a sum of non-interacting local plane waves whose characteristics are
given by the local dispersion relation, i.e. at leading order by Dy (W), k, X, W,) = 0
where wi = wp (0, W,). By definition of the local absolute frequency, two waves
propagating in opposite directions interact at the orifice. These two waves have a local
wavenumber k] that satisfies

Ow

) ok

(kS 0, W) =0

where w (k, X, W,) is one of the two temporal branches of Dy (w, k, X, W,) = 0. One
can easily check that kY also satisfies 97w (%, Wi, 0) = 0 and djw (K¢, W,, 0) # 0
which means that a third wave is present in the interaction process near the orifice.

The goal of this article is to prove that these three waves can form a global mode.

3. Three-waves global modes

The behavior of the three waves is first considered in the Outer region. The direction
of propagation of each wave is determined and it is checked that the three waves do not
interact far from the orifice. The interaction process between the three waves is studied
afterwards. It leads to a local eigenvalue problem for the global frequencies.

3.1. OUTER REGION

For a frequency and a Weber number given at leading order by w and W, respectively,
the local spatial branches obtained from the local dispersion relation move in the complex
k-plane as one goes downstream due to the increase of U(X,Wy). The trajectories in
the complex k-plane of the three spatial branches that pinch at the orifice are shown
in Figure 1.

The three wavenumbers have distinct imaginary parts for all positive X. This property
guarantees that there is no interaction between these wavenumbers away from the
orifice. Assuming that there is no interaction with other waves, the local plane wave
approximation associated with these wavenumbers are uniformly valid in the Quter region.
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Fig. 1. - Trajectories in the complex k-plane, as X varies, of the non-viscous local wavenumbers for Wy = W,
and w = w{. Only the three branches that pinch at the orifice at k3 are represented. The arrows indicate the
direction of variation as X increases.

They exhibit the three possible behaviors in the downstream direction: one is exponentially
increasing (Jm (k) < 0), another is exponentially decreasing (Jm (k) > 0) and the last
one is oscillatory (Jm (k) = 0).

Causality selects the waves which are allowed in the Outer region (see Bers, 1983;
Kulikovskii, 1985). Since the jet is absolutely stable in the Outer region, no energy can
be generated at infinity by a linear mechanism, which means that all the waves must
propagate to the right. In a stable medium, this condition is equivalent to allowing only
decreasing wabes. In a convectively unstable medium, the selection is not as simple
and one must determine precisely the direction of propagation of each wave, which is
defined by the sign of Jm (k) for large! Im (w). If sgn (Im (k)) becomes positive for
¢large Jm (w), the wave propagates to the right (downstream), if sgn (Jm (k)) becomes
negative, it propagates to the left (upstream). Figure 2 shows the trajectories of the three
branches of Figure | at an arbitrary fixed location X > 0 as Jm. (w) varies.

The oscillatory wave has a negative Jm (k) for large Jm (w). Thus it propagates
upstream. The two other wavenumbers tend to the upper complex half-plane: they
therefore both propagate downstream. Accordingly, these two wavenumbers will be
designated as lﬂzf and A}L where A:f corresponds to, say, the exponentially increasing
wave (Jm (k] < 0). The third wavenumber will be designated as kj .

If one applies causality, the waves Iff and /3; are then allowed in the Outer region
whereas %1 is forbidden. In the Outer region, the global mode is therefore approximated
by the sum of the two local plane waves of wavenumbers A?i{_ and k;r The local plane
wave approximations (WKBJ approximations) can be computed by a recursive method

! The sign of Im (k) does not change for Jin (w) larger than the local maximum growth rate.
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Fig. 2. — Trajectories in the complex A-plane of the three non-viscous local wavenumbers rep
for an arbitrary fixed X as Jm (w) is increased from zero. The wavenumbers k" and &

resented in Figure 1
2
half-plane for large Jm (w), while £ ends in the lower half-plane.

" end in the upper

which is explained in details in several textbooks (see, for instance, Bender and Orszag,
1978). The reader is also referred to Monkewitz et al. (1993) for the derivation of the
WKBJ approximations in the global mode framework.

3.2. INNER REGION

In the Inner region, the Outer local plane wave approximations break down and wave
interactions occur. Due to the presence of three waves in the interactions process, the
inner solution is expected to be governed by a third order amplitude equation instead of
the Airy equation obtained by Monkewitz er al. (1993). That equation, as well as the
scaling leading to it, is derived by expanding the local dispersion relation (1) near the
point (w, k., W, X) = (wl, kS, W,, 0) as

;()5

(0) w—wy =v(W-=W,)+i fg— FEX Hpulbk—EY (W W+ A (k- A::;)S 4
e
The coefficients in (6) are calculated with a standard package of algebraic calculation

such as Maple. Precise values for W,, wy and & are computed from the equations
Jhw = (‘?gw = () i

3

(7) W, =~ 0.32025, ' ~0.90517, k'~ 1.28108,

For the other coefficients, one obtains:

®) v —0.58690, 1A —0.68817, &~ 1.96551,
pa —1.56127, A= —0.53198,
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where the following expression for the first derivative of Uy at the orifice (Després, 1992)
"d*((“) (0, Wy) = ~2—~
oX 24+ Wy
has been used to calculate &
The balance of the term A (k — k4 )® with the linear term §X yields a particular choice
for the local spatial variable:

X

9) X:g3/4'

It follows that w, and Wy must be expanded as:

(10a) Wy ~ W + Vews + 53/‘1@)3.
(10b) Wo ~ W + VeWs + 17,
and the Reynolds number Re rescaled as

1 3/4
(1) -t

Re R

Upon replacing k by k7 — jel/4 O, the local dispersion relation (6) is transformed into
an amplitude equation

(12) Ve fws — W)W
], @ 9 . AR S Y QE
+ & Aé—yj~uW35:X;+z<w3~l/P?3~zE~§A) ¥ =0,

where the function ¥ represents the streamwise modulation near the orifice of a local
plane wave of frequency wy and wavenumber kg, for a Weber number Wj,. Equation
(12) recuces at leading order to

(13) wy = vWs.

The next order gives

PO oD
14 —— Wy = U,
(14) 5.3 W, au+7u<1> 0,
where
(15a) P (u) = ¥ (X),

B XF 3 7 W . 77

15b —pl/t (2T WS 2y
(15b), u ( ¢ +Z€R
(15¢) Wy = al¥y,
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and
(16a) a = 1/ (AWD) ~ 1.5268,
(16b) b= —EN A 3.69470.

In order to select a discrete number of modes, at least three boundary conditions have to
be applied to solution of (14). The form of the Outer solution prescribes the behavior of
the inner solution as X tends to oc. To achieve a possible match to the Outer solution,
the inner solution cannot exhibit the “balanced” behavior associated with the branch ki
as X — -+oc. This precludes one of the three possible behaviors for the solutions of
(14) but leaves two degrees of freedom, which means that at least two homogeneous
boundary conditions have to be appied at X = 0. Kulikovskii (1985) has interpreted this
well-posedness condition in a more general framework and explained that the number of
conditions on the right and left side of a finite or infinite domain must be always equal
to the number of waves propagating to the left and right respectively.

The eigenvalue problem to be solved can now be addressed as follows. One looks
for a complex number wug such that there exists a solution of Eq. (14) satisfying the
boundary conditions:

(17a) G (ug) = 9’ (up) = 0;
(17b) } e~ a®y + bdF

where be and (1')3' are the “dominant” and “subdominant” formal asymptotic expansions
near +oc of solutions of (14). Condition (17b) is the condition of matching with the
Outer solution: <I>f and @; correspond to the Inner expressions for the local plane waves
of wavenumbers kf and A;

The eigenvalue ug corresponds to the value of u at the orifice X = 0. According to
(15b), it is then related to w3 and Ws through

1/4 /..
(18) uy = % (% - wy + 1/W"3>.

Since the parameter W3 only modifies the real part of ws according to a relation similar
to (13), one can assume without loss of generality that W3 = 0. Equation (18) then
reduces to

, A i
(19) uy = : (E-—w,g).

The eigenvalue problem is solved in detail in the appendix. The results are presented
in the next section.
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4. Results

4.1. GLOBAL TRANSITION CHARACTERISTICS

The resolution of the “non-classical” eigenvalue problem (14), (17a, b) leads to a
discrete number of eigenvalues wug,, which depends continuously on the parameter
W, = aW,. According to expressions (10a), (13), (15¢) and (19), to each value ug,
corresponds a global frequency wy, given by

(20) wy, = wl +VerWs + ¥ wy +0(e),
where

Y
1) w3, (Wa. R) = 77?]* ~ i s (W2),

the Weber and Reynolds numbers being defined by

(222) Wo = W + VaWs + 0 (34,

(22b) Re = R/,

Due to the negative sign of 1 [see (8)], global growth rates Jm (wg, ) ~ 34 Im (ws)
are increasing functions of the Reynolds number for a fixed e. We shall see below that
the modification of ¢ with respect to Re may reverse such a variation.

For W, = 0 all the global modes are damped (Jm (w3, ) < 0) but Jm (w3, ) increases
with W,. For a infinite Reynolds number, this evolution is shown in Figure 3.

T T T T T

Imag(es)

i

0 1 2 3W2 4 5 6

Fig. 3. — The (rescaled) global growth rates Jm [ws, ], n = 1,2,3,4
versus the parameter W> for an infinite Reynolds number.
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The nth mode is destabilised at a critical value W> (/) which is obtained from
JIm [ws, (Wh . R)] = 0. Table I displays the first critical values together with the
growth rates of the first modes for an infinite Reynolds number.

TasLe 1. - Critical values of W% and associated growth rates of the first global modes
for an infinite Reynolds number.

W, W, W, Wo,

2.8632 43495 5.4481 6.3604
Jm {wy,) 0 3.9425 7.4715 10.7375
I (ws,) ~3.5490 0 3.3353 6.4713
Jm (ws,) ~6.2908 ~3.1520 0 3.0184
JIm {ws,) ~8.6052 -5.8658 ~2.9035 0

The global instability threshold is associated with the destabilisation of the first mode.
It corresponds to the following critical Weber number:

(23) Wo, (R, €) = W, + Ve Wy, (R) + O (3/1).

The dependency of W (R) with respect to R is shown in Figure 4.

55 T 7

|

|
51
E

1
45
|
1
\

z 40

3.5¢

o5 ) : .
0

o

Fig. 4. — The critical parameter Wy versus the rescaled Reynolds number R.
The dashed line corresponds to the asymptotic value for large Reynolds numbers.

At the global threshold, the size of the absolutely unstable region is calculated from

the local dispersion relation (6). At leading order, the local absolute growth rate is
evaluated by

(24) Im [wo (X, Wy, Re)] ~ ¢[W (X, Wy, ) — W, %2 + él
) £
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with

2
(25) = —%—’ 3’; 2 1.02948,

Using W (X, Wo, ) =W ~ /e Wy, (R)—-3X/(2+W,), the condition Jm (wo (X)) >0
of absolute instability is ‘satisfied for an interval AX given by:

(26) AX = (_Zi%M

oA

12/3
{Wzl (R) ~ (7]’? /}

Figure 5 shows AX/\/e versus R.

2.3 T T : T T

2.2 ]

2.1} e

AX /e

1.9 E

1 2 3 4 5 6 7 8 9 10

R

Fig. 5.~ The length AX/ /¢ of the region of local absolute instability versus the rescaled Reynolds number R.
The dashed line corresponds to the asymptotic value for large Reynolds number.

4.2. APPLICATION TO A JET OF WATER IN AIR

When the fluids are given, the three control parameters are connected by the relation

Re'Wg o
e pirig

(27)

i

which is independent of the jet characteristics (radius and speed). Relation (27) implies
that the parameter € is a function of both W, and Re. Expression (23) must then be
considered as an implicit equation for the critical Weber number W, :

Re2W,/? Reti)/*
g / g

28 Wo, =Wy + ——=2- Wy, | ——2
(28) 0, + Ve 2 737
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The solution Wy (Re) of the equation depends on the fluids considered via H. For the
jet of water in air for which =~ 3.89 x 101, the result is represented in Figure 6.

Note the slope of the global transition curve: it is opposite to the slopes of the abso-
lute/convective transition curve and of W (R) (see Fig. 4). The apparent destabilising
effect of viscosity is in fact due to the important variation of e with respect to Re (Fig. 7).
Figure 7 shows that Re cannot exceed values larger than 200 without invalidating the
weakly non-parallel flow assumption (¢ < 1). Moreover, the Reynolds number cannot

0.65 T g g T T

-

0.6 /
0.55

0.5 *

W

045 4

0.41 h

0.35} T T T e - .

60 80 100 TéO 140 1€IS() 180 200 220
Re @

Fig. 6. — Critical Weber numbers for the jet of water in air versus the Reynolds number Re. Continuous line: the
Weber number for the global transition. Dashed line: the Weber number for the local absolute/convective transition
at the orifice. Dotted line: Asymptotic vatue for large Reynolds numbers for the local absolute/convective transition
at the orifice. The star corresponds to the experimental data from Monkewitz (1990) for the transition to dripping
in a jet of water in air from a circular orifice of radius 0.22 mm.

0.014+ T T T T

0.012 / i

0.008+ /
0.006+
0.004+

0.002 -

o / . . :
60 80 100 120 140 160 180 200 220
Re

Fig. 7. — The parameter ¢ for the jet of water in air at the global transition versus the Reynolds number Re.
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be too small without invalidating the non-viscous approximation. These two constraints

explain the variation range of Re in Figure 6. Outside that range, the results are not
expected to be accurate.

The transition to dripping has been experimentally studied on Monkewitz (1990). For
a jet of water in air from a circular orifice of radius Ry 2 0.22 mm, he has obtained a
transition to dripping for Wy & 0.5 at Re ~ 180. This point is displayed on Figure 6.

5. Conclusion

The falling capillary jet has been proved to be globally unstable above the local
absolute/convective transition in qualitative agreement with the general mechanism
described in Huerre and Monkewitz (1990) and with the conjecture of Monkewitz
(1990). The critical Weber number for the global transition has been computed as a
function of the Froude and Reynolds numbers when these WO parameters are larger [see
expression (23) and Figure 4]. The transition curve Wo, (Re) has been drawn for the
special case of the jet of water in air (Fig. 6). »

The global transition has been found to be of a new type. The global modes are
composed of three local plane waves interacting at the orifice and their frequencies are
given by expression (10a) which differs from the formula obtained by Monkewitz er al.
(1993). The scalings are also different. The critical Weber number for the global transition
is superior to the Weber number for the absolute/convective transition by a factor or order
Ve, whereas the difference between both critical values was O (e2/ %) in Monkewitz er
al. (1993). Here, global growth rates are O (&%/ *) for a control parameter O (¢1/2) above
threshold, they were larger [O (2/3)] for a smaller value [O (£%/3)] in Monkewitz et al.
(1993). Moreover, note also that the region of absolute instability necessary for global
instability is also larger than in the other studies: compare O (v€) in (26) with O (£%/3)
in Chomaz er al, (1988) and Monkewitz er al. (1993).

It is argued that the global transition may correspond to the transition to dripping in
the falling capillary jet. Below the global instability threshold, no temporally growing
solution exists without being sustained by external noise. This global stability of the
Jet flow guarantees that the basic jet near the orifice is not affected by the rest of the
flow. The jet does break up far downstream, as expected from the convective nature of
the local instabilities: one indeed expects convected perturbations to reach a sufficiently
large amplitude far downstream to be affected by the nonlinear effects that leads to
breakup. This breakup can not be described by the present theory, and it is assumed that
is does not influence the linear dynamics near the orifice. Above the global instability
threshold, perturbations grow everywhere independently of external noise. In particular,

the orifice, i.e. the transition to dripping. The experimental results for a jet of water in

air by Monkewitz (1990) are in agreement with the interpretation but other data would
be useful for confirmation.
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APPENDIX

Resolution of the eigenvalue problem

This appendix deals with the resolution of the eigenvalue problem (14), (17a, b). Since
only the eigenvalues are wanted, it is convenient to solve the adjoint eigenvalue problem
which is defined by the same Eq. (14) and the following boundary conditions:

(29a) @ (up) =0,
(29b) O~ (I)l“:
= 4 0C

where * denotes the complex conjugate, and ¢y is the “balanced” formal asymptotic
expansion near +oo of solutions of (14).

Three independent solution of (14) are given by the following integral representations:

: o B B
€0) ok = / exp (e"'r‘/“’ us + "W, s i—) ds, k=12, 3.
Je, :

2
where the complex contour €, is composed of the two half-lines (et (k=1) m/2 o0, 0) U
(0, /2 50} for all k = 1,2,3.

If ®*) is written as

-

3

. 2

(B oM = 1/3 / exp (emH Wy u® ! ) exp (u*/? @ (r))dr, k=1,2,3,
e

with

(32) O(r) = ¢S p /g,

the steepest descent method can be applied to determine the behavior of these solutions
near infinity. Dominant contributions to integral (31) as u — oo are invariably known to
come from the stationary points of the function © (r), i.e. from the 3 roots of O () = 0
given by

(33) = e—fﬁ/2~~l+2/(l—1)ﬁ/3

1=1,2, 3

For large u, ®*) is thus a linear combination of functions ©7, [ = 1,2, 3 that correspond
to the contributions from each 7;:

it W

7.,

(34) 7% ~ w3 exp <ej"‘/4 Wau?/3 ) exp (u'? © (1)) (a;o) +a.§1) w4 ),

v
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where

(35) O (r) = 3 —in/02i(1=1)7/3
4

From (34), it is clear that O s exponentially large, $3° oscillatory and ®3°
exponentially small so that ®5° corresponds to the “balanced” formal asymptotic
expansion 7 appearing in (29b). Consequently, condition (29b) means that the
asymptotic expansion of the solution at 400 has a single contribution from the stationary
point 72.

The main idea is now to use this condition to choose the correct expression from the
solution among the d*)>s. Indeed, there is a single contribution from ry if and only
if the integration contour Cy can be deformed into a streepest descent path that passes
only through the stationary point 2. Steepest descent paths are included in the stationary
phase contours Jm [© (r)] = Jm [© (ry)]. These contours together with the coutours
Re [0 (r)] = Re [O ()] are shown in Figure 8.

Imag(r)

Real(r)

Fig. 8. - The function © (r) in the complex r-plane. Continuous lines: the contours Re [0 ()] = Re[O (1)},
[ = 1,2,3. Dashed lines: the contours Jm [©@)=Imle (r)], { = 1,2,3. The points 71, = 1,2,3 are the
saddle points of the function © : &, © (1) = 0.

From this figure, one deduces that Cy is deformed to pass through the three stationnary
points 71, 72 and 73, Cy through r, and C3 through 73. From the above argument, it
finally results that the function ®(2) is the solution of (14) satisfying (29b). Note that the
naive approach used here is rigorously justified in the more sophisticated framework of
“resurgence” methods. The interested reader is referred to the textbook of Candelpergher
et al. (1993) and in particular to pp. 45-49 where the asymptotic behavior of the Airy
function in the complex plane is determined by “resurgence” methods.

The eigenvalue problem is now equivalent to finding the zeroes of ®(2) By contrast
with the Airy functions, the zeroes of ®2) are not tabulated and a numerical integration i
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then necessary to fully solve the eigenvalue problem. The numerical procedure is simple
because for W = 0, all the zeroes have an argument equal to —57 /8. For that value of
W, they are then given by u = ¢ i7/8y; where v is a positive real number that cancels

/' o \/§ s 4 o \/?2 -
J(

) - 2 "tl 4 2 rL) L/‘
The first zeroes are associated with
(36) vy & 2.8868;  wp & 5.1523;  wy &= 7.1303; vy = 8.9404.

The evolution of the complex conjugates of these zeroes as W is progressively increased
is shown in Figure 9.

tmag(uy)

2k E

' L L I L -

-35 -3 -2.5 -2 Reat(u;I 5 -1 -0.5 0

Fig. 9. — The trajectories of the complex conjugates of the first zeroes of the function (2} a5 W is varied. Symbols
o TI

correspond to particular values of Wa @ '+ : Wo =0, /%'« Wo =283 "% Wy =5.66; "0 : Wy = 849.
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