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Modal growth and non-modal growth in a stretched shear layer
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Abstract

The evolution of two-dimensional linear perturbations in a uniform shear layer stretched along the streamwise direction is
considered in this work. The velocity field of the basic flow is assumed to be given by the following exact solution of Navier—
Stokes equationtl = (yx + (1/8(@)) erf(y/a(t)), —yy, 0) where erf is the error function;(r) and S(¢) are time-varying
functions. The solution is governed by two parameters: the Reynolds niRebed the stretching rate (non-dimensionalized
by the initial maximum vorticity) which is assumed to be a positive constant. Using a direct-adjoint technique, perturbations
which maximize the energy gain during a time inter@&l ») are computed for variousg, y andRe For each case, the results
are compared with those obtained by considering a single local normal mode (WKBJ approach). For ¢éma# 10) and
large Reynolds numbers, transient effects associated with non-modal growth are clearly visible: they favor large wavenumbers
which are locally stable. However, they are found not to provide important energy gains. Moreover, transient growth is shown
not to be significantly affected by stretching and to diminish with viscosity. For largéry > 20), instability takes over
transients: the WKBJ approximation is shown to provide a good estimate of the maximum gain whatever the Reynolds number
(>10) and the stretching rate-0.025). However, differences concerning the most amplified wavenumbers remain visible and
increase withy. For very large times, stretching moves the local wavenumber toward zero. A non-viscous asymptotic study
performed for smalt shows that although the perturbation energy ultimately diminishes, it decreases less rapidly than the basic
flow energy density. Stretching therefore never stabilizes the shear layer for large Reynolds numbers. The results obtained in
the WKBJ framework are also extended to more general configurations including three-dimensional perturbations and triaxial
stretching fields.

O 2003 Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

A vortex sheet during its roll-up or the braid region between two adjacent vortices in a shear flow are typical examples of
longitudinally stretched shear layers. The goal of this article is to understand how stretching and viscosity affect, in such a flow,
transient growth and modal growth associated with the Kelvin—Helmholtz instability.

A shear layer is the flow between two uniform streams. Since the works of Kelvin, Helmholtz and Rayleigh, this flow has
been known to be unstable with respect to small disturbances. Rayleigh [1] (see also for instance Drazin and Reid [2]) proved
the non-viscous character of the instability and showed that the presence of inflexion point in the velocity profile was necessary
for instability. Esch [3], Tatsumi and Gotoh [4] and Betchov and Szewczyk [5] analysed the effect of viscosity and demonstrated
that the instability extended down to zero Reynolds number. Numerous results obtained with a parallel flow assumption have
also been applied with more or less success to spatially developing shear flows (see, for instance, Ho and Huerre [6] for a
review). For these flows however, Huerre and Monkewitz [7] have shown that the temporal stability analysis must be replaced
by a spatial stability analysis. The weakly diffusing character of the shear layer is usually taken into account by using a WKBJ
approximation ansatz. In this approach, the perturbation is assumed to be a local plane wave with the same stability properties
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of a wave on a parallel and time-invariant shear layer. The basic assumption of this approach is a scale separation, that is both
space and time variation scales of the shear layer are very large compared to typical wavelengths and time periods of instability
waves. There is another intrinsic limitation. As the perturbation is assumed to be a single local plane wave, the WKBJ approach
cannot capture algebraic growth associated with a decomposition on several non-orthogonal waves. This limitation is important
in linearly stable flows such as plane Couette flows as no growth is obtained in the WKBJ framework although enormous
energy gains are possible (Trefethen et al. [8], Butler and Farrell [9]). For an unstable mixing layer, we shall see that the WKBJ
approach also underestimates the maximum energy gain for small times but that the differences become relatively weak for
large times.

In the present work, we consider, as basic flow, a uniform time-dependent shear layer. The time-dependency is induced
by viscous diffusion and a uniform stretching field which elongates the shear layer along the streamwise direction. Various
Reynolds numbers and stretching rates are considered. Our goal is to perform a generalized stability analysis (Farrell and
loannou [10], see also Schmid and Henningson [11]) of this flow by computing optimal perturbations. There are two
motivations. First, we want to determine whether important transient growth can exist in a stretched and viscous shear layer.
Second, we wish to analyse the effects of stretching and viscosity on the transient and instability growth in order to validate a
method that could be used to compute energy gain estimates in more complex configurations.

Most studies have considered shear layers which are stretched in the spanwise direction (i.e., along with the vorticity
direction). Lin and Corcos [12] and Neu [13] were motivated by providing nonlinear scenarios for the collapse of such layers.
Beronov and Kida [14] analysed the two-dimensional stability of the Burgers layer which is an exact stationary solution. They
did not consider transient effects but showed that the stretching field modifies the characteristics of the normal modes and makes
the shear layer stable beldRe= 1. Gomez and Rossi [15] recently examined transient growth in a discontinuous model of
shear layer stretched along the spanwise direction. They demonstrated by a semi-analytical approach how spanwise stretching
amplifies the growth of the perturbations.

The effect of longitudinal stretching was considered only in the framework of infinitely thin non-viscous shear layer (vortex
sheet). Moore and Griffith-Jones [16] showed how stretching modifies the growth of the Kelvin Helmholtz instability by
considering an expanding circular vortex sheet. Moore [17] extended the analysis to more general vortex sheet and discussed the
validity of the local approximation when the strength of the sheet is not uniform. Although these analyses do not consider the
finite size of the shear layer nor viscous effects, they are connected to our study when small wavenumbers and large Reynolds
numbers are considered (see Section 4.3 and Appendix).

The paper is organized as follows. In Section 2.1, the stretched shear layer model is presented and the perturbation equations
are derived. Both the optimization procedure and the WKBJ approach are described in this section. For the optimization
procedure, we use a similar iteration technique as in Luchini and Bottaro [18] and Andersson et al. [19] to compute the optimal
energy perturbations. It is based on multiple integrations of the direct perturbation equations and of the adjoint equations. The
results are presented in Sections 3 and 4. The case of an unstretched diffusing shear layer is considered first. Both transient
and viscous effects are identified in this section. The results are compared to early computations by Betchov and Szewczyk
[5]. Stretching effects are analysed in details in Section 4. The characteristics of the optimal energy perturbation are compared
to most amplified WKBJ waves for various stretching rates, Reynolds numbers and final optimization times. The results of an
asymptotic study, performed in appendix, applicable for layggand large Reynolds numbers are discussed in Section 4.3. It
is shown that stretching does not stabilize the shear layer. In the final section (Section 5), the results are summarized. Three-
dimensional effects are also considered in this section. The growth of three-dimensional perturbations on a viscous shear layer
subjected to a triaxial stretching field is examined in the WKBJ framework.

2. Basic flow and perturbation definitions
2.1. Basic flow

The 2D dynamics of a shear layer is governed by the vorticity equation:

w

or + (U - Vo =vAw, 1)

wherev is the kinematic viscosity. The velocity = (U, Uy) and the vorticityw are connected to the streamfunctign
through the usual relations:

9 9
_ == Ay
dy ox

Ux
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Here, in most of the paper, we consider a shear layer which is uniformly stretched along the streamwise direction and which
possesses a velocity field of the form:

(Ux, Uy) = (Uo(y, 1) + yx,—yY), @)

wherey is the strain rate of the stretching field. In expression (2), it is implicitly assumed/timindependent of spatial
variables. It may however depend on time. Whels positive, the shear layer is stretched. When it is negative, it is compressed.
The vorticity fieldwg = wg(y, t) associated with (2) satisfies
dwg dwp ; azwo
o ey T U2

The following change of variables

©)

1
p=say. 7= [s2na,
0
with
1
St = exp( [ro dr), @
0
transforms (3) into a simple diffusion equation

9 92
0,220 )
P 8y2

which can be integrated without difficulty from any initial condition.
In the following, we focus on the shear layer which corresponds to the self-similar profile:

- 1 /7
wo(y, 1) =—= e*(Y/“)Z, (6)
a
with a(7) = v/ 1+ 4vt. With respect to the initial variables, the vorticity then reads
0oy 1) = — — e (v/a)?, @

S(t)a(r)
whereS(¢) is given by (4) andi(¢) by

,/1+4vf6$2

S(t)
The streamwise velocity associated with (6) is

Up= % erf(%) = %erf(%). 9)

In (7) and (9), the initial values of the velocity differen8&g = (Ug(+00) — Ug(—00))/2 and of the shear layer width are

unitary, which implicitly assumes that these two quantities have been used to non-dimensionalize time and space variables. In
particular, this means thatin (8) is the inverse of the initial Reynolds numtiee defined by
_ 8Up(0)a(0) 1

o v T

a(t) =

®)

Re (10)

Although the analysis can be carried out for any varyingve shall mostly consider in the present paper a positive and
constant stretching rate= yp > 0. In that case, one has
exp2yt) —1
2y ’
Thus, the large-time vorticity field of the shear layer is in the unstretched variables of the form:

2
14 Yy
@o(y.1) 2v exp(2yt) exp(—x) (1)

y=exp(yt)y, r=
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Expression (11) demonstrates that the vorticity magnitude within the shear layer decreases exponentially due to the stretching
field. This effect can be easily understood by modelling the shear layer by an array of point vortices, as it is done in the so
called “vortex method” (e.g., Cottet and Koumoutsakos [20]). Indeed, as stretching increases the separation distance between
point vortices, the vortex density which is a measure of the vorticity magnitude decreases. Note, however, that the width of the
shear layer converges to a finite valug = +/2v/y for large times. This value corresponds to an equilibrium point between

two opposite effects: viscosity which tends to enlarge the shear and transverse compression (or longitudinal stretching) which
tends to concentrate it.

Itis important to point out that the solution (6) differs from the so-called Burgers layer (see, for instance, Batchelor [21]). In
Burgers layer, the stretching direction is perpendicular to the streamwise velocity and aligned along with the vorticity direction.
Vorticity is thus enhanced by stretching which compensates viscous diffusion. Burgers layer is a fully steady solution. The two-
dimensional stability of Burgers layer has been considered by Beronov and Kida [14]. Beronov [22] extended Burgers layer
solution by providing all the steady shear layer solutions in a triaxial strain field. He also extended the above time-dependent
self-similar solution to a triaxial strain field configuration. The stability of these more general solutions are briefly discussed in
Section 5.

The main goal of the paper is to analyse the dynamics of linear perturbations to the basic flow (6).

2.2. Perturbation equations

The equations satisfied by 2D linear disturbances are obtained by linearizing equation (1) around the basic flow defined by
(2) and (9). The equations for the perturbation vortiaitand streamfunction are

o dw dw oy
— Up(y,t — —yy— + U 1) — =vAw, 12a
ot +( oly )+yx) 0x Vyay + Oyy(y )Hx vaw ( )

w=—Ay. (12b)

As above, it is convenient to eliminate the stretching tepmg/dx and—y yd/dy using the following change of variables:

X

S’

X =

y=S()y, (13)

with S(r) = exp(j'é y(r)dr), such that Egs. (12a,b) become

do Ugdow — oy 192 5,9
—+——+Upj—= =V| 5= +5°— 148
o T s2ax O V[SZ ax2 0 552 ] (14a)

192 5,92
=—| = — +5°— |v, 14b
¢ [SZ 952 ay2]¢ (140)
where
Uo(.1) = S()Up = erf(¥>, (15a)
a
Uoss(Go1) = © PUo _ 3 oG/ (15b)
0y5%Y» S 9y? as '

Egs. (14a,b) are homogeneous with respegtwhich allows a spectral decomposition of the form
(@, ¥) = (@ (5, 1), e (5, 1)) €55 (16)

The equations fow, andy,, obtained by substituting (16) in (14) read:

dwe iU - 2 32«2
— IkUps5¥k =Vv| S — — = , 17a
ot + 2 o + 1k Upy5 ¥ V|: 3&2 2 [ors (17a)
2 2
K 2 d
o =|—5—-5— =—Ag(t . 17b

Note that these equations contain explicit time-dependency througlsbotanda(z).



S. Le Dizes / European Journal of Mechanics B/Fluids 22 (2003) 411-430 415

2.3. Generalized stability analysis

2.3.1. Energy gain

Classical stability analysis is not possible as both the behavior of the perturbations and of the basic flow depend on time.
Stability characteristics are therefore not associated with the growth rate of the perturbation as the latter quantity is not defined
or varies in time. Instead of growth rates, one must consider the relative gain in amplitude that the perturbation can reach during
a given time interval. Optimal perturbations are by definition the perturbations which maximize such a gain. They naturally
depend on the quantity chosen for the optimization. In the present paper, we shall consider the energy. This is the usual choice.
We shall not try to demonstrate that it necessarily constitutes the most relevant choice.

The definition of the relative energy gain is not straightforward in the present case as the basic flow energy is infinite.
Several choices have been made in the literature. Often, the basic flow energy is simply ignored. This can be justified when it
does not vary. Here, as seen on expression (9), the maximum basic flow velocity vari§sssdne can expect, in presence of
stretching, important variations of the basic flow energy in any finite volume. In order to account for these energy variations, we
shall consider a finite volume of fluid, and then look whether a consistent definition can be obtained when the volume goes to
infinity. It is also natural to consider a volume of fluid which is stretched in time. In such a way, the effect of the stretching field
is taken into account without having to deal with the unbounded character if its velocity field. So, let us consider thé&energy
of the velocity field(Uy, Uy) in a fixed volumeV =[—A, A] x [-B, B] of the stretched variables, y):

£ = [[ (0 + 10,7 dras. (18
1%
With this definition, the basic flow energy is defined by
B -
poi = [ [ 1w digs =5 [ er?(2)as. (19)
2 s2 a
v -B
which becomes, for large values Bf
Eo(t) ~ % (20)
For a perturbation mode of initial wavenumberthe energy is given by
B
E(t) = % /f(wz + v |?) i dy = A / (luic1? + g ?) d, (21)
v -B
which reads, for largé# (if ones assumes that the perturbation is localized)
+00
B~ [ viocds, (22)
—0Q

where the star denotes the complex conjugate.
The important point is that for largB, the relative gain of energy between the instants Oramecomes independent af
andB. Its expression is given by

Ec()/Eo®) _ 2 SIS VEDwc @) dy
SISV Qe (0) dy

We shall use this definition of the energy gain in the rest of the paperS?he factor in the above expression is associated

with the evolution of the basic flow characteristics. Note that this factor is in agreement with the evolution of maximum basic

flow velocity in 1/S as mentioned above. As it will be seen in Section 4, it may significantly affect the evolution of the energy
gainG(1).

G (t) = Bllm (23)

—o0 Ec(0)/Ep(0)

2.3.2. Optimal perturbations
Optimal energy perturbations are, as mentioned above, perturbations which maximize the ener@y (grinf one
introduces the scalar product

+00
Fl8d ey = — f F*Ac(Dg 5. (24)
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the expression for the energy gain can be written as

2
W12,
)
1V OI12 o,

Note that the scalar product depends on ho#indr via the operato\, (¢) defined in (17b). In order to simplify the notation,
these dependencies will be omitted from the scalar product parameters in the rest of the paper.
The maximum energy gain of the perturbations of initial wavenumidggtween the instants= 0 and: = ¢ is defined by

Ge() = 5%(1) (25)

Gt r)y=  max PP 26
0= gy 1) (20

If one defines the evolution operator
E{K,t/}:lpl((o)'—’ ‘/’K(tf)» (27)
one can write

1 12 = (L ety (Ve O) Lt ) (Ve () = Lk 1 0 Lt ) (¥ (0) 19 (0)), (28)
{ic.tr}

A
whereﬁ{mf}

Expression (28) fol| wKHZ allows another definition for the maximum energy growﬂj}“ax(tf) is the largest eigenvalue
of the symmetric operatoﬁf,‘(’tf} o [J{Mf}, the optimal perturbatiogs™aX being the associated eigenmode. Computationally,
this definition is more convenient. Indeed, if one assumes that the largest eigenvalue is simple and well-separated (i.e., not an

accumulation point of the spectrum), the functions defined by power iterations

YO =2 o L [0, (29)

is the adjoint operator odi{,(’tf} associated with the scalar prody¢tg).

converge towardg M@ if the initial conditiony (%) is not orthogonal ta/M2*. In practice, it turns out that the non-orthogonality
condition is not a problem and that five iterations are often more than enough for convergence. More details on this direct-adjoint
technique can be found in Andersson et al. [19].

The numerical integration of the direct and adjoint equations is carried out using a Chebichev collocation technique together
with the mapping’ = y/+/y2 + L2 for the spatial variable, and a second order Adams—Bashforth scheme for the time variable.
In most simulations, we use 65 Chebichev polynomials Witk 2 in the mapping. As demonstrated in Melcalfe et al. [23], this
is more than enough for the description of the 2D linear dynamics. The code is written with Matlab© and uses the differential
Matrix package developed by Weideman and Reddy [24].

2.3.3. WKBJ perturbations
Wheny « 1 andRe>> 1, the time-dependency is weak: the perturbation can be searched under the form of a local normal

mode (WKBJ approach)

t

Ve = Ve exp( / o (s) ds). (30)

0

The amplitudej,, and the local growth rate thus satisfy, at leading order, the Orr—Sommerfeld equation

S N T ) P N I Py
(U+IkU0)|:a—}72 —k i|‘/f:< — IkUgs5 ¥« ZR_e[W —k i| Vi, (31)
where
s Y Y
YTan @
Uo(3) = erf(),
ka(t) «ka
=50 T~ .

Re=a(t)/v/S(t) = a/S?/v,

& =0ca(t)S(t) =oa(t).
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At leading order, the local growth rate is then connected through and Re by the (Orr—Sommerfeld) dispersion relation
& = oerilk, Rg associated with the “erf” velocity profile. In other words, we have the relation

_ 1 a(t) a(t)
7= a(t)S(t)ae”[K%’ vS(t)]' (33)

In the WKBJ framework, the functiott, is written asy, = 43(;, k,ROF(t,k, Re whereF (¢, k, Re is an amplitude slowly
varying with respect to the time variable. It follows that the perturbation vorticity reads

t
w =y, k, R@%(;)Ra exp(/ o(s) ds). (34)
0

If the amplitudeF (¢, k, Re is conveniently chosen such thﬁo"j&*a dy = 1, an estimate for the energy gain (25) is provided
by

3 t

GWKBI(1) = cWKBI(; k., Ra% exp(Z / o (s) ds) , (35)
0

whereCWKBJ(¢ k Re = |F(t, k, Re)|2.

The functionCWKBI (s, k, Re) varies on the same slow time scale %&) and a(¢), and satisfiesWKBJ(0, «, Re = 1.
Although CWKBJ can be computed for fixed parameters by classical techniques (Van Dyke [25]), no explicit expression is
available in terms of or Re In order to get an explicit formula, we therefore postulate €H4KBJ = 1 in the above expression.

This will define what we shall call in the rest of the paper, the WKBJ estimate. This assumption is a priori justifiedSgnly if
anda(t) are close to 1. However, as it will be shown below, the WKBJ estimate will also provide a fairly good estimate for
moderate values of anda. In Section 4.3, the non-viscous small wavenumber limit will be studied. It will permit to show that
CWKBJ(¢ k. 00) varies as 152 whenk — 0.

2.4. The characteristic parameters and the kinematic effect of stretching and viscosity

Before starting the analysis, it is important to define a few important physical quantities that will be useful to describe the
characteristics of the perturbations. Moreover, simple kinematic effects can readily be extracted from the above analysis.

As explained in the previous section, the optimization procedure and the WKBJ analysis provide the optilGd!¥aand
the WKBJ estimate& KB for each value of the (initial) Reynolds numkRe,, of the (initial) wavenumber, of the stretching
ratey and of the final time ;. For comparison with normal mode growth rate, it will be useful to also define the mean growth
rate associated with those gains:

IN(G®¥X(t ¢)) WKBJ In(GWVKBI( 1))

_—, Oy tp)=—"7"7"""+.
ly ly

As for a classical stability analysis, the most dangerous perturbations are expected to be the one which maximizes the above

guantities. Thus, the most dangerous optimal initial WavenumBBX(tf) is the initial wavenumber for whichr,?ax(tf)
reaches its maximum

omax(t ) =Mo" )] (37)

oKt p) = (36)

Similarly, the WKBJ approach provides a most dangerous initial wavenuafb&®J(z ;) and a maximum WKBJ mean growth
rateo (7).

Contrarily to classical stability results, all the above quantities depend on the final (observation) th@reover, as the
system evolves in time, one has to keep in mind that the final characteristics of the system are a priori different from the initial
ones. Formulas (8) and (9) tell us how the width and the velocity difference of the shear layer vary in time. They imply that the
Reynolds number defined from these quantities varies from the initial Reynolds n®gkecording to

a(r)
Redt) =Reg SO (38)
The perturbation wavenumber is affected by the stretching field as demonstrated by expressions (12a) and (16). When non-
dimensionalized by the shear layer width, it is therefore given by
a(t)

k@) =35’ (39)
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wherex is the initial wavenumber. Note that these expressions for the Reynolds number and the wavenumber naturally appear
in the local dispersion relation (33) of the WKBJ approach. It is also worth noticing that the combined effects of viscosity
and stretching affect Reynolds number and wavenumber in a similar way. These two important parameters are both multiplied
by a time-dependent factdf (r) = a(r)/S(¢). This “viscous-stretching factor” represents the kinematic effect of viscosity and
stretching on the perturbation parameters. It tends to increase with viscosity and to decrease with stretching. As it will be shown
in the following sections, most of the variations of the perturbations growth with respect to the parameters can be attributed to
this kinematic effect. It is therefore important to provide its main characteristics.

Without stretchingy = 0), the factork increases in time as soon as viscosity is non-zero. On the contrary, when stretching is
present¥ (t) > ¢ > 0), K (¢) goes to zero for large time whatever the viscosity. There also exists a critical evghdtios v, (¢)
for which K (t) remains constant. It is given by

Ye(t) = (40)

v
14 2vt"

In the following, the shear layer is usually assumed to be stretched with a constant positive stretchingnrtitet case

K@) = eXp(—2yt)\/l — 2K + 2K exp(2yt). (41)
Y Y

Fig. 1 illustrates the possible behaviors Kf according toy. If y > v, K(¢t) decreases for all toward 0. One can say

that stretching dominates over viscosity whatever If y < v, K(¢) first increases up to a maximum valuémax =
(v/y)/~/2v]y —1, reached atmax = In(2 — y/v)/(2y), and then decreases toward 0. It crosses the initial v&lue 1 at

te =INv/y — 1)/ (2y) = tmax+ In(v/y)/(2y). As long ast s < t., it can be said that viscosity is dominant. For larger

(tf > tc), stretching takes over viscosity. This typical viscous-dominated then stretched-dominated evolution is indicated in
dashed line on Fig. 1.

3. Optimal perturbationsin an unstretched shear layer

Before analysing the effect of stretching on the stability properties of the shear layer, it is natural to fully understand the
stability properties of the shear layer without stretching. In this section, we therefore determine the optimal perturbations of
the shear layer in the cage= 0. Two effects are analysed: the dependency with respect to the finad tiared the effects of
viscosity.

3 1
0.9r
2.5¢
0.8
ol 0.7f
0.6
3
X 1.5¢ 1 £ 051
©
- _ 0.4f
17 T - 1
- 0.3}
0.2} ¢4
0.5
01
0 1 L ey 0 L L L L
0 20 40 60 80 100 0 0.5 1 1.5 2 2.5
t k

Fig. 1. Typical evolution of the viscous-stretching fact®r= a/S Fig. 2. Comparison of the non-viscous normal mode growth rate with

versust (here forRe= 50). Solid line: viscous-dominated behavioithe mean growth rate of the optimal perturbationsRet= co, y =0

(v = 0). Dashed line: mixed viscous-stretched behavjor=(0.01). and for various s . Thick solid line: non-viscous normal mode growth

Dotted line: stretching-dominated behavigpr= 0.05). rate. Solid lineiry = 1; dashed linety = 10; dash-dot linety = 30;
dotted line:t ; = 100.
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|
0.8t 0.8t
0.6t 0.6t
=l =l
0.4t 0.4t
0.2 [ 0_2 L
Lh 4 Lh 4

Fig. 3. Vorticity profiles of the optimal perturbations f&e= oo, y =0, « = 0.5 and various ;. Dotted line:ty =1, dashed linety = 10,
solid line: s = 100. (a) Initial optimal perturbation (at= 0). (b) Final optimal perturbation (at= ). The solid lines also correspond to the
profiles of the most unstable normal mode of the adjoint operator in (a), and of the direct operator in (b).

3.1. Non-viscous analysis

Transient effects associated with the non-normality of the evolution operator are best identified in the-€aardy = 0.

In that case, no time-dependency is present in the coefficients of the perturbation equations: the above WKBJ analysis is
therefore exact and reduces to a classical normal mode analysis. All the differences observed between WKBJ and optimal
results can therefore be attributed to the non-modal character of the optimal perturbations.

Fig. 2 compares the non-viscous growth rate of the normal mode analysis with the mean growth rate of the optimal
perturbation for variousy. As expected, it is for the smallest that the departure from the normal mode analysis is the
strongest. For smatl, optimal energy perturbations have large wavenumbers. For instaneg,#ot, the mean growth rate
is maximum atk ~ 17. Progressively, ag increases, small wavenumbers become relatively more amplified. This is due to
the Kelvin—Helmholtz instability. Unstable normal modes take over large wavenumber perturbations amplified during short
transient wheny becomes sufficiently large. Fig. 2 demonstrates that fee 100, the stability characteristics of the optimal
perturbation are strongly dominated by the unstable normal modes. It is also interesting to compare the vorticity profiles of
the perturbations. Contrarily to normal mode analysis, optimal perturbation analysis provides two relevant perturbations: the
initial perturbation (at = 0) which is the perturbation one should make to maximize the gain, and the final perturbation (at
t= tf) which is the perturbation one should observe, and both depend.dnitial and final optimal perturbation profiles
(that is atr = 0, andt = 1 respectively) are displayed on Fig. 3 (a) and (b) respectively. For largieis reassuring to see
that, for the unstable wavenumber considered in Fig. 3, the final state of the optimal perturbation corresponds to the eigenmode
of the normal mode analysis. The initial state is by contrast different whatgvérhis is due to the non-self-adjoint nature
of the evolution operatoLy, ;; associated with the energy norm. However, for largethe initial state converges toward the
eigenmode of the adjoint operator, as expected from classical results (Schmid and Henningson [11]). The transient growth of
large wavenumber for small times can be attributed to the so-called Orr mechanism (see, for instance, Schmid and Henningson
[11]). This non-viscous mechanism is associated with the tilting of the disturbances into the direction of the mean shear and
is known to cause an algebraic growth of the perturbation energy. This tilting phenomenon is illustrated on Fig. 4 (a) and (b)
where are displayed the vorticity contours of the optimal perturbation at initial and final timgs#ot and« = 8

3.2. Viscous analysis

Viscosity introduces two modifications. First, the normal mode properties of the shear layer are modified; second, the shear
layer becomes time-dependent as its width evolves accordinagtioc= +/1+ 4vr. These two effects were first studied by
Betchov and Szewczyk [5]. A physical interpretation in terms of time scales is also provided in Villermaux [26]. Betchov and
Szewczyk [5] obtained the viscous normal modes numerically and considered the time-dependency of the basic flow using a
WKBJ ansatz. They computed the perturbation gain between two instants thanks to a formula analogous to (35).

In this section, both effects are considered simultaneously using the optimization procedure. It is worth recalling that for
O(1) Reynolds numbers, it is a priori the only suitable approach as the time-dependency of the basic flow forbids the normal
mode decomposition used in the references cited above. Fig. 5 illustrates how the mean growth rate of the perturbation can be
different according to the optimization procedure. Both the mean growth rate in the frozen basic flow and in the diffusing basic
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Fig. 5. Mean growth rate versus the final wavenumldgr for Fig. 6. Maximum mean growth rate of the optimal perturbations
Rg =100,y =0andrs = 10. Solid line: optimal perturbation. Dottedas a function ofty for y = 0. Solid line: Rg = oo; dashed line:
line: optimal perturbation in a frozen shear layer. Dash-dotted linRg = 1000; dash-dot lineRg = 100; dotted lineRe = 10.

WKBJ perturbation. Dashed line: WKBJ perturbation in a frozen shear

layer (viscous normal mode growth rate).

flow are calculated by the energy optimization procedure and by the WKBJ approach. Two significant features are exhibited on
this plot. (1) WKBJ approach underestimates the mean growth rate and the width of the amplified wavenumbers. (2) For both
the WKBJ approach and the energy optimization procedure, the frozen basic flow possesses a larger maximum mean growth rate
and a smaller most amplified wavenumber. The second point is a direct consequence from the fact that in the diffusing layer the
final wavenumber has increased from the initial wavenumber by a factor equal to the final shear layetwidth, /1 + 4vt ¢

On Fig. 6 is analysed the dependency of the maximum mean growtiFgawith respect to the Reynolds number and the flnal
optimization timer ». The global stabilizing character of viscosity is clearly seen on this figure. Fig. 7 (a) and (b) display the
most dangerous initial and final wavenumber of the optimal perturbation. The non-modal character of the optimal perturbation
for small times is visible on this plot. Indeed, the wavenumber of the most dangerous optimal perturbation divergeeas

to zero. This behavior is the signature of transient growth associated with the Orr mechanism. It cannot be due to an instability
as all the normal modes are stable fos 1. Note however that it is strongly weaken by viscosity. In particular, as soon as
Reis smaller than 100, the wavenumber remains below l.5ff(3£ 1 whereas one hdé}‘axw 17 for an infinite Reynolds

number for the same final time. For larger timeg ¢ 10), the most dangerous wavenumber varies much less with respect to
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Fig. 7. Initial wavenumbek M8 (a) and final wavenumbei ' (b) of the most dangerous optimal perturbation as a functian &br y = 0.
Solid line: Re = oco; dashed lineReg = 1000; dash-dot linéRe = 100; dotted lineRg = 10.

time. The dynamics is no longer dominated by transient but by the instability. The initial wavenumber decreases slawly with
while the final optimal wavenumber is almost constantrfor- 10. This constant depends slightly on the Reynolds number. It
is approximativelycr}‘axw 0.5 for infinite Reynolds number arld;.‘ax% 0.7 for Re= 10.

3.3. Comparison with Betchov and Szewczyk results

Using the WKBJ approach, Betchov and Szewczyk [5] calculated the energy gain between two mssamts, such
that the local Reynolds number varies by a quantifge= Re; — Rg. It is interesting to compare their results with the
maximum gains obtained by the optimization procedure. With our normalizagiea0 ands, =y, one haRg = 1/v and

Rer =/1+4vtg/v, thus

(vARe+1)2 -1

This formula clearly shows thaty increases as the (initial) Reynolds numiiRg = 1/v decreases. The smallest value

ty = ARg/2 is obtained in the large Reynolds number limit. Fig. 8 displaysAf&e= 30, optimal energy gains and WKBJ

gains forRg = 10 andRe = oo which correspond to; = 37.5, ty = 15 respectively. The same features as those pointed out

above are seen on these figures: WKBJ analysis underestimates the maximum gain, the value of the most dangerous wavenumber
and the widths of the amplified wavenumbers.

Two WKBJ estimates are considered here. The dashed lines are the WKBJ estimates (35) as defined in Section 2.3.3 with
CWKBJ — 1. The dotted lines are also WKBJ estimates but obtained by considering only the main behavior of the WKBJ
approximation (that is the exponential factor) as it is done in Betchov and Szewczyk [5]. The ratio of the two estimates is
For large Reynolds number, the two WKBJ estimates are equal: dotted curves and dashed curves superiRgosexor
For small Reynolds numbers(t) varies significantly between= 0 andt = ¢, so the two WKBJ estimates depart from each
others. A priori, none of the two estimates is justified for small Reynolds numbers since the WKBJ approximation breaks down
in this limit. However, the reduced WKBJ estimate seems to work better for small Reynolds numbers.

Note that there are some discrepancies between our WKBJ curves and those obtained by Betchov and Szewczyk [5]. For
Re =0 andReg = oo, Betchov and Szewczyk obtained maximum gains of about 20 and 80 for final wavenumbers around
k¢ ~ 0.5 andk ¢ ~ 0.75 respectively. These gains are an order of magnitude smaller than ours and the most amplified final
wavenumber increases wikke while in our case it decreases (see also Fig. 7(b)). We are confident in our results. Moreover,
the fact that the most amplified wavenumber should be close5dahd not 075 as in Betchov and Szewczyk) for large
Reynolds numbers is obvious since in this limit the WKBJ wave becomes a non-viscous normal mode for which the maximum
growth rate is reached fdr= 0.5.

Betchov and Szewczyk claimed that transition should occur when the Reynolds number has Regcketb0, starting
from Re = 0. They based their estimate on the so-calleff * evhich predicts a “natural” transition when the amplitude gain
reaches 2 that is an energy gain of ordet®~ 6.5 x 107. Based on our results, we expect such a factor to be obtained for
smaller Reynolds numbers. Thus, transition should occur earlier. On Fig. 9 is plotted the contour levels of the energy gain in
the (Re, AR) plane. The “transition level”, indicated in dashed line, is reached\Rebetween 75 and 110 depending on the
initial Reynolds number. In the limRe — 0, the transition level is close thRe~ 110.

(42)
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4. Optimal perturbations of a stretched shear layer

In the following sections, a stretching field is always present. As shown in Section 2.4, this field significantly affects the
evolution of parameters such as the Reynolds number and the wavenumber. In presence of stretching, these parameters which
follow the viscous-stretching factdt () given in (41), always start to decrease if one waits sufficiently long. For this reason,
stretching is always expected to have a dominant kinematic effect for large times whatever its (positive) value.

Moderate time intervals during which viscous and stretching effects are both present are considered in the first two
subsections. We shall demonstrate that the main qualitative features of the evolution of the optimal energy gains with respect to
stretching and viscosity can be associated with the variations of the viscous-stretching factor. Moreover, a precise quantitative
comparison of the optimal results with the WKBJ estimates is also performed to identify the effect of stretching on the non-
modal part of the optimal perturbations.

The perturbation evolution for large times is considered in a third subsection by asymptotic methods.

4.1. Stretching effects on the optimal perturbations

The results of the optimization procedure are summarized on Figs. 10(a)—(c). The maximum energy gain is plotted as
a function of 7 in Fig. 10(a) for initial Reynolds numberRg = 100 andRg = 10000 and stretching ratgs = 0.001
and y = 0.025. For these values, initial and final wavenumbers of the most dangerous optimal perturbations are given in
Fig. 10 (b) and (c) respectively. On these figures, note first that the maximum energy gain is not significantly affected by
stretching contrarily to viscosity which clearly damps the perturbations. By contrast, stretching has an important effect on the
optimal wavenumber, as it can be seen on Fig. 10 (b) and (c). In particular, stretching is demonstrated to strongly increase
the optimal initial wavenumber and to decrease the final one. Fig. 10 (b) and (c) also show that this tendency is weaken by
viscosity.

Anticipating the good agreement between optimal and WKBJ gains demonstrated in the next section, these features can
be qualitatively understood in the WKBJ framework. For the Reynolds numbers we consider, the shape of local dispersion
relationogri(k, Re does not vary much. Its maximueg, ~ 0.4 is reached ned, ~ 0.5. As the WKBJ gain is calculated by
integrating the local growth rate, the maximum gain is thus obtained when the local growth rate remains the longestglose to
In terms of wavenumbers, this means th@) must stay the longest closekg . As the local wavenumbeéi(r) varies between
« andk s = K (¢ )« the values ofk andk ;s are directly connected to the viscous-stretching fa&tary) given by (41). When
K (ty) ~ 1,k andky, are expected to be both closeip ~ 0.5. This is indeed the case fBg = 10000 and/ = 0.0001. When
K (ty) increases above 1 due to viscosity (for the ddge= 100 andy = 0.0001 for instance)s decreases belows, andk s
increases abovk,, as expected. On the contrakyincreases aniél; decreases wheK (¢ ) decreases, as itis the case for the
curves withy = 0.025.

If one uses this argument for the gain, one would expect the maximum gain reached at a given time to be the largest when
K (t) is the closest to 1. In Fig. 10(a), this would be f8g = 10000 andy = 0.001. This is actually not the case as the
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wavenumber. Solid lines: = 0.001; dotted linesy = 0.025. Symbolsx: Rg = 10000;0: Rg = 100.

parameterfRg = 10000 andy = 0.025 lead to a bigger gain far; < 45. The explanation could be related to the slowly-
varying amplitude terms in front of the exponential in the WKBJ estimate (35). These terms are in particular associated with
the time-decreasing behavior of the basic flow velocity. When stretching increases these terms increase as wigl: Vithen

not too small, they can be sufficiently large to compensate the fact tisatot always close to its maximum.

A few features cannot be explained by the WKBJ approach. The first one is the characteristics farsi@@timal
wavenumbers increases gs goes to zero. This typical behavior is the signature of important transient growth for large
wavenumbers. This has been seen in Section 3. It is associated with the non-viscous tilting mechanism (Orr mechanism)
discussed in Section 3.1. It is reduced by viscosity but not significantly affected by stretching.

The second feature is the initial wavenumbers above 1 for lgrga the caseRg = 10000 andy = 0.025. This is not
expected by the quasi-static approach because the local normal mode are damped for wavenumbers larger than 1. The fact that
these modes are selected is also reminiscent of the transient growth of large wavenumbers associated with the Orr mechanism.

Fig. 11 (a) and (b) provide the profiles of the vorticity norm of the optimal perturbation for two typical cases, dominated
either by viscosity (a) or stretching (b). On each figure are plotted both the initial and the final vorticity profile obtained by the
optimization procedure. The final profile is also compared to the profile of the most unstable local normal mode obtained for the
final wavenumbek™2* All the profiles have been normalized in amplitude by their maximum and the transverse coordinate
by the width of the shear layer. Note first that optimal perturbation profiles are very similar to those obtained in Section 3.1
(Fig. 3) where neither stretching nor viscosity were present. The convergence of the final profile towards the local normal mode,
observed in Section 3.1 is here also clear: the final optimal perturbation is almost indistinguishable from the local normal mode
of same wavenumber. This evidence supports the assumption that we shall make in the analysis:fam Beg&on 4.3: for
larget, the optimal perturbation becomes a single WKBJ mode.
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Fig. 12. Comparison of optimal and WKBJ results for varidtg andy . (a) Maximum gain ratis G2 = GMaxX/ GWKBJ_ (b) Initial most
dangerous wavenumber relative differenseMax/cmax — 1 _ (WKBJ  max ggjid |ines:y = 0.001; dashed linesy = 0.01; Dotted lines:
y = 0.025. Symbolsx: Rg = 10000,0: Re = 100.

4.2. Quantitative comparison between optimal values and WKBJ estimates

The convergence of the optimal perturbation toward a single WKBJ modeinsreases could explain the good agreement
between optimal and WKBJ gains shown on Fig. 12(a). On this figure is plotted verthis ratios M3 = GaX/ GIWKBY of
the maximum optimal gain by the maximum WKBJ gain for sevgraindRe . One can see that for all the cases studied, this
ratio remains between 0.9 and 4. This is surprisingly close to 1, notably for the largest vajuasdf; for which S is equal to
4.5 (fory = 0.025 and ; = 60). For such a large value 6f the factorCWKBJ could be no longer close to 1. Note in particular,
that if one would take the estimatVKBJ = 1/52 obtained in Section 4.3 for largeand Re= oo, one would get values for
s§GMX close to 70. Whatever the real expressiol€¥fKBJ, the closeness of the WKBJ estimate to the optimal gain proves that
transient growth remains limited in terms of gain forjalandRe . Differences are however visible on the characteristics of the
optimal perturbation, as already mentioned above. Fig. 12(b) compares the most dangerous optimal wawétitimlirthe
most dangerous WKBJ wavenumbeKBJ. The relative differencexMax/Max — (max _ (WKBJ) / max g plotted versus
ty for the same parameters as in Fig. 12(a). Except for the case of strong stretching and large Reynolds number, the relative
difference decreases as time increases and becomes smaller than 2% 29.

When ; goes to zeropAx ™/« M increases whatever the parameters. In this limit, as for the non-viscous unstretched case,
the optimal wavenumber increases while the WKBJ wavenumber converges to the wavenumber of the most unstable normal
mode. Note however this tendency is not significantly affected by stretching.

Interestingly, stretching effect becomes apparent only for laggeand all the more apparent, the Reynolds number is
large. For instance, for very large Reynolds numb&s ¢ 10000), Ak M3/ MaX increases with time although the optimal



S. Le Dizes / European Journal of Mechanics B/Fluids 22 (2003) 411-430 425

gain converges toward the WKBJ estimate. Again, this behavior could be attributed to the kinematic effect of stretching if one
assumes that the optimal perturbation in a stretched environment has, at eaglatiocal growth rate which is approximatively
given by the mean growth rate of the unstretched optimal perturbation-at and for the same local wavenumber (that is
given by the curves displayed in Fig. 2). Indeedydncreasesk (¢) decreases toward 0 and thusovers a larger wavenumber
interval during a given time period. As large wavenumbeérs (1) possess large mean growth rates for small timest(sa0),

kM has to increase to keep the local wavenumber above 1 during a given small time intervak(say 00) in order to
maximize the gain. In the meantime"WKBJ remains in the unstable wavenumber range whateyeand is close to 1 for
largez ;. This simple argument explains wiaycMa/,c MaX = Akmax/kmax increases withy for very large Reynolds numbers.

4.3. Asymptotic analysis for small wavenumbers

Results of the previous sections have all shown energy gain increasing with the final optimizatiop. titi@ thus natural
to address the question whether this gain is unboundeg -as co.

Moreover, we have seen in Section 4.1, that the final most dangerous optimal wavenumber decrgaseseases. This
tendency has been attributed the kinematic effect of stretching, discussed in Section 2.4. Indeed, any wavenumber is multiplied
during its time evolution by the viscous-stretching fadkar) which goes to zero as goes to infinity. As soon as stretching is
present, we therefore expect the final most dangerous wavenumber to go to zero for.lahgiertunately, small wavenumbers
cannot be easily resolved with our code which has a fixed grid. The difficulty comes from the inversion of the Poisson equation
(17b) which becomes singular for small wavenumbers, its solution being non-localized. This difficulty precludes the use of our
numerical code to analyse the large time limit. Insights can however be obtained from the previous sections. In Section 4.2, we
have in particular shown that maximum optimal gain is well-estimated by the maximum WKBJ gain. Although discrepancies
have been observed concerning the wavenumbers, the typical examples considered above in Fig. 11 (a) and (b) demonstrate that
the spatial structure of the optimal perturbation is actually close to its WKBJ approximation for farigethe limit of large
t¢, itis therefore legitimate to assume that the optimal perturbation converges toward the WKBJ approximation of same local
wavenumber.

As the optimal perturbation gets closer to the WKBJ approximation, the local wavenémbedecreases toward zero. The
growth rate of the local normal mode thus also decreases. It eventually becapiesr@(v/a2) for sufficiently large time.

When this occurs, the WKBJ approximation breaks down as there is no longer separation of time scales. A specific analysis has
therefore to be performed to analyse the large time behavior of the perturbations.

In the appendix, such an analysis is carried out for the non-viscousRasedo). The final results of the asymptotic study
are now presented.

Whenk(t) = «/S2(t) becomes @), an approximation for the streamfunction is given at leading order by (expression
(A.15))

o K K
Vi Sz<t><2K <2y82>+'U°(y)K°<2y52>>’ (43)

whereK g andK 1 are modified Bessel functions. The coefficieptis a constant normalization factor. This approximation is
obtained under the assumption that for earlier times, thafsis>> y, the solution is a single WKBJ mode (30). In (43), the
stretching ratez may depend on time as long &8ss defined by expression (4).

From expression (43), an estimate for the energy density is obtained as (expression (A.17))

asym E(O) |K0(’</(2)’52))|2

Fi S2(1)

)

whereE,((o) is independent of time. The (relative) energy gain is therefore given by an expression of the form

2
asym ) K

The behavior of the modified Bessel functikig(x) ~ —In(x) nearx = 0 implies that

! 2
G?Symuln{y exp<2/y(r) dr>:| = (In(ySZ))Z. (45)
0

For a constant positive stretching rate, the relative energy gain is therefore unbounded and grows linearly in time. This
conclusion seems in contradiction with results obtained by Moore and Griffith-Jones [16] (see also Saffman [27]). They showed
that an expanding circular vortex sheet is “stable” as soon as the rBdiRg = S grows faster tham. Here, for a constant
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stretching rates is exponentially growing, so the shear layer should be “stable”. The apparent contradiction comes from the
definition of stability used by Moore and Griffith-Jones [16]: they did not consider the evolution of the basic flow and assume
stability as soon as the perturbation amplitude (or ecguivalently its energy) remains bounded. This is equivalent to base the
stability criterion on the behavior (E,?Sym(t) instead ofGKSym(t). We think that our definition is physically more relevant.

If one considers‘:,?sym(t), itis easy to show that the results of Moore and Griffith-Jones [16] are recovered. In particular, for
a constant stretching ratEfsym(t) goes to zero for large times. In fact, the energy of the perturbation reaches its maximum for
/</(2yS2) ~ 0.15 and then decreasesaﬁ(ZySz) becomes smaller. The unboundedness of the relative energﬂ;ﬁ@(ﬁ"(z)
obtained above is thus due to the fact that the energy of the basic flow decreases faster than that of the perturbation.

5. Discussion
5.1. Summary

In this paper, the evolution of two-dimensional linear perturbations to a stretched and viscous shear layer has been studied.
The perturbations which maximize the relative energy gain during a given period of(@img) have been computed for
various parameters of the basic floRg= 10 — oo; y = 0 — 0.025) and optimization timer ¢ = 1 — 100). The results have
been compared to WKBJ estimates for which the perturbation is locally approximated by the most unstable local normal mode.
The main conclusions are the following. Transients are visible for small times and favor large wavenumbers. They can be
attributed to the tilting of the perturbation spatial structure into the mean shear direction as described by the so-called Orr
mechanism. They are weaken by viscosity but not significantly affected by stretching. For larger:{imesq), the final
optimal perturbation (at = ) is well-approximated by a single normal mode. The variations of the optimal perturbation
characteristics are qualitatively well-described by the WKBJ approach. In this framework, the energy gain is roughly given by
the integral of local normal mode growth rates during 0 gntDuring this time interval both the Reynolds number and the
local wavenumber evolve according to the viscous-stretching factera/S = (1+ 4v [§ $%)1/2/52 with § = exp(y 1) which
goes to zero in presence of stretching. The effects of stretching on the energy gain have been shown to be globally weak. Visible
effects are mostly due to the variation of the local Reynolds number that stretching induces.

An asymptotic study has been performed for small wavenumbers and infinite Reynolds numbers in order to analyze the large
time behavior of the perturbations. This study has shown that the energy gain is unbounded if the shear layer remains stretched.
This divergence has been attributed to the stronger decay of the basic flow energy than of the perturbations.

5.2. Three-dimensional effects

The optimization procedure has been limited to two-dimensional perturbations. We have seen that modal growth due to
the Kelvin—Helmholtz instability and non-modal growth associated with transients were in competition for small times. In 3D,
we expect such a competition to be still present. Other sources of transient growth may however exist. Three-dimensional
transient growth, such as the one associated with the so-called lift-up effect (see, for instance, Schmid and Henningson [11]), is
known to provide important gains in boundary layer flows. Whether these effects become important in the shear layer remain
an interesting open question for the future.

In the rest of the paper, we show that we can estimate the 3D growth associated with the instability by forming WKBJ
estimates as in Section 2.3. For this purpose, we consider a more general basic flow in which a third component of the stretching
field is present. This will permit to compare our results with Beronov and Kida [14] and Gomez and Rossi [15]. If one assumes
that the basic flow vorticity is still Gaussian, the basic flow velocity field can be written as

U= (Uo(y, ) + yxx, —(vx + v2)y, 722)s (46)
whereUg = (1/Sy) erf(y/a) and

J1+4v [ 5252 ; t
—_— Sx(t) =exp /Vx , Sz (1) =exp /Vz .

) =
a(r) 55,

0 0

The parameterg, andy; are the stretching rates in the principal directi@ns and Oz, respectively. The previous 2D basic
flow is recovered whep, = 0.
If we follow the analysis of Section 2.3.3, a single 3D mode solution is obtained, for gmall andv, in the form

t
@, p) = (D,q)exp</ a) explikyXx + ixzz) (47)
0
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with
1 Kxa kza a
=55 )
whereosp(ky, kz, RE is the 3D dispersion relation associated with the “erf” velocity profile. The main behaviour of the energy
density is then
1
GUIKBI eXp(Z / 0)_ (49)
0

This expression can be compared to the 2D gain by the following manipulations. As it is well known, the 3D dispersion relation
is connected to the dispersion relation of 2D perturbations by Squire’s transformation (see, for instance, Drazin and Reid [2]):

L02D<1/k§+k2 LRe).
VK + k2 VS + k3

Moreover, for the “erf” velocity profile, it is easy to check thaip (k, R/ k is a function decreasing with respect to bitand
1/Re(this is also the case for a “tanh” profile (see Betchov and Szewczyk [5])). It followsthm{48) satisfies

G3D(kx» kZ? Re =

1 (/{xa aicy ) 1 (/{xa a >
0 —o2p| > <S—<o| < |
asSy St vS2/(kxa/Sy)? + (kza/S;)2) — aSx Sy " vSy
If one applies the last inequality to (49), one obtains
G\:%KBJ < G\zl\l/)KB{ (50)

where GYIXBY is the main behaviour of the 2D gain (exponential factor in expression (35)). This inequality means that 3D
perturbations provide less important gains than 2D perturbations whatever the stretching eatdg; .

The qualitative effect of spanwise stretching (along the vorticity directia can also be captured by the same type of
consideration. For instance, in an inviscid flow, we have for two-dimensional perturbationsdsintASy S;))

K K
o= Sz02D<2—x, OO> > 62D<—;, O<>> (51)
528, Y:
as soon as; > 1. The second term is the local growth rate of 2D perturbations without spanwise stretching. This inequality
implies that spanwise stretching always increases the gain of 2D perturbations in an inviscid flow.

In presence of viscosity, we have the same conclusion as soon as

for all ¢. Since this is equivalent to

1 1
4%§/§—/§§>ﬂf—ﬂ>l
0 0

which is automatically verified if; is an increasing function, spanwise stretching also favors the growth of 2D perturbations
whatever the viscosity.

Note finally that spanwise compression has an opposite effect because all the above inequalities are reversed: the local
growth rate in presence of spanwise compression is always smaller than the local growth rate of the mode with the same initial
wavenumber without compression. Therefore, spanwise compression tends to stabilize the shear layer.

Recently, Gomez and Rossi [15] analysed the optimal energy perturbations of a discontinuous model of shear layer which is
stretched in the spanwise direction only. They showed by computing the optimal perturbations that the energy gain grows when
the spanwise stretching rate increases, and that it decreases in presence of compression. Their results are perfectly in agreement
with our simple analysis based on the WKBJ approach.

Similarly, Beronov and Kida [14] showed that a Burgers layer for large Reynolds numbers was linearly less stable that
the same shear layer without stretching. However, they also showed that this is not the case for very small Reynolds numbers
as Burgers layer becomes linearly stable beRe= 1. The reason of this apparent discrepancy is explained in Beronov and
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Kida [14]. The normal modes of the Burgers layer are strongly localised with a behavior fot yargkich is independent on
their local wavenumbers. This is not the case for the local normal modes of the same shear layer without stretching for which the
behavior for largey| depends on the local wavenumber. In particular, for sintie local normal modes spread far away from
the shear layer and tend to be non-localized whes 0. A WKBJ approach which is based on such modes cannot therefore
describe the temporal stability characteristics of the stretched shear layer in that case.

Financial support by O.N.E.R.A. is gratefully acknowledged.

Appendix A. Small wavenumber asymptotic study for Re= oo

In this section, an asymptotic study for small wavenumbers and infinite Reynolds number is performed. A weak stretching
field is assumed to be present£0y < 1) such that the local wavenumber given k) = «/S2 always becomes small for
large times. We assume that the perturbation has converged to the WKBJ approximation of the local most unstable mode before
the breakdown of this approximation whegr) becomes of ordep. The goal of this section is to obtain a new approximation
whenk () < O(y) in order to determine the behavior of the perturbation for very large times.

The framework is Egs. (17a,b) with= 0. If one introduces the new variables

¢ =5, (A.1a)
t

T=x / Ss—(’;), (A.1b)
0

Egs. (17a,b) become for

i+iz7> 92« ¢ —iUoy3¢ =0 (A.2)
ar O )\552 T sAa 0yy? =" '
For large|y|, L_Jo)—,; is exponentially small, s¢ must satisfy
Ky -
& ~ P00 EXP s wheny — 400, (A.3a)
Ky _
¢~ Pp_oo EXP| 2 wheny — —oo. (A.3b)

These conditions will be used to solve equation (A.2) in the bulk regigr O(1)). As long agy| = O(1), the streamfunction
¢ can be expanded as

b =o+K/S2p1+--- (A.4)

Eqg. (A.2) becomes at leading order

<% + il_/o> 22—;20 —iUpjy0 =0. (A.5)
Integrating this equation once with respecgtand writing
a L=
$o= (5 + |U0>M0 (A.6)
leads to
(8% + iﬁo>2%’;}) = Co(T).

An expression for the general solution of this equation can be obtained. However, conditions (A.3a,bL#tply= 0.
Moreover, we have assumed that the solution matches a WKBJ approximation fordéfgehat is whenT — —oo. This
condition implies that the streamfunction should decreasg -as —oo which yieldsdug/dy = 0. Thuspug is a function ofT
only. This function is determined by solving the problem at the next order. Note however that the funct®oonnected to
the functionsp~, and¢_~o appearing in (A.3a,b) by the relations
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]
— i , A7
P+o0 <8T + |)M0 (A7)
_(2 i (A.7b)
P—oc0 = aT Ho- .
The second orde(rk/SZ)qbl satisfies the same equation (A.5)fs Therefore, if
9 —
2 .
=5 — U A.8
#1 ( a7 T 0)#1 (A.8)
one has,
T )2—8“1 = C(T) (A.9)
ar T 0) Ty TS :

The matching ofpg + (K/S2)¢1 with expressions (A.3a,b) faf for large|y| requires that

%‘
ay +o00
This implies, using (A.8) and (A.9),

i) (L ii\up=cucr
:F<8—T I>§(8_T |>M0— 1(T)

which leads, after eliminating'1(T), to an amplitude equation farg

.
= FPol+oo =3F(8—T il)uo. (A.10)

a1 9 1
- - _ = =0. A1l
<8T S20T SZ)“O (A.11)
This equation can be easily integrated for ans y (¢) by introducing the new variable
k
_ , (A.12)
2y §2
which transforms (A.11) into a modified Bessel equation:
32 d
2 2
X"—+X—-X =0. A.13
( ax2 Y ax >“ 0 (A.13)

Two independent solutions of this equation are the modified Bessel fundige®s and Kg(X). The assumption that the
solution should match the WKBJ approximation of an unstable growing mod& fer —oo, i.e., for largeX, permits to
excludel g(X) from the solution. The functiopg(T) is then given by

no = coKo(X), (A.14)

wherecg is a constant.
A leading order approximation for the streamfunctigp is then obtained from (A.1a), (A.4), (A.6), (A.12) and (A.14) as

K = K
<2K1<W> +IUo(y)Ko<W>>. (A.15)

For largex /(y 52), this expression reads

exp(—«/(2y S2(1)))
S(1)

o
Vi 20

Vie ~ fie ()

One can check that it matches the WKBJ approximation (30) for smsﬁ andRe= oo provided thatF (r, k, oo) ~ 1/S(t) as
k— 0.

A leading order expression for the vorticity. can also be derived from this expression by differentiating twice with respect
toy:

. — - K
W ~ —Icoony(y)Ko<W>- (A.16)
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From (A.15) and (A.16), one gets an estimate for the energy of the inadimg (22)

' Ko(k/(2y 212
— K
Ec(t) ~ |co|*B f U052 ) =~ 2 (A.17)
§4(t)
— 00
Note that similar expressions in terms of Bessel functions have been obtained by Moore and Griffith-Jones [16]. Their results
were however obtained in a different framework where the shear layer was circular and infinitely thin (circular vortex sheet).
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