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Non-axisymmetric vortices
in two-dimensional flows
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Slightly non-axisymmetric vortices are analysed by asymptotic methods in the context
of incompressible large-Reynolds-number two-dimensional flows. The structure of the
non-axisymmetric correction generated by an external rotating multipolar strain field
to a vortex with a Gaussian vorticity profile is first studied. It is shown that when the
angular frequency w of the external field is in the range of the angular velocity of
the vortex, the non-axisymmetric correction exhibits a critical-point singularity which
requires the introduction of viscosity or nonlinearity to be smoothed. The nature of
the critical layer, which depends on the parameter h = 1/(Re ε3/2), where ε is the
amplitude of the non-axisymmetric correction and Re the Reynolds number based on
the circulation of the vortex, is found to govern the entire structure of the correction.
Numerous properties are analysed as w and h vary for a multipolar strain field of
order n = 2, 3, 4 and 5. In the second part of the paper, the problem of the existence
of a non-axisymmetric correction which can survive without external field due to the
presence of a nonlinear critical layer is addressed. For a family of vorticity profiles
ranging from Gaussian to top-hat, such a correction is shown to exist for particular
values of the angular frequency. The resulting non-axisymmetric vortices are analysed
in detail and compared to recent computations by Rossi, Lingevitch & Bernoff (1997)
and Dritschel (1998) of non-axisymmetric vortices. The results are also discussed
in the context of electron columns where similar non-axisymmetric structures were
observed (Driscoll & Fine 1990).

1. Introduction
Recent experiments and numerical simulations have provided evidence of the

existence of long-lived non-axisymmetric vortices in large-Reynolds-number two-
dimensional flows. Two explanations for the non-axisymmetry were given: Jiménez,
Moffatt & Vasco (1996) showed that it could be induced by an external strain
field; Rossi, Lingevitch & Bernoff (1997) demonstrated that it could be the result
of a nonlinear perturbation of an axisymmetric vortex. In this paper, an asymptotic
solution that describes both situations is provided.

The emergence of isolated coherent vortices is recognized as an important aspect
of two-dimensional turbulence (e.g. McWilliams 1984). Several studies have been
dedicated to the characterization of such structures. They have claimed that the
selection of the vortex shape which seems to be mostly circular was the result of
an ‘axisymmetrization’ process. This process was analysed by Melander, McWilliams
& Zabusky (1987) for a class of elliptic vortices. They demonstrated that the vortex
relaxes to an axisymmetric state on a time scale much shorter than the viscous
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scale. Bernoff & Lingevitch (1994) analysed the same mechanism by considering
the relaxation of a Lamb–Oseen vortex. They showed that the axisymmetrization
was due to the shear-diffusion averaging mechanism of Lundgren’s (1982) model:
the non-axisymmetric perturbations are wound up into spiral structures due to the
differential rotation of the vortex and then dissipated on an O(Re1/3) time scale.
Bassom & Gilbert (1998) recently considered the same issue in a non-viscous and
linear framework. For a large class of regular vortices, they provided the asymptotic
solution describing the asymmetrization process for large t. When the perturbations
are large, their linear scenario does not necessarily apply. Indeed, Rossi et al. (1997)
showed that a Lamb–Oseen vortex could relax to a tripole structure when perturbed
by a large quadrupole perturbation. Such a structure as well as higher-order multipolar
structures were also observed in rotating fluids where they may appear spontaneously
under certain conditions. These strongly non-axisymmetric vortices have been the
subject of numerous works (see for instance, Hopfinger & van Heijst 1993 and
references therein). Apparently they are all composed of a vortex core surrounded by
2, 3 or more vortices of opposite sign.

Dritschel (1998) analysed the existence of non-axisymmetric vortices which still
have a monopolar structure, i.e. for which there is a single centre of vortex motion.
By considering a family of discontinuous vorticity profile including vortex patches, he
numerically showed that an elliptically perturbed vortex could remain non-
axisymmetric for a long time if the vortex has sufficiently steep edge gradients.
However, the role of nonlinearity is not clear in this case as the linear axisym-
metrization process of Bassom & Gilbert (1998) only applies to continuous vorticity
profiles.

Non-axisymmetric structures in the charge density were also observed in magneti-
cally confined columns of electrons (Driscoll & Fine 1990). These structures should
correspond to non-axisymmetric vortices thanks to a known isomorphism between the
2D Euler equations and the 2D drift-Poisson equations describing this medium (Levy
1965). In that framework, the axisymmetrization process was studied by Mitchell &
Driscoll (1994). Stability results were also obtained by Briggs, Daugherty & Levy
(1970) and more recently by Schecter et al. (1998). They will be re-examined in the
context of two-dimensional vortex flow in the last section of this paper.

Non-axisymmetry may also be due to an external strain field. Indeed, it is well-
known that a vortex patch becomes elliptical when subject to an external strain
field (Moore & Saffman 1971). This is also true for a continuous vorticity profile as
shown by Ting & Tung (1965) and Jiménez et al. (1996). Based on Moffatt, Kida
& Ohkitani’s (1994) results for stretched vortices, Jiménez et al. (1996) demonstrated
that a diffusing vortex could survive a very long time in an external strain field if
the Reynolds number based on the vortex circulation was sufficiently large. In this
limit, they computed the first elliptic correction to the vortex induced by a stationary
external strain field. They applied their results to vortices of decaying two-dimensional
turbulence and showed that quantities such as the eccentricity and the orientation
angle of the elliptical streamlines in the vortex cores could be qualitatively understood
by their model for a majority of them. Ting & Tung (1965) gave the equations for the
linear correction to a Lamb vortex induced by a general external field. Lingevitch &
Bernoff (1995) analysed the Reynolds-number dependence of the vorticity correction.
When the external field is a rotating strain field, they found that the amplitude of
the vorticity correction could become O(Re1/3) for resonant angular frequencies. They
also obtained the variation of the vorticity maximum with respect to the angular
frequency of the strain field.
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The paper is organized as follows. In § 2, the basic equations governing the non-
axisymmetric corrections to a vortex subject to an external multipolar strain field
rotating around the vortex axis are given. As in Jiménez et al. (1996), the framework
is for large Reynolds number and small perturbation amplitude. Although it extends
Jiménez et al.’s (1996) analysis, most equations were already given in Ting & Tung
(1965) and Lingevitch & Bernoff (1995). The extension to a rotating strain field is
needed in practice as the external strain field of a given vortex is generally created by
other vortices rotating around it due to their mutual interactions. The general case of
a multipolar strain field is considered in order to also describe flows which exhibit a
fold symmetry of higher order. The basic equations are solved for a Gaussian vorticity
profile in § 3.1 when the angular frequency of the external field is not in the range of
the angular velocities of the vortex and in § 3.2 when it is. In this second case, the
analysis turns out to be different due to the presence of a critical layer around the
radial coordinate where the local angular velocity equals the frequency of the strain.
The resolution of this singularity by the introduction of nonlinearity or viscosity is
shown to govern the entire solution. The parameter which controls the nature of
the critical layer is the parameter h = 1/(Re ε3/2), where ε is the amplitude of the
non-axisymmetric correction and Re the Reynolds number based on the circulation
of the vortex (Haberman 1972). Numerous properties of the solutions as h varies are
presented in § 3.2. In particular, the variations of the vorticity correction maximum are
computed and compared in the viscous regime to the numerical results by Lingevitch
& Bernoff (1995).

The nonlinear regime (h � 1) turns out to be particularly interesting as it may
provide for a distinguished frequency a non-axisymmetric vortex for which the external
strain field can be turned off. In other words, the external field is no longer needed to
maintain the non-axisymmetry of the vortex in that case. Section 4 focuses on these
non-axisymmetric vortices without external field. Their characteristic properties are
computed for a family of vortex profiles ranging from Gaussian to top-hat. In § 5,
the results are compared to Rossi et al.’s (1997), and Dritschel’s (1998) computations.
They are discussed and connected to recent results obtained for confined electron
columns in § 6. In that section, transient effects are also briefly considered.

2. Slightly non-axisymmetric vortices
Consider an axisymmetric two-dimensional vortex of maximum vorticity ωmax and

radius a perturbed by a non-axisymmetric disturbance and non-dimensionalize all the
quantities using a and ωmax. The streamfunction Ψ and vorticity ω of the resulting
field satisfy the two-dimensional incompressible Navier–Stokes equations

∂ω

∂t
+ J[ω,Ψ ] =

1

Re
∆ω, (2.1)

ω = −∆Ψ, (2.2)

where the Jacobian operator J[f, g] is defined in polar coordinates (r, θ) by

J[f, g] =
1

r

(
∂f

∂r

∂g

∂θ
− ∂g

∂r

∂f

∂θ

)
,

and the Reynolds number Re by Re = ωmaxa
2/ν where ν is the kinematic viscosity.

Assuming a small disturbance, one can write

Ψ = Re {Ψ0(r) + εΨ1(r, θ, t) + O(ε2)}, (2.3)
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where Re denotes the real part, Ψ0(r) and Ψ1(r, θ, t) are the streamfunctions of
the axisymmetric vortex and the disturbance, respectively, and ε a small parameter
which measures the size of the disturbance in the vortex core. This parameter is
unambiguously defined by equations (2.4) and (2.9) given below.

As long as one neglects the viscous diffusion of the vortex and strong nonlinear
effects, the disturbance can be decomposed into normal modes

Ψ1(r, θ, t) = Φ1(r)e
in(θ−wt), (2.4)

where n and w are the azimuthal wavenumber and the angular frequency, respectively.
Under these conditions which require both 1/Re and ε to be small, the function Φ1

satisfies, at leading order, the following ordinary differential equation:

(Ω0(r)− w)∆nΦ1 =
ω′0(r)
r

Φ1, (2.5)

where the prime denotes differentiation with respect to the argument, the angular
velocity Ω0 and the vorticity ω0 of the underlying axisymmetric vortex are

Ω0 = −1

r

dΨ0

dr
, (2.6)

ω0 = −∆0Ψ0, (2.7)

and

∆n =
d2

dr2
+

1

r

d

dr
− n2

r2
. (2.8)

In this paper, we consider localized vortices which are stable with respect to the
two-dimensional Rayleigh instability. This means that the vorticity is monotonically
decreasing, rapidly goes to zero far from the vortex axis, and reaches its maximum in
the vortex centre r = 0. For this category of vortices, the non-dimensionalized angular
velocity Ω0(r) varies from 1

2
to 0 as r goes from 0 to +∞. Here, we mostly focus on

vorticity profiles ranging from Gaussian to top-hat but other profiles can be similarly
considered.

Except for w 6= Ω0(0) = 1/2, the two possible behaviours near r = 0 of solutions
to (2.5) are rn and r−n. Discarding the singular behaviour, one can then impose (for
any w 6= Ω0(0))

Φ1 ∼ rn as r → 0. (2.9)

This condition fixes the normalization of the amplitude of the non-axisymmetric
correction and defines in an unambiguous way the parameter ε. Moreover, condition
(2.9) also selects a single solution to equation (2.5). The behaviour of that solution
near infinity is easily shown to be

Φ1 ∼ snrn +
cn

rn
as r →∞, (2.10)

where sn and cn are two constants which depend on w and on the way eventual
singularities of the equation are resolved. When sn is non-zero, the total streamfunction
Ψ does not vanish for large r and behaves as

Ψ ∼ ε|sn|rn cos [n(θ − wt) + arg (sn)] as r →∞. (2.11)

This expression represents the external field which is needed to maintain the non-
axisymmetric correction Φ1 in (2.3) with the normalization (2.9). It is a multipolar
strain field with an n-fold symmetry rotating at the angular frequency w.
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If sn = 0, the strain field is generated by the vortex itself as no external field is present
anymore. In that case, Φ1 represents an eigenmode of the vortex and expression (2.3)
is then the first-order approximation of the streamfunction of a non-axisymmetric
vortex solution in a strain-free environment. Note also that if equation (2.5) were valid
everywhere for such an eigenmode, the mixing hypothesis of Bassom & Gilbert (1998)
would not apply as there would exist linear inviscid non-axisymmetric perturbations
which do not decay. We shall see below that this does not occur. However, as equation
(2.5) naturally develops singularities, the vanishing of sn will be shown to be possible
if the singularities are smoothed by nonlinearities. The properties of such nonlinear
perturbations are analysed in detail in § 4. The resulting non-axisymmetric vortices
are compared to the numerical solution of Rossi et al. (1997) in § 5.

3. Vortices in a rotating multipolar strain field
The linear problem (2.5), (2.9), (2.10) is analogous to the one obtained in Moffatt

et al. (1994) and Jiménez et al. (1996) for the stationary elliptic correction of a
Gaussian vortex. In particular, equation (2.25) in Moffatt et al. (1994) corresponds to
(2.5) for the particular values n = 2, w = 0 and the vorticity profile

ω0(r) = G(r) ≡ exp (−r2). (3.1)

Note however that a different normalization has been chosen: the amplitude of Φ1 is
fixed in the vortex core by the condition (2.9), hence the unknown parameter is here
sn(w) and not the strain rate in the vortex core as in Moffatt et al. (1994) or Jiménez
et al. (1996). As explained above, this choice which allows sn = 0 has been made
in order to treat in the same framework non-axisymmetric vortices without external
strain field (see § 4).

Lingevitch & Bernoff (1995) also considered a problem similar to (2.5), (2.9), (2.10)
but they kept the viscous terms in the equation for the non-axisymmetric correction.

The resolution of (2.5), (2.9) and (2.10) crucially depends on the value of w with
respect to the range of Ω0. If w is in the range of Ω0, i.e. min (Ω0) < w < max (Ω0),
there exists a critical point rc defined by Ω0(rc) = w where solutions of (2.5) (or their
derivatives) may exhibit a singularity. In other words, the solution of (2.5) prescribed
by (2.9) may become singular at rc. The resolution of this singularity would require the
introduction of higher-order effects such as viscosity or nonlinearity. Before treating
this case which will turn out to be the most interesting, let us first consider the
no-critical-layer case.

3.1. No critical layer

The configurations without a critical layer correspond to frequencies satisfying

w < min (Ω0) = 0 or w > max (Ω0) = 1/2.

For these frequencies, the integration of (2.5) with condition (2.9) at zero is possible
from 0 to ∞ and provides a function Φ1 differential everywhere. The parameter
sn(w) = limr→∞(Φ1/r

n) is then perfectly defined in a linear non-viscous framework.
This parameter gives both the strength |sn| of the external field and its phase shift
arg (sn) with respect to the orientation of the perturbation in the vortex core. Without
a critical layer, sn is real positive, so there is no modification of the orientation of
the perturbation in the vortex core with respect to the external field. In figure 1 is
represented the variation of sn(w) with respect to w for the Gaussian vorticity profile
(3.1) and n = 2, 3, 4, 5. For this profile, the frequency interval (0, 0.5) has been excluded
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Figure 1. Coefficient sn versus the angular frequency w for a Gaussian vorticity profile. Solid line:
n = 2; dashed line: n = 3; dash-dotted line: n = 4; dotted line: n = 5. The star indicates the value
given in Jiménez et al. (1996).

as it corresponds to configurations with a critical layer. As in Jiménez et al. (1996), for
n = 2, the streamlines of the resulting vortex are elliptical with major axis oriented at
45◦ with respect to the strain. Moreover, the eccentricity of the streamline in the vortex
centre is given by 1/s2 when the external strain field is normalized at infinity. Figure 1
shows that, when no critical layers are present, the vortex eccentricity is maximum for
w = 0: the effect of rotation of the strain field is then to diminish the strain strength
in the vortex core. Note also that the non-axisymmetric distortion is stronger in the
vortex core than outside for anticyclonic vortices (sn < 1 if w < min(Ω0) = 0) while it
is the opposite for strongly cyclonic vortices (sn > 1 if w > max(Ω0) = 1/2).

For the critical value w = 1/2 = Ω0(0), condition (2.9) does not apply. The

adequate behaviour of Φ1 near zero is in fact r
√
n2+8 and not rn (Bassom & Gilbert

1998). Enforcing condition (2.9) close to w = 1/2 would lead to very large values of
sn which could explain the divergence of sn observed in figure 1 near w = 1/2. Note
however that since r

√
n2+8 is in general not infinitely differentiable near r = 0, an inner

solution involving other effects such as viscosity, nonlinearity or non-stationarity, is a
priori needed near the vortex centre to smooth the irregularity. Such an inner solution
has been calculated by Bassom & Gilbert (1998) in the limit of large time when
time-dependent effects are dominant.

It is also worth mentioning that the results presented in figure 1 are qualitatively
the same for all n. We shall see below that this is no longer the case when there are
critical layer singularities.

3.2. Critical layer analysis

Critical layers are well-known in the parallel shear flow framework and refer to
regions close to the (critical) points where the basic flow velocity equals the phase
velocity of the perturbation. They have been the subject of numerous works since
the fifties and are now recognized to play an essential role in shear flow transition
(see Maslowe 1986, and references therein). Here the critical points are the radial
positions rc where the angular velocity of the vortex equals the angular frequency of
the perturbation, that is where Ω0(rc) = w. The critical layers around these points are



Non-axisymmetric vortices 181

the same as in the parallel flow case. We shall assume that the critical layers are in
equilibrium, such that classical results from Benney & Bergeron (1969), Haberman
(1972), Brown & Stewartson (1978) and Smith & Bodonyi (1982) can be used. A brief
account of time-dependent effects is given in the discussion.

If Ω0(rc) = w, starting to integrate equation (2.5) on the real axis from r = 0 with
condition (2.9) ultimately leads to a solution which exhibits at the critical point rc for
r < rc a weak singularity of the form

Φ1(r) ∼ α+ β(r − rc) + ακc(r − rc) ln (rc − r) as r → r−c , (3.2)

where α and β are real constants and κc = ω′0(rc)/(rcΩ′0(rc)). This weak singularity of
the streamfunction is associated with a true singularity of the vorticity field which is
usually solved in a ‘critical layer’ by considering higher-order terms such as viscous
or nonlinear terms (Lin 1955; Benney & Bergeron 1969; Haberman 1972). The main
result, as far as we are concerned, is that an azimuthal velocity jump is created
across the critical layer such that the amplitude Φ1 of the streamfunction (2.4) has an
expansion for r > rc of the form

Φ1(r) ∼ α+ β(r − rc) + ακc(r − rc)[ln |r − rc|+ iχ] as r → r+
c . (3.3)

The value of χ depends on the nature of the critical layer, that is whether nonlinearity
or viscosity dominates near r = rc. Lin (1955) showed that χ = −π if sgn (nΩ′0(rc)) < 0
(χ = +π if sgn (nΩ′0(rc)) > 0) when the critical layer is viscous. Benney & Bergeron
(1969) obtained χ = 0 for a purely nonlinear critical layer. Haberman (1972) consid-
ered both effects simultaneously and proved that χ varies continuously from −π to
0 when non-linearity is progressively increased. Moreover, he showed that χ depends
on a single parameter† h given by

h ≡ hc

ε3/2Re
, (3.4)

where the coefficient hc is here

hc =
|Ω′0(rc)|1/2

n

∣∣∣∣ rc

Φ1(rc)

∣∣∣∣3/2 . (3.5)

The algebraic manipulations leading to (3.4) and (3.5) are given in the Appendix, as
well as the curve χ(h) obtained by Haberman (1972) and Smith & Bodonyi (1982).
With this definition of h, the critical layer is then viscous if h � 1, and purely
nonlinear if h� 1.

Once h is computed, χ(h) is known from figure 14 in the Appendix, so that equation
(2.5) can be integrated from rc to +∞ with condition (3.3). Near infinity, the solution
behaves according to (2.10). The form of expansion (3.3) guarantees that sn can be
written as

sn(w, h) = sNLn (w)− i
χ(h)

π
sVn,i(w), (3.6)

where sNLn and sVn,i are two real functions. These functions are the limit values for large
r of f(r)/rn and g(r)/rn, respectively, where f and g are solutions of (2.5) prescribed

† This parameter is here designated by the letter h instead of λ as usually done in critical layers
works (see Maslowe 1986) because λ often refers to the non-axisymmetric part of the strain in
the vortex literature (see e.g. Moffatt et al. 1994). Moreover, this parameter was sometimes called
Haberman parameter (Goldstein & Hultgren 1988), so ‘h’ seems adequate.
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Figure 2. Variation of sVn with respect to the angular frequency w for a Gaussian vortex. Solid
line: n = 2; dashed line: n = 3; dash-dotted line: n = 4; dotted line: n = 5. (a) Real part (sNLn ); (b)
imaginary part (sVn,i); (c) modulus (|sVn | = [(sNLn )2 + (sVn,i)

2]1/2), (d) phase (arg (sVn ) = arctan (sVn,i/s
NL
n )).

Figures (c) and (d) provide the strength and phase shift of the external strain field in the viscous
critical layer regime.

by the following expansions near r+
c :

f(r) ∼ α+ β(r − rc) + ακc(r − rc) ln |r − rc| as r → r+
c , (3.7)

and

g(r) ∼ ακc

π
(r − rc) as r → r+

c . (3.8)

It immediately follows that sn = sNLn for a purely nonlinear critical layer (χ = 0), and
sn = sVn = sNLn + isVn,i for a purely viscous critical layer (χ = −π).

Results for the Gaussian vorticity profile (3.1) are now discussed. The variations of
sNLn and sVn,i with respect to w are displayed on figures 2(a) and 2(b) for n = 2, 3, 4, 5.
These figures complete figure 1. They provide sn for any value of h thanks to
expression (3.6) and figure 14 for χ(h). The first important point to note is that sn
is in general complex, which means that both the orientation and the strength of
the non-axisymmetric distortion varies with respect to the radial coordinate. The
change of orientation in the vortex core between critical layer and no critical layer
cases is measured by the phase of sn which reaches its maximum for the viscous case
(χ = −π). The variation of this maximum with respect to w is shown on figure 2(d).
The corresponding modulus of sn is displayed on figure 2(c). For n = 2, figure 2(d)
implies that the elliptical streamlines near the centre no longer have a major axis
oriented at 45◦ with respect to the external strain but that there is an additional
angular shift φ2 = − arg (s2)/2. This additional shift is maximum for viscous critical
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Figure 3. Phase φ (a) and amplitude A (b) of the elliptic distortion (as defined in (3.9)) for a
Gaussian vorticity profile and a viscous critical layer (h � 1). Solid line: w = 0; dashed line:
w = 0.1; dash-dotted line: w = 0.2; dotted line: w = 0.3.
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Figure 4. Streamlines of the perturbed Gaussian vortex in the frame co-rotating with the external
strain field with a viscous critical layer. (ε = 0.005) (a) w = 0, (b) w = 0.15, (c) w = 0.3.

layers and grows with w up to |φ2|max ≈ 1.15. This effect can also be seen on figures 3
and 4. On figures 3(a) and 3(b) are represented variations of the phase and amplitude
of the non-axisymmetric distortions as a function of the radial coordinate r for
different frequencies where amplitude A and phase φ are defined from Φ1 by

Φ1 = s2r
2A(r)eiφ(r). (3.9)

On figure 4 are displayed the streamlines of the elliptically perturbed Gaussian
vortex in a frame co-rotating with the external strain field for three different values
of the frequency and for fixed ε. One clearly sees that from left to right the orien-
tation of the elliptic streamlines in the vortex core rotates clockwise. Two regions of
recirculation located outside the vortex axis are also present in figures 4(b) and 4(c).
They are associated with the critical layer. Their position moves towards the vortex
centre as the frequency increases, as expected from the displacement of the critical
point rc towards the centre.

In figure 5 is plotted the amplitude A of the correction Φ1 as defined in (3.9) when
the critical layer is purely nonlinear (χ = 0) for the same values of w as in figure 3(b).
The important differences between figures 3(b) and 5 demonstrate that the nature
of the critical layer has a strong influence on the structure of the non-axisymmetric
distortion everywhere.
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Figure 5. Amplitude A of the elliptic distortion (as defined in (3.9)) for a Gaussian vorticity profile
and a nonlinear critical layer (h � 1). Solid line: w = 0; dashed line: w = 0.1; dash-dotted line:
w = 0.2; dotted line: w = 0.3.

An even more important consequence is that the parameter |sn| may vanish or not
according to the nature of the critical layer as w varies. For a Gaussian vorticity
profile, figure 2(a) gives the value of |sn| when the critical layer is nonlinear. It can
be seen that both s2 and s3 vanish for w ≈ 0.160 and w ≈ 0.358 respectively, while
s4 and s5 never vanish. When viscous effects are present in the critical layer, sn has
an additional imaginary part, proportional to sVn,i given in figure 2(b), which precludes
the vanishing of |sn|. This property is not limited to Gaussian vortices. In the next
section, we shall see for a family of vortex profiles ranging from Gaussian to top-hat,
that |sn| does not vanish in the viscous critical layer regime.

As mentioned in § 2, |sn| measures the strength of the external field needed to
maintain a non-axisymmetric distortion normalized in the vortex centre. Its inverse
1/|sn| then indicates the strength of the distortion in the vortex centre in a normalized
external field. If an external strain field is imposed at a frequency such that sn = 0
the vortex cannot reach the equilibrium state described here, as it would imply the
blow up of the non-axisymmetric distortion in the vortex centre. This means either
that another analysis should be developed in the vortex centre in order to describe
the strong deformation of the vortex core that this blow up would imply, or that
other effects such as time-dependence could become important. One could indeed
imagine that inertial waves could be generated in the critical layer such that the
strain rate does not blow up in the vortex centre. This picture is attractive because it
may qualitatively explain the ejection and spiral wind up of vorticity often observed
in vortex interactions before merging (Dritschel 1995; Driscoll & Fine 1990).

Whereas the distortion streamfunction can be plotted without resolving the critical
layer, the determination of the vorticity requires the full resolution of the critical
layer. It is indeed in the critical layer that the singularity of the outer solution is
smoothed out. As a consequence, it is also in the critical layer that the largest vorticity
corrections are obtained. The form of the vorticity field in the critical layer is given
in the Appendix (see expression (A 18)). It is also shown that the maximum of the
non-axisymmetric vorticity correction reads

ωNA
max(h, w, n) = Fn(w)M(h)

√
ε, (3.10)
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Figure 6. Non-axisymmetric vorticity maximum for a correction normalized in the vortex centre:
variation of the amplitude factor Fn versus the angular frequency w. Solid line: n = 2; dashed line:
n = 3; dash-dotted line: n = 4.
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Figure 7. Non-axisymmetric vorticity maximum of the correction generated by a normalized
external field in the nonlinear critical layer regime: variation of the amplitude factor Fn/|sNLn | versus
the angular frequency w of the external field. Solid line: n = 2; dashed line: n = 3; dash-dotted
line: n = 4.

where the function M(h) is defined by (A 22) and

Fn(w) = |ω′0c |
∣∣∣∣ Φ1c

rcΩ
′
0c

∣∣∣∣1/2 , (3.11)

where the subscript c indicates values taken at rc. This expression demonstrates that,
for all h = O(1), the maximum of non-axisymmetric vorticity is O(

√
ε) whereas the

amplitude of the streamfunction is O(ε). Moreover, for any fixed h and ε, the non-
axisymmetric vorticity maximum varies according to the same function Fn(w), which
is plotted in figure 6. These variations are for a distortion normalized in the vortex
centre. When the distortion is normalized at infinity, for instance, by using a fixed
external field Ψn = εrn cos [n(θ − wt)], the vorticity maximum ωNA

max is divided by |sn|.
Figure 7 shows the variation of the vorticity maximum Fn/|sNLn | for such a case in the
nonlinear critical layer regime (h� 1). The blow up of the vorticity maximum is due
to the vanishing of |sNLn |.

In the viscous critical layer regime (h � 1), expression (3.10) for the vorticity
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Figure 8. Vorticity maximum of the correction generated by a normalized external field in the
viscous linear regime: variation of the amplitude factor Gn/|sVn | versus the angular frequency w of
the external field. Solid line: n = 2; dashed line: n = 3; dash-dotted line: n = 4.

correction maximum is replaced by (see expression (A 23))

ωNA
max = Gn(w)MvRe

1/3ε, (3.12)

where Mv is a numerical constant defined in the Appendix and

Gn(w) = |ω′0c |
|Φ1c |

|rc||Ω′0c |2/3
n1/3. (3.13)

In that regime, the vorticity correction is then O(Re1/3) larger than the streamfunction.
This was already pointed out by Lingevitch & Bernoff (1995) who numerically
calculated the vorticity correction generated by a rotating strain field in the linear
viscous regime. In figure 8 is plotted Gn/|sVn | which describes the variation of the
vorticity correction maximum for a normalized external field and a fixed Reynolds
number. The curve for n = 2 is in very good agreement with the numerical results of
Lingevitch & Bernoff (1995). In particular, the angular frequency wmax ≈ 0.1412 which
maximizes the vorticity response is within 0.1% the value obtained by Lingevitch &
Bernoff (1995) for large Reynolds number simulations.

We have seen that solutions with sn = 0 cannot exist with an external field.
Nevertheless, these solutions are very interesting when no external field is present
because they become very good candidates for non-axisymmetric vortices. In the next
section, they are studied in more detail for a family of vorticity profiles ranging from
Gaussian to top-hat.

4. Non-axisymmetric vortices without external strain field
This section focuses on the non-axisymmetric solution for which the external strain

field is turned off (sn = 0). The main goal is to analyse the effect of the vorticity profile
on the characteristics of the non-axisymmetric distortion. In particular, we want to
address the role of steep edge gradients in the existence of such solutions. For this
purpose, we consider a family of vorticity profiles defined by

ω0(r) = 1, r < a,

ω0(r) = exp

(
− (r − a)2

(1− a)2

)
, r > a,

 (4.1)
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Figure 9. Vorticity profile (4.1) for a = 0 : 0.2 : 1. The Gaussian profile corresponds to a = 0.
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Figure 10. Angular frequency wNL of the eigenmode as a function of the vorticity profile parameter
a. Solid line: n = 2; dashed line: n = 3; dash-dotted line: n = 4; dotted line: n = 5. The stars are
the linear prediction for Rankine vortex (equation (4.4)).

with 0 6 a 6 1, which describe vortices ranging from the Gaussian vortex (a = 0) to
the Rankine vortex (a = 1) (see figure 9). Note that, except for a = 1, these vortices
are not compact. As discussed in § 5 in relation to the results of Dritschel (1998), this
property makes them significantly different from compact vortices.

Based on the results of the previous section, non-axisymmetric solutions without
external strain field are expected to exist only if they exhibit a nonlinear critical layer.
In such a case the non-axisymmetric distortion is at leading order (see the Appendix
for more details)

Ψ1 = εΦ1 cos [n(θ − wt)], (4.2)

where Φ1 satisfies equation (2.5) on the intervals (0, r−c ) and (r+
c ,+∞) with the boundary

conditions

Φ1(r) ∼ rn as r → 0 , (4.3a)

Φ1(r) ∼ α+ β(r − rc) + ακc(r − rc) ln |r − rc| as r → r−c , (4.3b)

Φ1(r) ∼ α+ β(r − rc) + ακc(r − rc) ln |r − rc| as r → r+
c , (4.3c)

Φ1(r) ∼ Cr−n as r →∞ , (4.3d)

where α = Φ1(rc), β and C are real numerical constants. For each a and n, integration
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Figure 11. Characteristics of the nonlinear non-axisymmetric solution as a function of the vorticity
profile parameter a. Solid line: n = 2; dashed line: n = 3; dash-dotted line: n = 4; dotted line:
n = 5. The stars are the linear prediction for Rankine vortex. (a) Critical point rc; (b) amplitude
factor Fn appearing in the expression (4.5) of the vorticity jump across the critical layer and in the
expression (3.10) of the vorticity correction maximum; (c) local Haberman parameter hc (expression
(3.5)); (d) strength sVn,i of the external strain needed to maintain a non-axisymmetric solution at the
nonlinear eigenfrequency in the viscous critical layer regime.

of (2.5) with these conditions leads to an eigenvalue problem for the angular frequency
w. The results of the computation are presented on figure 10. It is seen that for n = 2
and n = 3 the angular frequency wNL varies only slightly with a. For n = 4, 5 and
larger, there exists a critical parameter ac below which there is no eigenfrequency. This
critical parameter increases with n and tends to 1 as n goes to infinity (not shown).
For n > 4, ac always corresponds to the case where the angular frequency reaches the
maximum angular velocity of the vortex (here 1/2), that is the upper bound of the
frequency interval for which a critical layer exists. For each n, it is also seen that the
angular frequency tends as a→ 1 to the linear prediction (e.g. Saffman 1992):

wn =
1

2

(
1− 1

n

)
. (4.4)

Other characteristic quantities of the eigenmodes are given in figure 11. The critical
position rc where the angular velocity Ω0 equals the eigenfrequency wNL is shown on
figure 11(a). Its variation with respect to a and n reflects that of wNL: rc increases
when wNL decreases as expected from the decreasing behaviour of Ω0. At rc, the
streamfunction of the eigenmode exhibits a vertical tangent. If the critical layer is
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Figure 12. Linear eigenfrequency versus a. (a) Real part; (b) imaginary part (damping rate). The
stars are the linear predictions for Rankine vortex (equation (4.4)).

in equilibrium as assumed, an axisymmetric vorticity jump is also created across the
critical layer which has the form ε1/2δω at leading order. The expression for this jump
is (see Appendix)

δω = 2CFn(w
NL), (4.5)

where the function Fn(w) is defined in (3.11) and C ≈ 1.3. Comparing expressions
(3.10) and (4.5) shows that the axisymmetric vorticity jump varies exactly as the max-
imum of the non-axisymmetric components of the vorticity correction. The variation
of Fn(ω

NL) with respect to a is plotted in figure 11(b). The vanishing of Fn(ω
NL) for

a close to 1 can be understood by the presence of the term ω′0c which goes to zero
as a → 1. This means that close to a = 1, the jump and vorticity correction are no
longer O(

√
ε) but become O(ε).

The quantity hc represented in figure 11(c) is the local Haberman parameter
defined in equation (3.5) which characterizes the nature of the critical layer. From
an asymptotical point of view, the nonlinear critical layer regime, required for the
existence of the eigenmode, applies as soon as h� 1, that is

ε3/2Re� hc. (4.6)

Thus, hc indicates the amplitude threshold of the nonlinear eigenmode (the parameter
ε) for a given Reynolds number, or the minimum Reynolds number required for the
non-axisymmetric vortex solution formed with the nonlinear eigenmode at a given
amplitude ε to survive.

If condition (4.6) is not satisfied, the nonlinear eigenmode does not exist. This means
that either an external field is needed to maintain the non-axisymmetric disturbance,
or the latter does not survive and probably decays. The modulus of the parameter sVn,i
plotted in figure 11(d) is the strength of the external field that is required to maintain
a non-axisymmetric perturbation with the same frequency but with a viscous critical
layer. When both nonlinear and viscous effects are present in the critical layer, the
external field strength is |sn| = |[χ(h)/π]sVn,i| where χ(h) is obtained from figure 14. As
|χ(h)/π| ≈ 1 as soon as h > 5, the viscous critical layer estimate given by figure 11(d)
approximately applies for all h > 5, i.e. ε3/2Re < 0.2hc. Note also that for smaller h,
or larger ε3/2Re, the external field is always weaker since |χ(h)/π| < 1.

If condition (4.6) is not met and no external strain is present, one expects the
non-axisymmetric distortion to be damped. In such a case, the critical point moves in
the complex plane and it becomes much more difficult to take into account nonlinear
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effects. However, if one assumes that nonlinear effects are negligible, the damped
rate can be obtained from equation (2.5) alone by integrating along a path in the
complex plane that contours the critical point from above. This procedure is also
possible when the critical point is on the real axis and is equivalent to assuming
that the critical layer is purely viscous (see Lin 1955, for instance). The result of
this procedure for the vorticity profiles (4.1) is displayed in figure 12 where the real
part and imaginary parts of the viscous eigenfrequency are given as a function of a.
Comparing these plots with those for the real nonlinear eigenfrequency (figure 10),
one immediately sees that the gap between the real nonlinear eigenfrequency and the
complex viscous eigenfrequency increases as either a decreases or n increases. For
the Gaussian vortex (a = 0), the elliptic distortion has for instance a damping rate
wi ≈ −0.04 and a frequency wr ≈ 0.11 which differs from the nonlinear frequency by
approximately 45%. For the 3-fold symmetrical distortion, wi ≈ −0.09 and wr ≈ 0.11,
so the frequency difference between viscous and nonlinear regimes reaches 227% in
that case. As a goes to 1, nonlinear and viscous frequencies collide.

An estimate for the viscous damping rate is now obtained using the perturbation
method of Briggs et al. (1970). For a close to 1, the frequency is approximately given
by (4.4), so that the critical point is at leading order at the location rc = [n/(n−1)]1/2.
If one multiplies equation (2.5) by the conjugate of Φ1, integrates from 0 to ∞ and
takes the imaginary part of the resulting equation, one gets

−iπ
ω′0(rc)|Φ1(rc)|2

rcΩ
′
0(rc)

+ iwi

∫ ∞
0

ω′0(r)|Φ1(r)|2
|Ω0(r)− wr|2 dr = 0. (4.7)

If both terms are evaluated using the solution for a = 1, i.e.

Φ1(r) = rn, r < 1,
Φ1(r) = 1/rn, r > 1,

one finally obtains

wi = π
ω′0(rc)
r2n−2
c

( 1
2
− wr)2,

i.e.

wi =
π

4n2
ω′0(
√
n/(n− 1))

(
n− 1

n

)n−1

. (4.8)

The connection between the damping rate and the vorticity gradient at the critical
point is clearly seen in this expression. It confirms that the tendency for the nonlinear
and viscous frequencies to collide when a goes to 1 is directly related to the vanishing
of the vorticity gradient at the critical point.

Note that a similar analysis is also possible to get an estimate for the strength sVn,i
of the external strain illustrated in figure 11(d) as a goes to 1. It leads to the same
result that sVn,i is proportional to the vorticity gradient of the vortex at the critical
point, so that sVn,i decreases exponentially fast to zero as a→ 1.

5. Comparison with numerical evidence
In this section, the results are compared to the numerical solutions obtained by

Rossi et al. (1997) and Dritschel (1998).
Rossi et al. (1997) numerically demonstrated the existence of a non-axisymmetric

vortex solution by perturbing a Lamb vortex with a localized elliptic distortion.
We argue that their solution could be the non-axisymmetric state described in § 4.
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Figure 13. Streamlines in the co-rotating frame of the non-axisymmetric solution obtained from
a Gaussian vortex. (a) Numerical solution (from Rossi et al. 1997), (b) asymptotic solution with
ε = 0.02.

Figure 13(a) is taken from Rossi et al. (1997) and shows the streamlines of their
vortex in a co-rotating frame for Re = 104. Figure 13(b) shows the streamlines of the
Gaussian vortex perturbed by the distortion εΦ1(r) cos (2(θ−wNLt)) computed in § 4 in
the frame rotating at the angular frequency wNL. The value ε = 0.02 has been chosen
in order to obtain the best qualitative correspondence between the two plots since
Rossi et al. (1997) did not provide the amplitude of the perturbation for the final state
solution. The shapes of the streamlines for both solutions are surprisingly similar.
Note that for their Reynolds number (Re = 104) and our ε, one has ε3/2Re ≈ 28 which
is consistent with the nonlinear critical layer condition (4.6). A good agreement is also
found for the angular frequency which is w ≈ 0.01 in Rossi et al. (1997) and w ≈ 0.012
in our calculation with their normalization (ωmax = 1/(4π+ t/Re) ≈ 0.075 at t = 500).
Rossi et al. (1997) also showed that their non-axisymmetric solution is rapidly eroded
and modified when Re is divided by a factor 10. This could be associated with the
appearance of viscous effects in the critical layer which in particular would explain the
weak damping and the modification of the orientation of the distortion observed by
Rossi et al. (1997). Unfortunately, Rossi et al. (1997) did not report results with higher
Reynolds numbers. From the present study, one can conjecture that the threshold in
perturbation amplitude for the existence of the non-axisymmetric state would decrease
with increasing Reynolds numbers.

Dritschel (1998) also obtained long-lived non-axisymmetric vortex solutions by
looking at the evolution of a compact region of vorticity which initially has an ellipti-
cal shape. He showed that the steeper the edge vorticity gradients, the more eccentric
the vortex can remain. However, the existence of a stationary non-axisymmetric state
of small eccentricity may be not related to the steepness of the edge gradients. In
§ 4, we indeed proved that there exist neutral non-axisymmetric perturbations with
both 2-fold and 3-fold symmetries for vortices ranging from the Lamb vortex to the
Rankine vortex. Moreover, for both cases, the nonlinearity needed for their existence,
which can be measured, for a fixed Reynolds number, by the parameter hc, was shown
to be almost independent on the steep edge gradient parameter a (see figure 11c).
By contrast, the linear viscous damping of the perturbation is strongly dependent
on a (see figure 12b). More precisely, for weak damping, the viscous damping rate
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is actually proportional to the vorticity gradient at the critical point, which, for our
profiles, becomes exponentially small as a goes to 1. Therefore, one may conclude that
steep edge gradients make viscous modes less stable but do not influence the existence
of nonlinear modes. For the compact vortices considered by Dritschel (1998), one can
show that the viscous damping of the linear perturbations of azimuthal wavenumber
m = 2 is always null because the critical point is always outside the compact region
of vorticity. This implies that there is no singularity at the critical point and thus no
need of a critical layer. For these vortices, the nonlinear modes (i.e. the modes with
a nonlinear critical layer) are then identical to the linear (viscous) modes. This also
means that stationary non-axisymmetric states could exist as close as we wish to the
axisymmetric state. This is indeed confirmed by Legras & Dritschel (1991) who ob-
tained for similar compact vortices stable non-axisymmetric equilibria of aspect ratio
close to 1. In this respect, the compact vortices studied in Legras & Dritschel (1991)
and Dritschel (1998) are clearly different from the class of vortices studied here and in
Bassom & Gilbert (1998) which are linearly asymptotically stable and thus for which
the non-axisymmetric perturbation would have to be sufficiently large to survive.

6. Discussion
6.1. Electron columns

It is interesting to recast the results of §§ 3 and 4 in the context of columns of electrons
(Briggs et al. 1970; Driscoll & Fine 1990). For two-dimensional columns of electrons,
the governing equations are isomorphic to the two-dimensional Euler equations. The
electronic potential corresponds to the streamfunction Ψ and satisfies (2.1) without
the right-hand side. Briggs et al. (1970) were probably the first to explain the effects
of vorticity gradients on the linear non-viscous spectrum of vortices. They showed
that the discrete neutral modes of a piecewise vorticity profile are transformed into
damped quasi-modes (i.e. non-regular) with a damping rate proportional (for small
damping rates) to the vorticity gradient at the critical point. They demonstrated that
this damping is related to the so-called Landau damping of uniform plasmas which
is associated with a causality condition. In fact, it turns out that this damping is
actually equal to what would have been obtained with weak viscous effects because
both viscosity and causality prescribe the same procedure of integration above the
critical point. It follows that the viscous eigenfrequencies given in figure 12 correspond
to quasi-mode frequencies of a electron column with a mean density given by (4.1).
Similarly, the nonlinear eigenmodes can also be recast in the electron columns
framework as they do not directly involve viscosity.† They may correspond to the
so-called trapped modes observed in the experiments of Driscoll & Fine (1990). The
external strain field considered in § 3 has its equivalent in electron plasmas. It can
be generated by either other electron columns or magnetic forcing (Driscoll & Fine
1990). Thus, the results of § 3 can also be applied in the context of electron columns.
In particular, one expects distortions without critical layers (§ 3.1) or with a purely
nonlinear critical layer to be similar in both cases. However, it is not clear whether the
singular distortion associated with a viscous critical layer would be visible. Indeed,
if the singularity is not smoothed by nonlinearity, it has to be smoothed by time-

† In fact, viscosity is necessary to get an equilibrium critical layer, even if the critical layer is
purely nonlinear (Benney & Bergeron 1969). For electron columns, one expects that the critical
layer would be in quasi-equilibrium: in that case, the phase jump across the nonlinear critical layer
may be zero with a different inner structure (e.g. Goldstein & Leib 1988).
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dependent effects. If this is possible, one expects other distortions, such as inertial
waves, to be generated at the critical layer location, and presumably to be present
everywhere. It would not be surprising if the spiral structure observed by Driscoll &
Fine (1990) could be related to that effect.

6.2. Transient effects

Inertial waves, and therefore the spiral filaments associated with them, are also
expected to be present during the transient regime to the stationary solution. No
transients have been considered in the present analysis. They were considered in
Bernoff & Lingevitch (1994) and Bassom & Gilbert (1998) for the simple two-
dimensional linear unforced case. They showed that during the evolution from an
arbitrary initial condition, strong transients characterized by the generation of inertial
waves are present (Bernoff & Lingevitch 1994). These inertial waves eventually die
on a O(Re1/3) time scale everywhere except in the vortex centre where they become
singular and generate an algebraically decreasing eigenmode (Bassom & Gilbert
1998).

In the linear regime, the presence of an external forcing does not modify this
scenario. This means that if there is no critical layer or if the critical layer is purely
viscous (i.e. h � 1), the non-axisymmetric correction created by the external field is
not influenced by transients. It always appears after transients have died out even if it
may take a very long time. However, as soon as nonlinear effects are present, transients
may affect the non-axisymmetric correction. Indeed, transients are expected to be the
most important in the critical layer. They change the nature of the critical layer which
becomes time-dependent and consequently they also modify some essential properties
such as the phase jump χ across the critical layer which defines the non-axisymmetric
correction. Under certain conditions, the time-dependent critical layer may slowly
evolve into an equilibrium critical layer as explained by Goldstein & Hultgren (1988),
but this is not always the case. In particular, several other scenarii including finite
time singularity have already been identified (see Cowley & Wu 1994, and references
therein). Nevertheless, the good agreement obtained in § 5 between the stationary
solution and the numerical solution obtained from an initial value problem (Rossi et
al. 1997) reinforces the idea that a quasi-equilibrium critical layer regime can indeed
be achieved, even in the unforced case.

6.3. Summary

In this paper, the non-axisymmetric correction to a Gaussian vortex generated by
an additional rotating multipolar strain field has been calculated. This work extends
Moffatt et al.’s (1994) analysis which only considered a stationary strain field. This
extension is not trivial when the angular frequency of the external field is in the range
of the angular velocity of the vortex due to the presence of a critical point singularity.
We have resolved that singularity by the introduction of viscous and nonlinear effects
and shown that the entire structure of the correction depends on the value of the
Haberman parameter h = hc/(ε

3/2Re) which characterizes the nature of the critical
layer. Both the scaling and the variation with respect to the angular frequency of
the vorticity correction maximum have been determined. In the viscous critical layer
regime, a good agreement has been found with the viscous numerical simulations
by Lingevitch & Bernoff (1995). For a purely nonlinear critical layer (h � 1), we
have demonstrated that the non-axisymmetric correction can survive without external
field for specific angular frequencies when the perturbation azimuthal wavenumber
is n = 2 and 3. The resulting non-axisymmetric vortex has been compared to the
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numerical solutions obtained by Rossi et al. (1997) for n = 2 and a good agreement
has been found.

The existence of such non-axisymmetric vortices in a strain-free environment has
also been analysed for a continuous family of vorticity profiles ranging from Gaussian
to top-hat (Rankine vortex). Nonlinear eigenmodes with azimuthal wavenumber n = 2
and 3 have been found to exist whatever the steepness of the vorticity profile. For
larger azimuthal wavenumbers, we have shown that nonlinear eigenmodes exist only
if the vorticity profile becomes sufficiently steep. The amplitude threshold of these
modes has been determined as a function of the Reynolds number. Below this
threshold, a non-axisymmetric correction with the same angular frequency survives
only if an external field, which has been calculated is added. Otherwise, the non-
axisymmetric correction is progressively eroded. When the viscous effect eventually
becomes dominant, the correction is expected to evolve according to a linear viscous
mode. Both the frequency and the damping rate of the linear viscous modes have
been computed. An asymptotic expression for the damping rate has also been given
for steep vorticity profiles. This has confirmed the importance of the vorticity gradient
in the critical layer which was found to measure the ‘gap’ between the linear viscous
mode and the nonlinear mode. In particular, it has been demonstrated that both
modes tend to the well-known linear Kelvin modes as the vorticity profile tends to
top-hat.

I would like to thank Alberto Verga for his comments on a preliminary version
of the paper. The American Institute of Physics, Rossi, Lingevitch and Bernoff are
acknowledged for having given permission to reproduce figure 13(a) from the paper
Rossi et al. (1997). I am also grateful to L. Rossi who sent me the postscript file.

Appendix. Critical layer jumps and scalings
In this Appendix, the algebraic manipulations leading to the definitions of h and

hc are given. Basic results from Haberman (1972) and Smith & Bodonyi (1992)
concerning the jumps across an equilibrium critical layer are presented. Expressions
used in § 3.2 for the non-axisymmetric vorticity maximum are also given.

The distinguished scaling in the critical layer is obtained when both viscous and
nonlinear effects are of same order, that is when ε1/2 and Re−1/3 are of same order. In
that case, the critical layer singularity is resolved on a characteristic viscous-nonlinear
scale δ =

√
ε = O(1/Re1/3).

In the frame rotating with the angular frequency w, the streamfunction outside the
critical layer is

Ψ = Ψc −
∫ r

rc

(Ω0(s)− w)s ds+ εRe (Φ1(r)e
inθ) + · · · . (A 1)

By examining this expression near r = rc, one reaches the conclusion that the
expansion for the streamfunction in the critical layer has the form (assuming without
restriction Ψc = 0)

Ψ = εΨ1(r̃, θ) + ε3/2 ln (ε)Ψ2(r̃, θ) + ε3/2Ψ3(r̃, θ) + · · · , (A 2)

with r̃ ≡ r/√ε.
The first two terms Ψ1 and Ψ2 are immediately obtained by rewriting the outer
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solution with the local variable

Ψ1 = −rcΩ
′
0c

2
r̃2 + Φ1c cos (nθ), Ψ2 = −ω

′
0c
Φ1c

2rcΩ
′
0c

r̃ cos (nθ), (A 3)

where the suffix c indicates that values are taken at rc.
The equation for Ψ3 reads

∂Ψ1

∂r̃

∂3Ψ3

∂θ∂r̃2
− ∂Ψ1

∂θ

∂3Ψ3

∂r̃3
=

rc

ε3/2Re

∂4Ψ3

∂r̃4
+

1

rc

∂Ψ1

∂θ

∂2Ψ1

∂r̃2
, (A 4)

i.e.

−Ω′0c rcr̃
∂3Ψ3

∂θ∂r̃2
+ nΦ1c cos (nθ)

∂3Ψ3

∂r̃3
=

rc

ε3/2Re

∂4Ψ3

∂r̃4
+ n sin (nθ)Φ1cΩ

′
0c
, (A 5)

with the matching condition

Ψ3 ∼ (Ω′0c − ω′0c)
r̃3

6
+
ω′0cΦ1c

rcΩ
′
0c

r̃ ln |̃r| cos (nθ) as r → −∞. (A 6)

Using the following change of functions:

Ψ3 = −ω′0c
∣∣∣∣ Φ1c

rcΩ
′
0c

∣∣∣∣3/2 Ψ 3 + Ω′0c
r̃3

6
, R =

∣∣∣∣rcΩ′0cΦ1c

∣∣∣∣1/2 r̃ , X = nθ, (A 7)

we get a single parameter problem for Ψ 3

R
∂3Ψ 3

∂X∂R2
+ sin (X)

∂3Ψ 3

∂R3
= h

∂4Ψ 3

∂R4
, (A 8)

Ψ 3 ∼ 1
6
R3 + R ln |R| cos (X) as R → −∞, (A 9)

with

h =
|Ω′0c |1/2
nRe

∣∣∣∣ rcεΦ1c

∣∣∣∣3/2 . (A 10)

This problem was first studied by Haberman (1972), then re-examined and corrected
by Brown & Stewartson (1978) and Smith & Bodonyi (1982). The conclusion they
reached is that the behavior of Ψ 3 for large R is of the form

Ψ 3 ∼ 1
6
R3 + R ln |R| cos (X) + η(h) 1

2
R2 +U(h,X)R as R → +∞, (A 11)

where η(h) and U(h,X) are vorticity and velocity jumps respectively. The velocity
jump U(h,X) is 2π-periodic with respect to X and can be written as

U(h,X) =

∞∑
p=0

(U(p)(h) sin (nX) + V (p)(h) cos (nX)). (A 12)

It follows that the phase jump appearing in (3.3) is given by

χ(h) = −U(1)(h) = − 1

π

∫ 2π

0

U(h,X) sin (X)dX. (A 13)

Smith & Bodonyi (1982) computed the function χ(h) and obtained a result comparable
to Haberman’s calculation although the latter did not consider the harmonics in
(A 12). Their result is reproduced in figure 14.
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Figure 14. Sketch of the phase jump χ versus h (after Smith & Bodonyi 1982).
The large-h asymptote of χ is −π.

Haberman (1972) showed that the vorticity jump η(h) can be computed from χ(h)
by the formula

η(h) =
χ(h)

4h
. (A 14)

For a given value of h (6= 0), several harmonics are in general present in (A 12) and
η(h) is in general non-zero which means that in addition to the phase jump, the
critical layer generates in the outer region an O(ε1/2) axisymmetric correction as well
as O(ε) harmonic corrections.

For a purely viscous critical layer, Smith & Bodonyi (1982) proved that

U(h,X) ∼ π sin (nX) as h→∞, (A 15)

which guarantees that χ(h) ∼ −π as h → ∞ but also that the O(ε) harmonic
corrections and the O(ε1/2) axisymmetric correction are absent in that limit. For
a purely nonlinear critical layer (h � 1), they showed that U(k, X) = O(h) which
means the O(ε) harmonic corrections are also negligible in that case. By contrast, the
O(ε1/2) axisymmetric correction does not disappear since the vorticity jump η(h) goes
to a constant. Smith & Bodonyi (1982) obtained the following estimates for χ(h) and
η(h):

χ(h) ∼ −4Ch as h→ 0, (A 16)

η(h) ∼ −C as h→ 0, (A 17)

with C ≈ 1.3.
The implications of these results can be summarized as follows. Although there

may exist corrections of same order or larger, the streamfunction of the fundamental
distortion is perfectly defined in the outer region by equations (2.5) and (3.3). The only
relevant quantity from the critical layer that intervenes in its definition is the phase
jump χ(h) which is sketched in figure 14. However, expansion (2.3) is in principle not
an approximation of the total field as O(ε1/2) terms generated by the critical layer
should be taken into account. The only exception is for viscous critical layers.

In the frame rotating with the angular frequency w, the vorticity field in the critical
layer has the following expansion:

ω(r̃, θ) = −rcΩ′0c +
√
εr̃Ω′0c +

√
εω3(r̃, θ) + · · · (A 18)
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with

ω3 = −ω′0c
∣∣∣∣ Φ1c

rcΩ
′
0c

∣∣∣∣1/2 ∂2Ψ 3

∂R2
(A 19)

where Ψ 3 is defined by (A 8) and (A 9). If one decomposes the vorticity field as

ω(r̃, θ) =
∑
p>0

γ(p)(r̃) cos (pnθ) + µ(p)(r̃) sin (pnθ),

the amplitude γ(1) of the fundamental distortion has a maximum in the critical layer
which can be written as

ω(1)
max(h, w, n) = |ω′0c |

∣∣∣∣ Φ1c

rcΩ
′
0c

∣∣∣∣1/2 M(1)(h)
√
ε, (A 20)

where

M(1)(h) = max
Rreal

∣∣∣∣ 1π
∫ 2π

0

∂2Ψ 3

∂R2
cos (X̃)dX̃

∣∣∣∣ . (A 21)

Similarly, the maximum ωNA
max of non-axisymmetric part of the vorticity is also given

by expression (A 20) where M(1) is replaced by

M(h) = max
X∈(0,2π);Rreal

∣∣∣∣∂2Ψ 3

∂R2
− 1

2π

∫ 2π

0

∂2Ψ 3

∂R2
dX̃

∣∣∣∣ . (A 22)

When the correction of the streamfunction is normalized in the vortex centre, Φ1c

is perfectly defined by the linear inviscid equation (2.5). In that case, the non-
axisymmetric vorticity maximum depends on h only through the factor M(h). In
other words, the variations of the vorticity maximum with respect to w and n are the
same for any fixed h and ε.

Using expression (A 10), ωNA
max can also be written as

ωNA
max = |ω′0c |

|Φ1c |
|rc||Ω′0c |2/3

(nRe)1/3h1/3M(h)ε. (A 23)

In the viscous regime (h→∞), the maximum of the non-axisymmetric vorticity is also
the maximum of the fundamental distortion ω(1)

max and h1/3M(h) goes to a non-zero
constant Mv = maxRreal |Re (ω̃3)| where ω3 satisfies the viscous critical layer equation

∂2ω3

∂R2
− R ω3 = 1, (A 24)

with

ω3 ∼ − 1

R
as R → ±∞. (A 25)

Some properties of the function ω3, can be found in the appendix of Drazin & Reid’s
(1981) textbook.
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