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The viscous evolution of two co-rotating vortices is analysed using direct two-
dimensional numerical simulations of the Navier–Stokes equations. The article focuses
on vortex interaction regimes before merging. Two parameters are varied: a steepness
parameter n which measures the steepness of the initial vorticity profiles in a given
family of profiles, and the Reynolds number Re (between 500 and 16 000). Two dis-
tinct relaxation processes are identified. The first one is non-viscous and corresponds
to a rapid adaptation of each vortex to the external (strain) field generated by the
other vortex. This adaptation process, which is profile dependent, is described and ex-
plained using the damped Kelvin modes of each vortex. The second relaxation process
is a slow diffusion phenomenon. It is similar to the relaxation of any non-Gaussian
axisymmetrical vortex towards the Gaussian. The quasi-stationary solution evolves
on a viscous-time scale toward a single attractive solution which corresponds to the
evolution from two initially Gaussian vortices. The attractive solution is analysed in
detail up to the merging threshold a/b ≈ 0.22 where a and b are the vortex radius
and the separation distance respectively. The vortex core deformations are quantified
and compared to those induced by a single vortex in a rotating strain field. A good
agreement with the asymptotic predictions is demonstrated for the eccentricity of
vortex core streamlines. A weak anomalous Reynolds number dependence of the
solution is also identified. This dependence is attributed to the advection–diffusion
of vorticity towards the hyperbolic points of the system and across the separatrix
connecting these points. A Re1/3 scaling for the vorticity at the central hyperbolic
point is obtained. These findings are discussed in the context of a vortex merging
criterion.

1. Introduction
Since the pioneering experiments carried out by Couder (1983) on two-dimensional

turbulence in thin films, it has been clear that vortex interactions, and in particular
vortex merging, are essential processes which ultimately determine the flow behaviour.
Couder (1983) found that the mean vortex size grows with time in qualitative agree-
ment with the theoretical prediction of the ‘inverse cascade’. The direct observation
of coherent structures, already present in early numerical simulations (Basdevant et
al. 1981), inspired further investigations on this subject. Later, many works were
devoted to the study of the evolution of a random distribution of vorticity, especially
using numerical simulations (McWilliams 1984, 1990). In decaying turbulence, vortex
merger can be considered as the most important interaction, although other multiple
vortex collisions or inelastic encounters influence the system’s evolution (Dritschel
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1995; Kevlahan & Farge 1997). A scaling theory of two-dimensional turbulence
was proposed by Carnevale et al. (1991, 1992), based on the pathway of successive
generations of vortices.

Vortex merger is also important in a variety of fluid flows, such as in mixing
layers (Winant & Browand 1974) or aircraft wakes (Brandt & Iversen 1977). In
order to understand the merging mechanism a variety of simplified models were
investigated: models where viscous effects are neglected, and only the vortex core
evolution is considered as in the case of vortex patches (Saffman & Szeto 1980)
or vorticity contour dynamics (Dritschel & Waugh 1992); models with the opposite
approximation, where vortex core size is neglected and viscous effects control the
vortex interaction (Agullo & Verga 2001). Overman & Zabusky (1982), using contour
dynamics, studied the instability, merger and breaking of two patches of vorticity, and
tested the merger criterion (Saffman 1992). This criterion stipulates that merging of
two identical vortices is only possible if the ratio of the vortex size to their separation
is larger than a certain threshold. In fact, when dissipation is taken into account, the
vortex size grows in time and vortex merging always occurs, whatever is the initial
condition, as noted by Melander, Zabusky & McWilliams (1988). Interestingly, even
in the extreme case of point vortices, viscosity also drives vortices to merge in a finite
time as demonstrated by the stochastic approach of Agullo & Verga (2001). Melander
et al. (1988) simulated, using hyperviscosity as a dissipation process, the interaction of
two vortices having a continuous vorticity distribution (initially of compact support).
The results of the direct simulations were compared with a simple dynamical model
derived from a truncation of the Navier–Stokes equation to the second moments of
the vorticity. This reduced dynamical system, which incorporates viscous effects, has
its own merging process. One important observation of Melander et al. (1988) was
that the merging process includes different stages. After an initial ‘adaptation’ stage,
the system sets into a metastable state, which evolves slowly on a viscous time scale
up to a ‘critical’ state from which merger occurs on a convective time scale. This
scenario was qualitatively confirmed by their numerical simulations. However the
model, which did not take into account the emergence of the spiral structure and the
overlapping of vorticity, could not reproduce the successive stages with the correct
time scales. Here, both the adaptation stage and the ‘metastable’ state are analysed
in detail using real viscous diffusion and overlapping vorticity profiles.

The existence of an attracting metastable state was also noted in the recent work
of Sipp, Jacquin & Cossu (2000), where they study the self-adaptation and viscous
selection of two counter-rotating vortices (in two dimensions). The metastable state
appears to be very close to a solution of the Euler equations, adiabatically evolving
by viscous diffusion. In the case of co-rotating vortices, experiments carried on by
Meunier & Leweke (2001) also show the existence of a quasi-steady state, where the
distance between the two vortices remains almost constant and the rotation period
is near that of two point vortices with equivalent circulation. This quasi-steady state
was compared to equilibrium solutions of Euler equations (Ehrenstein & Rossi 1999;
Meunier et al. 2002) in order to establish a merging criterion based on the stability
of the metastable state.

The initial stage of the co-rotating vortices evolution, before important changes
arise in the initial vorticity distribution, is dominated by the strain field felt by each
vortex due to the action of the other one. This strain field tends to elliptically deform
the core of the vortex. Moore & Saffman (1971) first explained this deformation
by providing an equilibrium solution for a non-viscous vortex patch in a stationary
strain field. Jiménez, Moffatt & Vasco (1996) and Le Dizès (2000) obtained similar
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equilibrium solutions for a Gaussian vortex in a weak strain field. The time-dependent
adaptation process of the vortex to the strain field has also been the subject of several
recent works (Lingevitch & Bernoff 1995; Bassom & Gilbert 1999; Schecter et al.
2000; Balmforth, Llewellyn Smith & Young 2001). Bassom & Gilbert (1999) showed
that the non-viscous vortex response involves a complex spiral structure which is
characterized in the large time limit by a peculiar algebraic decreasing behaviour.
Sipp et al. (2000) discussed the adaptation process in a system composed of two
counter-rotating vortices. They observed that the vortex ellipticity oscillates during
the adaptation process. They showed that for vortices with uniform vorticity profiles
(Rankine vortices), the oscillations of the core elliptic deformation could be attributed
to a linear Kelvin mode. In the present paper, we reach a similar conclusion in the
context of co-rotating vortices for other vortices such as the Gaussian vortex. We
further demonstrate that the adaptation process is independent of the Reynolds
number in agreement with the properties of the Kelvin modes.

The paper is organized as follows. In § 2, the numerical procedure is presented
together with the basic properties of a system of two co-rotating vortices. Vortex
deformation measures are defined in this section. In § 3, two relaxation processes are
identified for sufficiently distant vortices. The rapid vortex core adaptation mentioned
above is analysed in § 3.1. Both vorticity profile and Reynolds number are varied to
prove the direct relation of this process to a damped deformation mode of each vortex.
The second slow relaxation process, which is due to viscous diffusion is described
in § 3.2. As for counter-rotating vortices (Sipp et al. 2000), the vortex system with a
Gaussian initial profile is shown to attract all the other vortex systems with different
initial vorticity profiles. We demonstrate that this process is similar to the relaxation
of a single axisymmetric vortex to a Gaussian. Properties of the attractive state are
provided in §§ 4 and 5. In § 4, the quasi-steady character of the system is demonstrated.
The streamline eccentricity near each vortex centre is also shown to be well-predicted
by that of a single vortex in a rotating strain field. A weak Reynolds number
dependence near the streamlines connected to the hyperbolic points of the system is
identified in § 5 in the range Re = 500–8000 we consider. The vorticity in the central
hyperbolic points is in particular shown to exhibit an unusual Re1/3 scaling. Possible
physical mechanisms associated with these phenomena are briefly discussed in this
section. The last section provides a summary of the main results.

2. Framework
2.1. Equations and parameters

The streamfunction Ψ and the vorticity ω are governed by the two-dimensional
vorticity equation

∂ω

∂t
−J[Ψ,ω] = ν∇2ω, (2.1a)

ω = −∇2Ψ, (2.1b)

where ν is the kinematic viscosity and the Jacobian J is defined by

J[f, g] =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

in Cartesian coordinates (x, y).
We consider the time evolution of two identical vortices which are initially axisym-

metrical, of radius a0 = a(0), circulation Γ and whose centres are separated by a
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Figure 1. Typical evolution of the angular frequency (a) and the separation distance (b) between
vortex centroids as a function of time (normalized by the turnover time), for n = 1, a0/b0 = 0.05,
Re = 8000.

distance b0 = b(0). Each vortex initially has a profile of the form

ω0(r) = exp(−r2n). (2.2)

It is parametrized by a single parameter n which measures the steepness of the profile.
The profile is Gaussian for n = 1 and approximately ‘top-hat’ for large n. For any
n, the non-dimensionalized circulation and radius (which is precisely defined below
from the vorticity second-order moment) can be expressed in terms of the Euler’s
Gamma function Γ(x) as

a2
0 =

Γ(2/n)

Γ(1/n)
, (2.3a)

Γ =
πΓ(1/n)

n
. (2.3b)

These values are useful for normalization purposes.
The time-evolution is characterized by three parameters: the steepness parameter

n, the initial ratio a0/b0 and the Reynolds number Re = Γ/ν. Here we consider
n = 0.5, 1, 4, initial ratio a0/b0 = 0.05, 0.1, and Reynolds numbers ranging from 500
to 16 000. These Reynolds numbers are large enough to have well-separated viscous
and convective time scales.

The simulations are performed in a periodic square box of size 2π × 2π using
spectral methods in a grid of 1024 by 1024 points and second-order time integration.
The vortices are initially located on the y-axis at x = ±π/8 such that the distance
b0 between the two vortices is eight-times smaller than the length of the box. The
simulation was qualified by monitoring the energy. In all simulations the energy
balance was satisfied with a relative error smaller than 10−6.

2.2. Description of the flow

A first picture of the dynamics of two co-rotating vortices is obtained by assuming
that the circulation Γ of each vortex is concentrated in its vortex centroid. In this
point-vortex model, the non-viscous dynamics is trivial: the vortices remain separated
by a constant distance b0, and rotate around each other at a constant angular
frequency f0 = Γ/(πb2

0). Interestingly, this dynamics is also valid for a finite size
vortex. This is illustrated on figure 1(a, b) where typical time-evolutions of both the
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Figure 2. Streamlines of two co-rotating vortices in the rotating frame for small a/b. (Here
a/b ≈ 0.067.) The solid lines are separatrices connected to an hyperbolic point of the system. The
two vortices are indicated by the black circles. (Their size corresponds to a 50% vorticity level.)

angular frequency f and the separation distance b are displayed. On these plots,
f and b are shown to remain constant up to a critical time (here near 5 turnover
times), which corresponds to the beginning of merging. In the following, this trivial
non-viscous dynamics is removed by considering the evolution of the system in a
frame (X,Y ) rotating at the angular frequency f. A typical streamline pattern in this
rotating frame is shown in figure 2.

Corrections to the ‘point-vortex dynamics’ are generated by both viscous diffusion
and vortex core deformation. The deformation of each vortex core is due to the
non-homogeneous velocity field created by the other vortex. It is easy to show that,
for small a/b, this ‘external’ field is at leading order a strain field of strain rate
Se = Γ/(2πb2). Such a strain field tends to deform each vortex core into an ellipse
(Moore & Saffman 1971). The goal of an important part of the paper is to characterize
this deformation. For this purpose, both a global and a local measure of the elliptic
deformation are considered.

2.3. Global and local eccentricities

The local measure we shall consider is the eccentricity of the streamline near the
vortex stagnation point (Xi, Yi) (in the rotating frame). It is a quantity which has
often been used to characterize the deformation of a vortex in an external strain field
(Jiménez et al. 1996; Le Dizès 2000). It is defined in the following way. If the rotating
frame is chosen such that Yi = 0, the two vortices then have their stagnation points
at (±Xi, 0). Using a Taylor expansion, the streamfunction can be written at leading
order near (Xi, 0) as

Ψ ∼ (µi − Si)(X(Θi)−Xi)
2 + (µi + Si)Y (Θi)

2 (2.4)



394 S. Le Dizès and A. Verga

where X(Θi) and Y (Θi) are the coordinates in the frame rotated by an angle Θi:

X(Θi) = cosΘiX + sinΘiY , (2.5a)

Y (Θi) = cosΘiY − sinΘiX. (2.5b)

The eccentricity of the streamline near (Xi, Yi) is then εi = Si/µi where Si and µi
are respectively the strain rate and the rotation rate at the vortex stagnation point.
The angle Θi is the orientation angle of the ellipse with respect to the X-axis. It is
important to point out that the ‘internal’ strain rate Si is a priori different from the
‘external’ strain rate Se estimated above. The strain rate Se does not take into account
any interaction between vorticity and strain while Si does.

A global measure of the elliptic deformation is obtained from the second moments
of the vorticity field in half a plane (see also Sipp et al. 2000). It requires that
vorticity has not been advected or diffused across the median line between the two
vortices, which is approximatively satisfied up to the merging threshold. It is also
from the second moments of vorticity that a mean radius for the vortex core can
be unambiguously defined whatever the vortex profile. In practice, we obtain vortex
radius and vortex eccentricity by the following procedure. We choose the rotating
frame such that

Yc =

∫∫
X>0

Y ω dX dY /Γ = 0,

which implies that the vortex centroids are located at (±Xc, 0) with

Xc =

∫∫
X>0

Xω dX dY /Γ . (2.6)

Large and small vortex radii aM and am are then defined by the formulae

a2
M =

∫∫
X>0

(X(Θc)−Xc)
2ω dX dY /Γ , (2.7a)

a2
m =

∫∫
X>0

(Y (Θc))
2ω dX dY /Γ , (2.7b)

where Θc is the orientation angle of the ellipse with respect to the X-axis based on
the vorticity momentum. In particular∫∫

X>0

(X(Θc)−Xc)Y (Θc)ω dX dY = 0. (2.8)

It follows that the vortex radius and vortex eccentricity are defined respectively by

a =

√
a2
m + a2

M

2
, (2.9)

εc =
aM − am
aM + am

. (2.10)

In the following, we shall use formula (2.9) to define the vortex radius of the
deformed vortex. The separation distance will be defined by b = 2Xc. One could
have also used b = 2Xi as no significant differences were observed between the
positions of the vortex centres and of the stagnation points. The elliptic deformation
of each vortex will be characterized by both εi and εc. These two quantities measure
geometrical properties which are not necessarily related. The local eccentricity εi
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Figure 3. Vorticity contours during the relaxation process in the rotating frame for n = 1,
Re = 8000, a0/b0 = 0.1. From right to left, top to bottom, tΓ/(2πa2

0) = 0 : 10 : 80. Contours
levels are ω/ωmax(0) = 0.5, 0.1, 0.01, 0.001, 10−4, 10−5, 10−6.

measures the elliptic deformation of the streamline near the vortex centre while the
global eccentricity εc measures a mean deformation of the whole vorticity region. It
is useful to consider both quantities in order to identify the ‘local’ or ‘global’ nature
of the dynamical evolutions described below. The local eccentricity is also interesting
in itself because it measures the stability character of the vortex with respect to the
tri-dimensional elliptical instability (Eloy & Le Dizès 1999; Le Dizès & Laporte 2002).

Finally, note that core deformations with larger azimuthal wavenumbers are also
present but they remain small for the two-vortex system. They are not considered in
the present study.

3. Relaxation processes
3.1. Non-viscous adaptation

The relaxation processes can be divided in two phases. The first phase is a rapid
non-viscous process which consists of the adaptation of each vortex to the external
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Figure 4. Time evolution of the local eccentricity εi (here a0/b0 = 0.1). Solid line: Re = 8000; Dashed
line: Re = 2000. (a) Evolution on the viscous time scale for n = 0.5, 1, 4 and Re = 2000, 8000. For
n = 1 and n = 4, a mean eccentricity is also indicated as dotted lines. The time evolution of εi
around the mean eccentricity on the non-viscous time scale is shown on (b) for n = 1 and on (c)
for n = 4.

field generated by the other vortex. It mostly concerns the non-axisymmetric part of
the vorticity field of each vortex. An illustration of this relaxation process is provided
by the snapshots of vorticity contours shown on figure 3. These snapshots show how
each vortex adapts itself to the other vortex. Note, in particular, that the adaptation
process is not uniform. The vortex core becomes rapidly elliptical while the very weak
vorticity regions display a more complex evolution. In this section, we shall mostly
focus on the deformations of the vortex core using the local and global eccentricities
εi and εc.

On figures 4 and 5 are displayed, for different initial conditions, time evolutions of
εi and εc respectively. Figures 4(a) and 5(b) demonstrate that both local and global
eccentricities relax for all Reynolds numbers to a mean state (indicated in dotted lines)
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Figure 5. Time evolution of the global eccentricity εc (here a0/b0 = 0.1). Solid line: Re = 8000;
Dashed line: Re = 2000. (a) Evolution on the viscous time scale for n = 1 (thick lines) and n = 4.
and Re = 2000, 8000. A mean eccentricity is indicated in dotted lines for each n. The time evolution
of εc around the mean eccentricity on the non-viscous time scale is shown on (b) for n = 1 and on
(c) for n = 4.

which evolves on a viscous time scale. These mean states are different for each n but
tend to converge to a unique state as time evolves. The non-viscous character of the
relaxation process towards the mean state is clearly demonstrated on figures 4(b, c)
and 5(b, c) where the fluctuations δεi and δεc around the mean eccentricity are plotted
versus a non-viscous time scale. These figures show the following features:

(a) The relaxation process takes a longer time for steeper profiles. In particular, ec-
centricity oscillates strongly around the mean for n = 4 whereas there is no oscillation
for n = 0.5 and only weak oscillations for n = 1.

(b) There is a weak Reynolds number dependence of the process for non-Gaussian
profiles. The relaxation process is more rapid (on a non-viscous time scale) for larger
Reynolds number when the profile is steep (n > 1) while it is the opposite when the
profile is flat (n < 1).
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(c) Relaxation processes towards a mean state are similar for the global and the
local eccentricity.
Note however, that the dependence of mean eccentricity on n is clearly different
for local and global quantities: the mean value of the global eccentricity εc slightly
increases with n whereas the mean value of the local eccentricity εi decreases with n.

The features pointed out above can be explained by considering the evolution
of linear elliptic perturbations on a single quasi-stationary vortex. A priori, this
vortex would be the slightly deformed vortex towards which each core relaxes on the
non-viscous time scale. But for the ratio a/b under consideration (a/b ≈ 0.1), the
deformation is small; the linear perturbations are therefore expected to be close to
those of the underlying axisymmetric vortex.

Results concerning the time evolution of linear perturbations in the large Reynolds
number limit were recently obtained by Bernoff & Lingevitch (1994), Bassom &
Gilbert (1998, 1999), Schecter et al. (2000) and Balmforth et al. (2001) among others.
Bassom & Gilbert (1998, 1999) obtained a non-viscous asymptotic solution for the
elliptic perturbations which exhibits an algebraically decreasing behaviour in time.
Schecter et al. (2000) demonstrated that in the inviscid limit a damped ‘quasi-mode’
was also excited during the transient. This ‘quasi-mode’ is singular in a non-viscous
flow. In a viscous flow, it is however a regular linear normal mode as viscosity
smooths the singularity. Interestingly, the damping rate of this mode is not dependent
on viscosity for large Reynolds numbers and is the same as that of the quasi-mode.
By contrast, the asymptotic solution of Bassom & Gilbert (1998) is corrected in
the viscous regime by damping factors which are strongly dependent on both the
Reynolds number and the position (see Lundgren 1982; Bajer, Bassom & Gilbert
2001).

Here we argue that the relaxation phenomenon of the vortex core is the signature
of the linear normal mode. This would in particular explain the above statement (c).
Moreover, as we shall now show, the normal mode characteristics are also compatible
with figures 4 and 5. For large Reynolds numbers, Le Dizès (2000) obtained the
complex frequency of such a mode for a family of vortex profiles ranging from
Rankine (top-hat) to Gaussian. He showed that the steeper the profile the weaker
the damping of the mode in agreement with an early result by Briggs, Daugherty &
Levy (1970) for inviscid quasi-modes. Such a characteristic qualitatively agrees with
statement (b). For a Gaussian profile, Le Dizès (2000) also obtained a theoretical
value for the complex frequency ωg/Ω(0) = 0.22− 0.08i (Ω(0) is the angular velocity
at the vortex centre) which is within 5% of the values measured from figures 4(b)
and 5(b). This confirms that even for such a large damping, the relaxation process is
governed by the linear mode. For a non-Gaussian profile, figures 4(c) and 5(c) clearly
show that both the real frequency and the damping rate of the relaxation oscillations
vary as time evolves. Figure 6 demonstrates that this variation is associated with
the viscous modification of the underlying axisymmetric profile. On that figure are
plotted as a function of a viscous time scale, the local frequency and the local
damping rate of the relaxation oscillations for n = 4 and Re = 2000, 4000, 8000,
16 000. Frequencies are obtained from the distance between consecutive peaks, or
consecutive zeros, while damping rates are obtained from amplitude ratios between
consecutive peaks. For small Reynolds numbers, the error bars are large. Yet, the
results displayed in figure 6 are sufficiently convincing to suggest the following
assertion: both frequencies and damping rates for all the Reynolds numbers we have
considered can be superimposed on a same curve which tends for large time to the
prediction for a Gaussian vortex.
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Figure 6. Time evolution of the (local) frequency (a) and damping rate (b) of the local eccentricity εi
around its mean value on a viscous time scale for n = 4 and Re = 16 000 (stars), Re = 8000 (crosses),
Re = 4000 (triangles), Re = 2000 (circles). Both frequency and damping rate are normalized by the
angular velocity in the vortex centre (half of the vorticity maximum). The dashed line is the linear
non-viscous prediction for a Gaussian profile.

This is in agreement with the scenario we have already mentioned: the first rapid
phase of the relaxation process is non-viscous and only dependent on the underlying
vorticity profile. The weak dependence on the Reynolds number is associated with
the modification of the vorticity profile by viscous diffusion. As expected, such a
dependence is present for n = 4 but not for n = 1. The convergence for large time
towards the Gaussian prediction results from the second relaxation process, which is
discussed in the next section.

Before moving on to that point, it is worth mentioning that the relaxation process
had already been observed in the non-viscous response of a Gaussian vortex to
a pure external strain field (Bassom & Gilbert 1999). This process, denoted the
‘rebound phenomenon’ was erroneously attributed to the inertial spiral structure of
the vortex response. Comparisons of the frequency and damping rate of this rebound
phenomenon could easily demonstrate that it is instead associated with the damped
quasi-mode obtained by Schecter et al. (2000). Sipp et al. (2000) also noticed the
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relaxation phenomenon in the case of two counter-rotating vortices. They reached,
for Rankine vortices, conclusions similar to ours: the oscillations are due to a two-
dimensional Kelvin mode of the vortex. Note however, that for Rankine vortices or
other vortices with vorticity confined in a finite area the Kelvin modes are neutral
(for large Reynolds number). Undamped oscillations are then expected to be seen as
long as the vorticity profile has not been sufficiently modified by viscosity (Melander
et al. 1988).

3.2. Viscous diffusion

The second relaxation process occurs on a viscous time scale. In Sipp et al. (2000),
it was observed that for counter-rotating vortices this process is a viscous attracting
phenomenon. Whatever the initial vorticity profile, the solution tends to relax to a
unique state which seems to be independent of the Reynolds number. As we shall see
in this section, a similar conclusion is reached for co-rotating vortices. Here, however,
we go one step further by characterizing the viscous process. We demonstrate that it
is very close to the viscous relaxation of any axisymmetric vortex to a Gaussian. In
§ 5, a few differences are also pointed out.

The time evolution of the vorticity field for a single axisymmetric vortex is given
exactly by a diffusion equation. This property guarantees that the Gaussian vorticity
profile is a global attractor for all the axisymmetric vortices. Moreover, the Gaussian
vortex has a self-similar evolution which conserves its profile. It has a vorticity
maximum which is given for any time by ωmax = Γ/(πa2). For the family of profiles
(2.2), such a relation is satisfied for the Gaussian vortex (n = 1) only. On the other

hand, the radius a always evolves according to a =
√
a2

0 + 4νt whatever the profile
and this evolution is also valid for a non-axisymmetric vortex as long as a is defined
by (2.9) (Batchelor 1967). This property implies that as long as the merging process
has not started (that is, b has not started to decrease), plotting a quantity versus a
viscous time scale is equivalent to plotting this quantity versus a/b.

On figure 7(a) is plotted the evolution of ωmaxπa
2/Γ as a function of a/b for

several initial conditions with different vorticity profiles. For each initial condition,
the evolution both for the two-vortex system and for a single vortex is represented.
Figure 7 clearly shows that the viscous diffusion of each vortex is not affected by the
other vortex: it is therefore given by a simple diffusion equation. As a consequence,
there should be no Reynolds number dependence of the relaxation process on a
viscous time scale, or equivalently if plotted as a function of a/b. Here, this has been
checked for Reynolds number ranging between 500 and 8000.

For the same initial conditions as above, the angular frequency of the vortex system
normalized by the vorticity maximum is plotted on figure 7(b). This quantity is
compared to a ‘single vortex’ estimate, obtained by taking for the angular frequency
the two-point-vortex value: dΘ/dt = Γ/(πb2). The good agreement between both
quantities demonstrates that the two-point vortex model plus a simple diffusion of
the profile, as if the vortex were alone, provide an excellent model for both the angular
frequency and the vorticity maximum. Again, no dependence on the Reynolds number
has been noticed.

As for counter-rotating vortices (Slipp et al. 2000), these results lead us to put
forward the following assertions:

(a) Before merging, there exists a unique attractive solution for the two-co-rotating
vortex system.

(b) This solution is parametrized by a single parameter a/b. It can be obtained
from an initial condition with a Gaussian profile.
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Figure 7. Normalized vorticity maximum (a) and angular velocity (b) as a function of a/b for three
different initial conditions. Circles: evolution for the two-vortex system. Dashed lines: evolution for
a single vortex. In (b), dΘ/dt is given by the two-vortex model dΘ/dt = f = Γ/(πb2) for the single
vortex, while it is directly calculated from the simulation for the two-vortex system.

(c) There is no visible Reynolds number dependence of the vortex core properties
in the range Re = 500–8000.
Other characteristics of the attractive solution are given in the next section. As for
the vorticity maximum and the angular velocity of the vortex system, we have not
noticed any significant dependence on the Reynolds number for these quantities.

4. Other characteristics of the attractive solution
In this section, other properties of the attractive solution are provided for a/b

ranging from 0.05 to 0.22. These properties are obtained from a single simulation
by letting two Gaussian vortices evolve with sufficiently small initial a0/b0. The
ratio a/b increases progressively due to viscous diffusion and covers all the range
a0/b0 < a/b < 0.22 up to the merging process. Here, we have chosen a0/b0 = 0.05 and
Re = 2000.
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Figure 8. Local eccentricity εi (∗) and global eccentricity εc (◦) versus a/b for the attractive
solution. Data are obtained from the evolution of two Gaussian profiles (n = 1) at a0/b0 = 0.05
with Re = 2000.
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Figure 9. Strain rate in the centre of one vortex, normalized either by Γ/(2πb2
0) (∗) or by Γ/(2πb2)

(◦). Solid line: theoretical prediction obtained from the analysis of a single Gaussian vortex in a
normalized strain field rotating at the angular frequency of the vortex pair (Le Dizès 2000).

On figure 8 are displayed the two quantities which were used above to characterize
the elliptical deformation of each vortex core. As expected, local and global eccentri-
cities grow in the same fashion as a/b increases. However, the two quantities depart
from each other when a/b reaches approximately 0.18. The global eccentricity then
tends to grow more slowly. This departure is probably associated with the finite size
of the vortex. As the global eccentricity is an average measure of the deformation, it
may differ from its estimate in the vortex centre when the deformation is no longer
uniform.

On figure 9 is plotted the strain rate at the vortex stagnation point normalized
by either Γ/(2πb2) or Γ/(2πb2

0). The latter quantities can be considered as external
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Figure 10. Typical scatter plot (Ψ , ω) for small a/b (here, a/b ≈ 0.14, Re = 2000, n = 1).

strain rates as they correspond to the strain rates induced by a point vortex of
circulation Γ located at a distance b and b0 respectively. The first normalization
takes into account the variation of the separation distance b while the second does
not. Figure 9 therefore displays the ratio Si/Se between internal and external strain
rates. This ratio was also computed by Le Dizès (2000) in the ideal configuration
of a single vortex in an external rotating strain field. He demonstrated that, in the
limit of large Reynolds number and weak external strain rate Se, the ratio Si/Se is a

function of the angular frequency and of a parameter h = 1/(ReS
3/2
e ) which measures

the nonlinear interaction between strain and vorticity. Here the dependence on h
is negligible because the angular frequency (approximately (a/b)2) remains smaller
than 0.06 (see Le Dizès 2000). The theoretical curve is plotted as a solid line on
figure 9. The agreement between the theory and the numerics is remarkably good
up to a/b ≈ 0.18. For 0.18 < a/b < 0.22, the theory slightly underestimates the strain
rate in the vortex centre but remains within 3% of the numerics. Above a/b ≈ 0.22,
the merging process is active: b starts to decrease. The two numerical results depart
from each other as the normalizations are now different.

After the first non-viscous relaxation process, the vortex system stops evolving on
a non-viscous time scale. At leading order, one therefore expects the two vortices to
be, in the rotating frame, close to a stationary solution of the Euler equation. This is
confirmed by the scatter plot of vorticity versus streamfunction shown on figure 10.
Indeed, before merging, all the (vorticity, streamfunction) points align on a single
curve which proves that there is indeed a functional relation between ω and Ψ . This
shows that the rotating system is close to a stationary solution of the Euler equation.
Note however that this result mostly concerns regions of strong vorticity. In the next
section, we shall see that a weak time dependence is present in regions far from the
vortices.

Scatter plots were also used by Sipp et al. (2000) for counter-rotating vortices. For
small a/b and Gaussian profiles, they obtained vorticity, streamfunction) relations
which look similar to ours. This is not surprising as one could check that the
simple sum of two Gaussian vortices also provides a functional relation of the same
type.
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Figure 11. Normalized vorticity profiles for different values of a/b. The profiles are taken along
two lines centred on the vorticity maximum: the line connecting the two vortex centres (solid line),
and the line perpendicular to it (dashed line). Lines without symbols: a/b = 0.07; ∗, a/b = 0.13; ◦,
a/b = 0.18.

On figure 11 are displayed vorticity profiles in the vortex core for different values
of a/b along the line connecting the two vortex centroids and that perpendicular to
it. On these plots are clearly seen the vortex core deformations as a function of a/b:
profiles are wider along the centrelines and the difference increases as a/b increases.
Note also the visible asymmetry of the wider profile: this is due to an accumulation
of vorticity at the central hyperbolic point which is located at 2(X −Xc)/b = −1 on
figure 11 (see next section).

5. Reynolds number dependence
The Reynolds number dependence of the attractive solution is weak and becomes

increasingly weaker with smaller a/b. However, this dependence exists and can be
quantified if one looks at particular regions where it is strongest. These regions can
be easily identified on the typical streamline pattern shown on figure 2. This pattern,
drawn here for a small a/b and a particular value of the Reynolds number, is almost
independent of a/b and viscosity. It can be used in the present discussion for all a/b
and Reynolds numbers we have considered. In particular, one sees on figure 2 that
the streamline pattern possesses hyperbolic points and separatrices connecting these
points which go to regions far away from the vortices. It is in the neighbourhood
of these separatrices that the Reynolds number dependence is the strongest. On
figure 12(a, b) are plotted vorticity contours for two configurations with the same a/b
obtained from the same initial condition but with different Re. It is clearly seen that
the vortex core in the configuration with the largest Reynolds number has lost more
vorticity into the arms connecting both external hyperbolic points. The presence of
vorticity arms (or filaments) is the manifestation of the so-called stripping or erosion
process (Legras & Dritschel 1993; Mariotti, Legras & Dritschel 1994). As explained
by Legras & Dritschel (1993), this phenomenon is due to the advection of vorticity
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Figure 12. Vorticity levels for a/b ≈ 0.2 for two simulations started from a0/b0 = 0.05 and n = 1
but different Reynolds numbers: (a) Re = 500; (b) Re = 8000. Contours levels are ω/ωmax = 0.5,
0.1, 0.03, 0.01, 0.001, 0.0001.

along streamlines that leave the vortex core. It leads to an ‘erosion’ of the vortex
and a steepening of the transverse vorticity profile. For the streamline pattern shown
on figure 2, erosion first occurs on separatrices connected to the hyperbolic points
as they are the closest separatrices to the vortex centre that leave it. Vorticity is
thus shed away from the vortex through both external hyperbolic points. Although
viscosity intervenes in the complex advection–diffusion process near the hyperbolic
points, one expects vorticity to be advected in the arms on a non-viscous time scale.
In particular, one expects erosion to occur on a faster time scale than the viscous
radial diffusion of the vortex. This implies that for two systems which have evolved
on the same viscous time interval (as it is the case for the configurations shown on
figure 12), erosion has been more important in the system with the largest Reynolds
number. This is qualitatively in agreement with the pictures of figure 12.

It is also interesting to note on figure 12 that more vorticity is present in the central
hyperbolic point in the largest Reynolds number configuration. This dependence
on the Reynolds number is quantified on figure 13, where three evolutions starting
from the same initial condition (n = 1, a0/b0 = 0.05) with different Reynolds numbers
are shown. The collapse of these on a single curve demonstrates that in the range
of Reynolds number we have considered, vorticity at the central hyperbolic point
evolves according to a simple law of the form ω(0) = Re1/3f(a/b). This scaling can
probably be attributed to the shear-diffusion of vorticity during its advection. Indeed,
it is well-known that the cross-stream diffusion of a passive scalar in a shear flow
is on a time scale of order Re1/3 (Rhines & Young 1983) which could explain the
appearance of the factor Re1/3. However, here the situation is not as simple as in
Rhines & Young (1983) because along the separatrix connecting stagnation points,
the diffusion properties are actually different as explained by Lingevitch & Bernoff
(1994). The justification of the scaling is therefore not straightforward and we leave
it for the future.

It is worth pointing out that the time-dependent effects identified in this section
are limited to specific regions located outside the vortex core. For small a/b, they
concern very small levels of vorticity which make them almost invisible on global
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Figure 14. Scatter plot (Ψ , ω) close to the merging threshold (here, a/b ≈ 0.21, Re = 2000, n = 1).
The close-up view shows the thickening of the functional relation between Ψ and ω for the small
vorticity levels: the thicker regions correspond to the neighbourhoods of the hyperbolic points.

(Ψ,ω) scatter plots like the one shown on figure 10. However, very close to the
merging threshold (a/b ≈ 0.22), these effects can become sufficiently important to
become visible on scatter plots (see figure 14). They are associated with a thickening
of the functional relation close to particular points which correspond to the regions
mentioned above (separatrix connecting hyperbolic stagnation points).
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6. Conclusion
In this paper, the viscous interactions of two identical vortices have been anal-

ysed before the merging threshold is reached. Two relaxation processes have been
identified. The first one is a non-viscous adaptation of each vortex with respect to
the other which results from the fact that the initial condition (i.e. the sum of two
axisymmetric vortices) is not a solution of the Navier–Stokes equation. We have
demonstrated that both the eccentricity of the streamlines near each vortex centre
and the eccentricity of each vortex core rapidly relax with an oscillating behaviour
to a non-zero value. This oscillating behaviour has been related to a damped linear
mode of the vortex. For a Gaussian vorticity profile, both the damping rate and the
frequency of the elliptic deformation have been shown to correspond to the charac-
teristics of the linear mode obtained by Le Dizès (2000). For steeper vorticity profiles,
the damping rate of the oscillations has been found to be smaller, in agreement
with previous results (Briggs et al. 1970; Le Dizès 2000). These findings imply that
the characteristics of the first relaxation process are only dependent on the vorticity
profile of each vortex. This means that there is no significant dependence on the
Reynolds number apart from the dependence via the modification of the vorticity
profile due to viscous diffusion. In particular, for the Gaussian profile, which is not
affected by viscosity, time evolutions of the elliptic deformations on a non-viscous
time scale have been demonstrated to be rigorously identical for all the Reynolds
number range Re = 500–16 000. Whatever the profile, the first relaxation process leads
to a state where each vortex is slightly deformed by the field generated by the other
vortex. As long as a/b is small, this state remains quasi-steady in a rotating frame
and evolves due to viscous diffusion. This constitutes the second viscous relaxation
process. We have demonstrated that the viscous diffusion of the two-vortex system
is very similar to the simple diffusion of a single axisymmetric vortex. This has lead
us to the following conjecture: as all axisymmetric vortices relax towards a Gaussian
vortex, two-vortex systems also relax to a unique state which corresponds to the vortex
system with Gaussian profiles. This state can be parametrized by a single parameter
a/b. A similar conclusion was previously reached for counter-rotating vortices by
Sipp et al. (2000).

An important part of the paper has been concerned with the characterisation of this
attractive state. We have demonstrated that the elliptic deformation of the vortices
can be captured by a simplified model in which the deformation is assumed to be
generated by a uniform rotating external strain field. Using for the strain rate and
the angular frequency of the external field values predicted by the two-point-vortex
model, we have obtained a very good estimate for the strain rate in the vortex
centre for vortices satisfying a/b < 0.18. A similar model was used in Jiménez et al.
(1996) to analyse the elliptic deformation of vortices encountered in two-dimensional
turbulence. Without considering the effects of rotation, they showed that the model
provides, at least in a statistical sense, a good description of the vortex deformation.
Here, the comparison is much more precise and takes into account rotation which is
known to modify the elliptic deformation characteristics (Le Dizès 2000). The good
agreement constitutes an interesting result which could be very useful in the context
of the elliptical instability as it may provide a simple way to obtain the stability
characteristics of a vortex pair (Le Dizès & Laporte 2002).

A weak dependence on the Reynolds number has been observed in the characteris-
tics of the attractive solution. This implies that the viscous relaxation of a two-vortex
system cannot be perfectly identical to the relaxation of a single axisymmetric vortex
in which no Reynolds number dependence is present. The regions where the Reynolds
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number dependence is the most apparent have been identified as the neighbourhood
of the separatrices connected to the hyperbolic points. In these regions, complex
advection–diffusion mechanisms are expected to be present on a time scale interme-
diate between the turn-over time and the viscous time associated with radial diffusion
as is the case for a passive scalar (Rhines & Young 1983; Lingevitch & Bernoff
1994). They can also be linked to the so-called stripping or erosion processes which
have been phenomenologically described in several works (see for instance Legras &
Dritschel 1993; Mariotti et al. 1994).

A particular Reynolds number behaviour in Re1/3 has also been obtained for the
evolution of the vorticity amplitude at the central hyperbolic point. This scaling has
been observed in the whole range of Reynolds numbers we have considered, that
is Re = 500–8000. However, one has to keep in mind that the peak of vorticity is
bounded by its initial value. For a given a/b, this scaling should therefore break
down for sufficiently large Reynolds numbers. If a stationary state is reached at the
limit of infinite Reynolds numbers, one would expect the hyperbolic point vorticity
to saturate to the mean vorticity along the whole separatrix connected to that
point. Further studies are however needed to clarify this issue, in particular to
determine whether a stationary state is reached in the limit Re→∞ at the hyperbolic
point.

The results obtained in this paper also have implications for the merging process
which starts when a/b has reached a sufficiently large value. This process is character-
ized by the rapid displacement of the vortices towards each other which leads to the
formation of a single vortex on a non-viscous time scale. Here, because of viscosity
which makes the ratio a/b grow in time, merging always occurs without the need of a
third vortex (Kevlahan & Farge 1997) or an additional strain field. Merging is often
interpreted as the dynamical behaviour resulting from a non-viscous instability of the
vortex pair (Dritschel 1985). Recent work by Meunier et al. (2002) demonstrated that
this interpretation could provide an estimate for the merging threshold which is in
agreement with experiments (Meunier & Leweke 2001). The critical ratio a/b ≈ 0.22
obtained here for the attractive solution (with Gaussian vortices) also agrees with the
experiments.

However, the Reynolds dependence of the merging threshold remains to be ad-
dressed. For Re = 500–8000, a weak dependence has been observed due to the erosion
of the vortices through the hyperbolic points of the streamline pattern. Although we
have not noticed any significant modifications in the merging threshold in this
range, this erosion process could have a measurable effect for very large Reynolds
numbers.

REFERENCES

Agullo, O. & Verga, A. 2001 Effect of viscosity in the dynamics of two point vortices: Exact
results. Phys. Rev. E 63, 056304–1–14.

Bajer, K., Bassom, A. P. & Gilbert, A. D. 2001 Accelerated diffusion in the centre of a vortex.
J. Fluid Mech. 437, 395–411.

Balmforth, N. J., Llewellyn Smith, S. G. & Young, W. R. 2001 Disturbing vortices. J. Fluid
Mech. 426, 95–133.

Basdevant, C., Legras, B., Sadourny, R. & Bérland, M. 1981 A study of barotropic model flows:
intermittency, waves and predictability. J. Atmos. Sci 38, 2305–2326.

Bassom, A. P. & Gilbert, A. D. 1998 The spiral wind-up of vorticity in an inviscid planar vortex.
J. Fluid Mech. 371, 109–140.



Co-rotating vortices 409

Bassom, A. P. & Gilbert, A. D. 1999 The spiral wind-up and dissipation of vorticity and a passive
scalar in a strained planar vortex. J. Fluid Mech. 398, 245–270.

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.

Bernoff, A. J. & Lingevitch, J. F. 1994 Rapid relaxation of an axisymmetric vortex. Phys. Fluids
6, 3717–3723.

Brandt, S. A. & Iversen, J. D. 1977 Merging of aircraft trailing vortices. J. Aircraft 14, 1212–1220.

Briggs, R. J., Daugherty, J. D. & Levy, R. H. 1970 Role of landau damping in cross-field electron
beams and inviscid shear flow. Phys. Fluids 13, 421–432.

Carnevale, G. F., McWilliams, J. C., Pomeau, Y., Weiss, J. B. & Young, W. R. 1991 Evolution of
vortex statistics in two-dimensional turbulence. Phys. Rev. Lett. 66, 2735–2738.

Carnevale, G. F., McWilliams, J. C., Pomeau, Y., Weiss, J. B. & Young, W. R. 1992 Rates,
pathways, and end states of nonlinear evolution in decaying two-dimensional turbulence:
Scaling theory versus selective decay. Phys. Fluids A 4, 1314–1316.

Couder, Y. 1983 Observation expérimentale de la turbulence bidimensionnelle dans un film liquide
mince. C. R. Acad. Sci. Paris II 297, 641–645.

Dritschel, D. G. 1985 The stability and energetics of corotating uniform vortices. J. Fluid Mech.
157, 95–134.

Dritschel, D. G. & Waugh, D. W. 1992 Quantification of the inelastic interaction of unequal
vortices in two-dimensional vortex dynamics. Phys. Fluids A 4, 1737–1744.

Ehrenstein, U. & Rossi, M. 1999 Equilibria of corotating nonuniform vortices. Phys. Fluids 25,
3416–3425.

Eloy, C. & Le Dizès, S. 1999 Three-dimensional instability of Burgers and Lamb–Oseen vortices
in a strain field. J. Fluid Mech. 378, 145–166.
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