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Two parallel Gaussian vortices of circulations Γ1 and Γ2, radii a1 and a2, separated
by a distance b may become unstable by the elliptical instability due the elliptic
deformation of their cores. The goal of the paper is to analyse this occurrence
theoretically in a general framework. An explicit formula for the temporal growth
rate of the elliptical instability in each vortex is obtained as a function of the
above global parameters of the system, the Reynolds number Γ1/ν, and the non-
dimensionalized axial wavenumber kzb of the perturbation. This formula is based on
a known asymptotic expression for the local instability growth rate at an elliptical
stagnation point which depends on the local characteristics of the elliptical flow and
the inclination angle of the local perturbation wavevector at this point. The elliptical
flow characteristics are estimated by considering each Gaussian vortex alone in a
weak uniform external strain field whose properties are provided by a point vortex
modelling of the vortex pair. The inclination angle is obtained from the dispersion
relation for the Gaussian vortex normal modes and the local expression near each
vortex centre for the two helical modes of azimuthal wavenumber m = 1 and m = −1
which constitute the elliptical instability global mode. Both the final formula and
the hypotheses made for its derivation are tested and validated by direct numerical
simulations and large-eddy simulations.

1. Introduction
Two parallel vortices, stable when alone, can become unstable when they are placed

close to each other due to the strain field that each vortex induces on the other. This
‘elliptical’ instability, which is characterized by a three-dimensional deformation of
the vortex cores, has been found for both counter-rotating (Leweke & Williamson
1998) and co-rotating vortices (Meunier & Leweke 2001; Meunier 2001). The goal of
this paper is to provide an explicit formula for the growth rate of this instability in a
general two-vortex flow.

Numerous works on vortex dynamics have focused on the two-dimensional interac-
tions of vortices, particularly those associated with vortex merging. The main objective
was to provide physical arguments for the scaling properties of two-dimensional tur-
bulence (see, for instance Couder 1983; Weiss & McWilliams 1993). Two-dimensional
interactions are however not limited to vortex merging. Melander, McWilliams &
Zabusky (1987) and Trieling, Beckers & van Heijst (1997), among others, demon-
strated that other complex phenomena such as straining could also occur when the
vortices are not identical. In general, both merging and straining processes occur
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when the vortices are sufficiently close. In a three-dimensional flow however, these
processes are expected to be modified by the elliptical instability.

Vortices may also be subject to a two-dimensional instability if they are surrounded
by a vorticity skirt of opposite sign. This instability often leads to the break up
of the vortex in several smaller vortices. This phenomenon is well-documented in
geophysical flows where multipolar vortices are often created by this mechanism (see
Hopfinger & van Heijst 1993, and references therein). Finally, a single vortex may
also be subject to the centrifugal instability if its circulation decreases at some radius.
In all these cases, each vortex exhibits complex dynamics which we do not want to
consider. For this reason, our analysis focuses on vortices with a Gaussian vorticity
profile which are known to be stable with respect to the above instabilities. Other
motivations for this choice are provided in the next section.

In fact, the three-dimensional stability of a Gaussian vortex is not fully established.
The most recent results are by Prochazka & Pullin (1995) and only concern the
two-dimensional stability properties. Even in two dimensions, the evolution of linear
perturbations on a Gaussian vortex involves complex shear-diffusion mechanisms
as shown by Bernoff & Lingevitch (1994) and Bassom & Gilbert (1998). Recent
works by Schecter et al. (2000) and Balmforth, Llewellyn Smith & Young (2001) also
demonstrated the existence of a damped vortex quasi-mode which directly intervenes
in the short-time relaxation process.

In the presence of another vortex, a vortex feels an external strain field which
elliptically deforms its core. An asymptotic description of such a vortex in a stationary
strain field was first given by Ting & Tung (1965) (see also Moffatt, Kida & Ohkitani
1994). Le Dizès (2000a) extended their analysis in order to consider a general rotating
strain field which corresponds to the situation for two general interacting vortices.
The relevance of this description to two co-rotating vortices is demonstrated in Le
Dizès & Verga (2002). Similar results for non-identical vortices will be provided here.

The addition of a third dimension to the vortex interactions modifies the vor-
tex dynamics as the elliptical three-dimensional instability may occur before rapid
two-dimensional phenomena such as vortex merging have started (see Meunier &
Leweke 2001). The mechanism of the elliptical instability is now well-understood. The
instability results from the resonant coupling of two vortex modes with the strain
field generated by the other vortex (Moore & Saffman 1975). The instability is called
‘elliptical’ as it can also be associated with the elliptical nature of the streamlines
near the vortex centre (Bayly 1986). The literature is abundant on the subject. A
comprehensive list of references is provided in a recent review by Kerswell (2002).

So far, explicit results have been limited to very simple configurations where the
flow is uniform. Waleffe (1990) provided the first theoretical prediction for a uniform
elliptical flow. Other effects such as stratification, Coriolis forces and magnetic fields
were also included in the formula for the maximum growth rate (see Kerswell 2002).
The extension to a non-uniform configuration is however non-trivial. The difficulty
can be considered to be of the same nature as that in the determination of the
global behaviour of a non-parallel flow from its local stability properties (Huerre
& Monkewitz 1990). However, experimental and numerical results give us a few
important hints (see for instance Leweke & Williamson 1998; Billant, Brancher &
Chomaz 1999; Laporte & Corjon 2000). In particular, the maximum growth rate of
the elliptical instability seems to be well-predicted by the local stability properties
of the vortex near its centre. Eloy & Le Dizès (1999) demonstrated that in a single
slightly strained Gaussian vortex, the maximum growth rate of the first instability
was within 3% of Waleffe’s theoretical prediction for the vortex centre. Here, our
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model is based on this assumption, that is the local growth rate in each vortex centre
provides the growth rate for the global instability modes. It is validated a posteriori
by a comparison with direct numerical results and large-eddy simulations.

The paper describes the various steps of the modelling. In § 2, the two-dimensional
dynamics of two arbitrary vortices is described. The various parameters governing the
dynamics and the stability properties are introduced. Particular attention is paid to
the conditions under which the stability of the vortex system can be addressed. The
basic assumption is that the vortex system is quasi-steady in a rotating frame and that
the axisymmetric part of each vortex profile is approximately Gaussian. Under these
assumptions, near its centre each vortex can be considered as a stationary elliptical
flow in a rotating frame. The local stability properties of such a flow are reviewed
and applied to the vortex system in § 3. The formula for the growth rate is found to
depend on two undetermined coefficients, which are the internal strain rate (strain
in the vortex centre) and the orientation angle of the local perturbation wavevector.
The first coefficient is estimated in § 4 by considering the field generated by the other
vortex as a uniform external strain field whose characteristics are obtained by a point-
vortex model. The results of Le Dizès (2000a), where the relation between external
and internal strain rates was obtained, are applied and validated by direct numerical
computations. Section 5 is concerned with the determination of the orientation
angle of the local perturbation wavevector as a function of the perturbation axial
wavenumber. This third step in the model is based on the (Kelvin) normal-mode
interpretation of the elliptical instability. We argue that the most unstable elliptical
instability modes are necessarily a combination of two Kelvin modes of azimuthal
wavenumber m = 1 and m = −1. This permits us to use the dispersion relation of the
vortex in the determination of the last relation. The final result of the model is a simple
explicit formula for the growth rate of the instability in each vortex which is illustrated
in § 6. This formula is tested in § 7 by a three-dimensional simulation of the vortex
system for various flow configurations. Direct numerical simulations are performed
for low Reynolds number flows, whereas large-eddy simulations are performed for
large Reynolds number flows. The overall agreement between the results of the linear
theory and the simulations is found to be satisfactory. The last section concludes the
paper and discusses an application of the results in the aeronautical context.

2. Two-dimensional dynamics
In this section, the basic characteristics of the two-dimensional dynamics of two

vortices are recalled.
As long as both vortices are localized and far apart, a natural approach is first to

assume that each vortex reduces to a single point located at the vortex centre. This
procedure provides the large-scale non-viscous dynamics of the system. It requires
that viscous effects are negligible at leading order. Under this assumption, one just has
to determine the evolution of two point vortices of circulation Γ1 and Γ2 which are
initially separated by a distance b. It is straightforward to show that b does not vary
and that if Γ1 + Γ2 6= 0, the two vortices rotate around each other with an angular
frequency

Ω =
Γ1 + Γ2

2πb2
. (2.1)

When Γ1 + Γ2 = 0, that is when the vortices have opposite circulations, there is no
rotation; the vortices evolve at a constant speed U = Γ1/(2πb) along a straight line
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Figure 1. Streamline network (in the rotating frame) for (a) Λ = 0.5 and (b) Λ = −0.5.
The vortices are indicated by circles and the other stationary points by stars.

perpendicular to the line connecting them. When Γ1 +Γ2 6= 0 the rotation axis of the
vortex system is located on the line connecting the two vortices at a distance

b1 =
Γ2b

Γ1 + Γ2

(
resp. b2 =

Γ1b

Γ1 + Γ2

)
(2.2)

from vortex Γ1 towards vortex Γ2 (resp. from vortex Γ2 towards vortex Γ1).
In a frame rotating at the angular frequency Ω and centred on the rotation centre,

the dynamics is stationary and the streamlines are given by the contour levels of the
streamfunction:

Ψ =
Γ1

2π
ln[(x− b1)

2 + y2] +
Γ2

2π
ln[(x+ b2)

2 + y2]− Γ1 + Γ2

2πb2
(x2 + y2). (2.3)

If one non-dimensionalizes spatial variables with respect to b, it is immediately seen
that the streamline network only depends on the relative strength of one vortex with
respect to the other, that is on a single parameter

Λ =
Γ1

Γ2

. (2.4)

Without restriction, one can assume that |Γ1| 6 |Γ2| and Γ1 > 0, such that b1 > 0 and
−1 6 Λ 6 1. The sign of the parameter Λ characterizes the counter- or co-rotating
nature of the vortices. The vortices are co-rotating (and with a positive circulation)
for positive Λ and counter-rotating for negative Λ. Illustrations of typical streamline
networks for co-rotating and counter-rotating vortices are provided in figures 1(a)
and 1(b) respectively.

Note that streamline networks for co-rotating vortices and for counter-rotating
vortices are topologically different. Co-rotating vortex streamlines possess three hy-
perbolic points and two external elliptic stagnation points while counter-rotating
vortex streamlines only possess two hyperbolic points and one external elliptic stag-
nation point. Stagnation points are known to be the seat of local instabilities (Lifschitz
& Hameiri 1991). Here, the external elliptic stagnation points are, however, locally
stable because there is no absolute vorticity at these points (Le Dizès 2000b). On the
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other hand, the hyperbolic stagnation points are unstable (Lifschitz & Hameiri 1991;
Leblanc 1997). Destabilization of the vortex system by growth of instability near those
points could then be possible a priori. This possibility is not analysed in the present
paper. Instead, we assume that the local growth at the hyperbolic stagnation points
does not affect the main characteristics of the elliptical instability. This assumption
is checked a posteriori by comparing the theoretical predictions with results obtained
by numerical simulations.

As long as each vortex is sufficiently localized and confined within the region
delimited by the separatrix connected to the closest hyperbolic point, we expect
the streamline network to remain qualitatively unchanged whatever the vortex core
details. By contrast, the vortex core details, particularly the core size and the vorticity
profile, have an important influence on the three-dimensional stability characteristics
of the system, as we shall see below. Here, we characterize the vortex core size from
the second-order-vorticity moment around the vortex centre by a vorticity radius
defined by

a2
1 ≡ 1

2Γ1

∫∫
D1

[(x− xc1
)2 + (y − yc1

)2]ω(x, y) dx dy, (2.5)

where (xc1
, yc1

) is the vortex centre of vortex Γ1:

xc1
≡ 1

Γ1

∫∫
D1

xω(x, y) dx dy, (2.6a)

yc1
≡ 1

Γ1

∫∫
D1

yω(x, y) dx dy. (2.6b)

The domain D1 should contain all the vorticity associated with the vortex Γ1. This
implicitly means that the vortices are not mixed and that there exists a well-defined
boundary for each vortex. In practice, we choose for D1 a disc centred on the vortex
centre. Its radius is the distance between the centre and the central hyperbolic point
(co-rotating case) or between the centre and the location (between the two vortices)
where the vorticity changes sign (counter-rotating case). The circulation Γ1 should
satisfy

Γ1 =

∫∫
D1

ω(x, y) dx dy. (2.7)

In a viscous two-dimensional flow, the second-order-vorticity moment of a vortex
evolves linearly in time due to viscous diffusion (Batchelor 1967). Each vortex radius
therefore satisfies an equation of the form

a1 =

√
a2

1(0) + 4νt. (2.8)

Using expression (2.5), two additional length scales a1 and a2 are associated with
each vortex Γ1 and Γ2 which measure the core sizes. The form of the vorticity profiles
could provide infinitely many other parameters. In order to limit the number of
parameters, here we focus on vortices with a Gaussian vorticity profile only. This
choice is motivated by the particular role that Gaussian vortices play in vortex
dynamics and turbulence. First, a vortex with a Gaussian profile, the so-called Lamb–
Oseen vortex, is known to be the global attractor of any two-dimensional axisymmetric
vortex. In other words, all axisymmetric vortices relax by viscous diffusion to the
Lamb–Oseen vortex. This property seems to be also satisfied in systems with several
vortices. The Gaussian vorticity profile was indeed shown to correspond to the
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Figure 2. Illustration of the straining phenomenon. Streamline network and vortex contour (thick
line) of the vortex system in the rotating frame for Λ = 0.2, a1/b = a2/b = 0.142, Re1 = 2500. The
vorticity level corresponds to 5% of the maximum vorticity for vortex Γ1.

vortex profiles of the attractive solution obtained for two identical counter-rotating
vortices (Sipp, Jacquin & Cossu 2000) and for two identical co-rotating vortices (Le
Dizès & Verga 2002). Moreover, Jiménez, Moffatt & Vasco (1996) demonstrated that
the Gaussian vortex provides a good description in a statistical sense of vortices
encountered in two-dimensional turbulence.

It is also important to point out that the Gaussian profile has the advantage
of being unaffected by viscous diffusion. For all times, a Gaussian vortex remains
Gaussian. Viscosity only modifies the vortex radius, which evolves according the law
given in (2.8). As soon as the Reynolds number is larger than a few hundred, this
evolution is sufficiently slow to assume the vortex system to be quasi-stationary in the
rotating frame.

The quasi-steadiness of the vortex system is however not guaranteed for all the
values of the parameters. For each Λ, there are limitations on the parameters a1/b
and a2/b. Unfortunately, these limitations are not well-documented except for a few
cases. For instance, it is well-known that for two identical vortices (a1 = a2 and
Λ = 1), rapid time-dependent phenomena leading to vortex merging develop when
a/b reaches approximately 0.23 (see Meunier et al. 2002). The range of allowed values
is therefore a/b < 0.23 in that case. The phenomenon of merging also occurs for
non-equal vortices as demonstrated by Overman & Zabusky (1982) and Mitchell &
Driscoll (1996). In particular, Dritschel & Waugh (1992) and Weiss & McWilliams
(1993) obtained merging criteria for vortex patches of same vorticity level but different
size. Another phenomenon, called ‘straining’, has also been observed when one vortex
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Figure 3. Scatter plots (Ψ,ω) of the two-vortex flow in the rotating frame for Λ = 0.2,
Re1 = 2500 and two values of a1/b: with straining (a1/b = a2/b = 0.142) and without strain-
ing (a1/b = a2/b = 0.1).

is much larger than the other (i.e. Λ close to zero): the weak vortex is elongated
and transformed into a thin vorticity sheet (see for instance Trieling et al. 1997;
Trieling, Linsen & van Heijst 1998). An illustration of the straining process is
provided in figure 2. This picture is obtained by the two-dimensional direct numerical
simulation described in § 7. The streamline network is displayed for the vorticity level
corresponding to 5% of the maximum vorticity for vortex Γ1. One clearly sees that
while the stronger vortex remains almost axisymmetric (the contour corresponds to
1% of the maximum vorticity for vortex Γ2), the weaker vortex is strongly distorted
and wrapped around the strong vortex. This phenomenon is strongly time-dependent
as demonstrated on the scatter plot (streamfunction, vorticity) shown in figure 3. On
this figure, two scatter plots for Λ = 0.2 are superimposed. One corresponds to the
configuration displayed on figure 2 (a1/b = 0.142), the second is for a case without
straining (a1/b = 0.1). Curves on the right are for the stronger vortex, those on the left
are for the weaker vortex. On this plot, the appearance of time-dependent effects is
characterized by the thickening of the curve connecting streamfunction to vorticity in
the weaker vortex. Note however that a functional relation ω = f(Ψ ) is still present in
both vortices before straining or in the stronger vortex during straining. This implies
that the flow remains a quasi-stationary solution of the Euler equations in the regions
not subject to straining (see also § 7).

Both ‘merging’ and ‘straining’ processes limit the range of the parameter values.
Unfortunately, there is no clear criterion for the appearance of these phenomena.
However, simple conditions can be obtained using the geometry of the streamline
network. We have mentioned above that it was important for each vortex to remain
well-delimited and separated from the other vortex. This provides constraints on a1/b
and a2/b. Indeed, vorticity is stripped from the vortex core as soon as it crosses a
separatrix connected to a hyperbolic point (see figure 1). This phenomenon, which is
all the more important as the Reynolds number becomes large (Le Dizès & Verga
2002), increases vortex leakage across the external hyperbolic points and, in the co-
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rotating case, vortex mixing in the central hyperbolic point. In order to minimize
these effects, each vortex core should remain within the domain delimited by the
closest separatrix connected to a hyperbolic point. This implies conditions on a1/b
and a2/b which can be written roughly as

for |Λ| > 1/2 : a1/b < 1/4, a2/b < 1/4, (2.9a)

for |Λ| 6 1/2 : a1/b <
1

2
√

2

√|Λ|, a2/b <
1

2

(
1−

√ |Λ|
2

)
. (2.9b)

The above conditions are obtained by requiring that the distance from the vortex
centre to the closest hyperbolic point remains at least twice as large as the vortex
radius. This choice is arbitrary. It should qualitatively describe how the limitations
on a1/b and a2/b vary with respect to Λ but it cannot be expected to provide a good
quantitative criterion for the threshold of merging or straining. These criteria have
been numerically tested for a few configurations. The simulations tend to demonstrate
that the real limit is slightly more restrictive than those prescribed by (2.9). Note, in
particular, that for the flow parameters of figure 2, straining has started but conditions
(2.9b) are not invalidated.

For the next sections, it is useful to define a few other quantities relative to each
vortex. We shall need the angular velocity in the vortex centre. For the Gaussian
vortex Γ1 it is

µ1 =
Γ1

2πa2
1

. (2.10)

In the rotating frame, the angular velocity is

µ̃1 = µ1 − Ω. (2.11)

For each vortex, one can associate a Reynolds number based on the circulation and
the kinetic viscosity ν. For vortex Γ1, it is

Re1 =
Γ1

ν
. (2.12)

We shall also need the strain rate induced by one vortex on the other. The point-
vortex model provides the ‘external’ strain rate Se1

, which is the strain rate induced
by one vortex at the position of the other without taking into account the interaction
between strain and vorticity. Expression (2.3) gives

Se1
=

Γ2

2πb2
, Se2

=
Γ1

2πb2
, (2.13a, b)

where Se1
is the strain rate induced by vortex Γ2 at the position of vortex Γ1. The

‘internal’ strain rate which takes into account interactions between strain and vorticity
in the vortex core will be estimated in § 4.

3. Elliptical instability in the vortex core
In order to determine the elliptical instability characteristics of the vortex system, it

is necessary to focus on each vortex core separately. Using polar coordinates centred
on one of the vortex centres, the streamfunction of the quasi-steady vortex system is
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(in the rotating frame)

Ψ = Ψ0(r) + Ω
r2

2
+ Re

{∑
n>1

Ψn(r) exp(inθ)

}
, (3.1)

where Ψ0(r) is a real function associated with the axisymmetric part of the vortex, and
Ψn(r) complex functions associated with non-axisymmetric deformations of the vortex.
The Gaussian vorticity profile assumption means that vortex Γ1 has an axisymmetric
part Ψ0(r) approximately given by

Ψ0(r) = −Γ1a1

2π

∫ r

0

1− exp(−(r/a1)
2)

r2
dr. (3.2)

It also implicitly assumes that Ψ0 provides a leading-order approximation of the
vortex core.

The choice of the frame moving with the vortex guarantees that the vortex centre
is a stagnation point such that Ψ expands near the vortex centre as

Ψ ∼
r→0
− µ̃1

r2

2
− Si1

r2

2
cos(2θ + φ2) + O(r3), (3.3)

where µ̃1 is the angular velocity given by (2.11) and Si1 the internal strain rate. In
other words, near its centre, vortex Γ1 is at leading order an elliptic flow with a
streamline eccentricity

ε1 =
Si1

µ̃1

. (3.4)

This observation constitutes the central point of our modelling of the elliptical
instability characteristics. The stability characteristics of the flow described by (3.3)
are known. In a fixed frame, they have been computed by Bayly (1986) for all ε1
between 0 and 1. Waleffe (1990) developed an asymptotic theory for small eccentricity
and obtained an exact estimate for the growth rate and an interesting expression
for the most unstable perturbation. Le Dizès (2000b) extended Waleffe’s analysis to
account for Coriolis effects. The present theory is based on these results which are
now briefly reviewed.

In Le Dizès (2000b), as well as in Waleffe (1990), the uniform basic flow (3.3)
is assumed unbounded, which means that no restrictions associated with boundary
conditions or finite size are applied to the perturbations. For small eccentricity ε1,
the basic flow is almost a solid-body rotation. It admits, at leading order in ε1,
velocity–pressure perturbations (u, p) in the form of ‘inertial waves’:

(u, p) = (u0, p0) eik(t) · x e−iωt, (3.5)

where

k(t) = k0

∣∣∣∣∣∣∣
sin ξ cos(µ̃1t+ χ0)

sin ξ sin(µ̃1t+ χ0)

cos ξ

(3.6)

and

ω2 = 4(µ̃1 + Ω)2 cos2 ξ = 4µ2
1 cos2 ξ. (3.7)

The wavevector k(t) of these plane waves is of constant norm k0. It rotates with
respect to the vortex axis at the angular frequency µ̃1 with a constant inclination
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angle ξ. The frequency ω, given by (3.7), is connected to both the inclination angle ξ
and the absolute vorticity 2(µ̃1 + Ω) = 2µ1 of the basic elliptical flow.

Le Dizès (2000b) showed that these inertial waves can self-resonate with the strain
field when the inclination angle ξ is close to a critical angle ξc given by

cos ξc =
µ̃1

2(µ̃1 + Ω)
=
µ1 − Ω

2µ1

. (3.8)

He obtained an expression for the non-viscous growth rate which can be written (at
leading order in ε1) as

σNV =

√(
3µ̃1 + 2Ω

4(µ̃1 + Ω)

)4

S2
i1
− (µ̃1 − 2(µ̃1 + Ω) cos ξ)2. (3.9)

Viscous effects on the perturbations are easily taken into account by adding the
viscous damping rate σV = −ν|k|2 (Landman & Saffman 1987). It follows that the
maximum growth rate of the inertial wave of axial wavenumber kz and inclination
angle ξ is at leading order

σ =

√(
3µ1 − Ω

4µ1

)4

S2
i1
− (µ1 − Ω − 2µ1 cos ξ)2 − ν k2

z

cos2 ξ
, (3.10)

where we have replaced µ̃1 by µ1 − Ω and |k| by its expression in terms of kz and
cos ξ. Formula (3.10) gives the growth rate of the instability in vortex Γ1. A similar
expression is obtained for the growth rate in vortex Γ2 by replacing the subscript
1 by 2. In the following, the two formulae for vortices Γ1 and Γ2 will provide the
stability characteristics of the two-vortex flow with respect to the elliptical instability.
In order to simplify the notation, we shall often suppress the subscripts 1 or 2 from
the various expressions when there is no ambiguity, e.g. when the results for vortex
Γ1 are obtained by adding the subscript 1 everywhere.

Formula (3.10) has been obtained by expanding the basic flow near a vortex centre
and for this reason it only depends on the vortex-centre characteristics. However,
some characteristics such as the internal strain rate Si and the orientation angle ξ are
so far unknown. The next two sections will be devoted to the determination of these
two quantities as a function of the global parameters of the two-vortex system. In
particular, we shall see how the vorticity profile and global parameters such as Ω/µ1

and a1/b are involved in the definition of these quantities.
In § 4, an approximate expression for Si is obtained using results from Le Dizès

(2000a). In § 5 a relation is derived between cos ξ and kz using an alternative de-
scription of the elliptical instability which permits us to take into account the global
structure of each vortex.

4. Internal strain rate
The strain rate at the vortex centre or internal strain rate Si should not be confused

with the external strain rate Se estimated in § 2. The external strain rate is the strain
rate at the vortex centre position assuming that the vortex is not there. It does not
take into account the strain–vorticity interactions that are present in the vortex core,
while the internal strain rate does.

For instance, in a Rankine vortex (uniform vorticity in a circular patch), it is easy
to show that, for small strain rates and in fixed frame, Si = 2Se (see Moore & Saffman
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1971). In the same conditions, Moffatt et al. (1994) showed that Si ≈ 2.52Se for a
Gaussian vortex. Eloy & Le Dizès (1999) demonstrated that an even larger ratio Si/Se

can be obtained by altering the vorticity profile. The effect of Coriolis forces on this
ratio has been studied only recently in Le Dizès (2000a). The expression for Si we
shall use is based on his analysis.

Le Dizès (2000a) analysed the deformation of a Gaussian vortex in a weak imposed
rotating external strain field. He considered not only the elliptical deformation but
also all the higher-order azimuthal corrections generated by a multipolar strain field.
As only the elliptic correction is relevant for the elliptical instability, only results
concerning the elliptic correction are now described. The elliptic correction corre-
sponds to the term Ψ2(r) exp(2iθ) in expression (3.1) for the basic flow streamfunction
centred on one vortex. In Le Dizès (2000a), this correction is generated at infinity by
a uniform strain field of strain rate Se, which means that

Re{Ψ2(r) exp(2iθ)} ∼
r→∞Se

r2

2
cos(2θ + φ∞2 ).

It is also assumed that the external strain rate Se is small compared to the vorticity
in the vortex centre such that the elliptic correction amplitude Ψ2 is, at leading order,
the solution of the linear equation

(Ω0(r)− Ω)

(
d2

dr2
+

1

r

d

dr
− 4

r2

)
Ψ2 =

ω′0(r)
r

Ψ2, (4.1)

where Ω0 and ω′0 are the angular velocity and the vorticity derivative associated with
the Gaussian vortex of streamfunction Ψ0(r) given in (3.2). Internal and external
strain rates can be defined from Ψ2 by

Se = lim
r→∞
|Ψ2(r)|
r2

, Si = lim
r→0

|Ψ2(r)|
r2

. (4.2a, b)

In the following, it will also be convenient to use the strain ratio

K = Si/Se. (4.3)

In view of (4.2a, b), the dependence of K on the vortex profile is apparent from equa-
tion (4.1). This dependence is non-trivial as it results from the complete integration of
equation (4.1) from 0 to +∞. There is no general result for an arbitrary vortex profile.
Each profile should therefore be analysed on a case-by-case basis. As a consequence,
the choice of a particular vorticity profile (here, the Gaussian profile) is a necessary
step in order to obtain a quantitative estimate for the strain ratio K .

Equation (4.1) is linear but it may exhibit a singularity if there exists a critical
radius rc where Ω0(rc) = Ω, that is if the angular frequency Ω is in the range of the
angular velocity of the vortex. As demonstrated by Le Dizès (2000a), the existence
of such a singularity has an important influence on the factor K . When there is no
singularity, equation (4.1) can be integrated from 0 to +∞, which guarantees that K
only depends on the coefficients of the equation. For such a case (the vortex profile
being fixed), one thus has K = K(Ω/(2µ)). By contrast, when equation (4.1) possesses
a singularity, this singularity must be resolved in a critical layer by introducing viscous
or nonlinear effects. The parameter which characterizes the nature of the critical layer
is the so-called Haberman parameter

h ≡ hc

ε3/2Re
, (4.4)
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Figure 4. Factor K = Si/Se versus Ω/(2µ). Critical layer singularity exists for Ω/(2µ) > 0: h = 0
and h = ∞ correspond to nonlinear and viscous critical layers respectively. A fit (solid line) of the
nonlinear critical layer data is provided by expression (4.5).

where ε is the eccentricity streamline defined in (3.4) and hc a numerical constant close
to unity. When h is large, the critical layer is viscous, and the singularity is smoothed
by viscous effects. When h is small, the critical layer is nonlinear, and the singularity is
smoothed by nonlinear effects. The nature of the critical layer characterizes the jump
conditions across the singularity and thus the function Ψ2(r) in the vortex core. As a
consequence, the factor K becomes dependent on the additional parameter h, that is
K = K(Ω/(2µ), h). Figure 4 displays the behaviour of K as a function of Ω/(2µ) for
the two extreme cases h = 0 and h = ∞. The curves for intermediate h are in between.
Only values of Ω/(2µ) relevant to the two-vortex system are considered.

Interestingly, the nature of the critical layer has an influence on the factor K only
for Ω/(2µ) > 0.08. As shown in Le Dizès (2000a), the departure is actually the largest
near Ω/(2µ) ≈ 0.16 as K(Ω/(2µ), 0) diverges near that value whereas K(Ω/(2µ),∞)
remains finite. A good fit of the nonlinear data for −0.1 < Ω/(2µ) < 0.1 is obtained
with the expression (see figure 4)

KNL(Ω/(2µ)) = 1.5 + 0.038(0.16− Ω/(2µ))−9/5. (4.5)

Let us now apply these results to the two-vortex system. A priori, the above
framework only applies to the limit case where a/b is small such that the external
strain field generated by the other vortex is approximately uniform on the vortex core
area. In the rest of this section, it is argued that it also provides a good approximation
for configurations where a/b is as large as 0.22.

We have seen that the factor K mostly depends on the relative angular velocity
Ω/(2µ). For vortices Γ1 and Γ2, this quantity is given respectively by

Ω/(2µ1) =
Γ1 + Γ2

2Γ1

(
a1

b

)2

=
1

2

(
1 +

1

Λ

)(
a1

b

)2

, (4.6a)

Ω/(2µ2) =
Γ1 + Γ2

2Γ2

(
a2

b

)2

= 1
2

(1 + Λ)

(
a2

b

)2

. (4.6b)
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For co-rotating vortices (Λ > 0) both Ω/(2µ1) and Ω/(2µ2) are positive whereas for
counter-rotating vortices (Λ < 0), Ω/(2µ1) is negative and Ω/(2µ2) positive. Under
the geometrical constraints (2.9), it is straightforward to show that both Ω/(2µ1)
and Ω/(2µ2) remain smaller than 0.083 when |Λ| > 0.1. For strongly asymmetric
configuration, where a2/b is large and Λ very small, Ω/(2µ2) could a priori reach
values between 0.08 and 0.12 without violating conditions (2.9). For those cases, the
nature of the critical layer could then have an influence on the internal strain rate
of the strong vortex Γ2. However, we expect ε2 to be larger than 1/Re2 in unstable
configurations. Thus, the parameter h should be small and the critical layer nonlinear.

For these reasons, we assume in our model that there is a simple linear relation
between internal and external strain rates, which is given for each vortex by

Si1 = KNL(Ω/(2µ1))Se1
, Si2 = KNL(Ω/(2µ2))Se2

, (4.7a, b)

where KNL is defined by (4.5). This model has been tested by Le Dizès & Verga (2002)
in the case of two identical co-rotating vortices (Λ = 1, a1 = a2). They compared
formula (4.7) to the exact internal strain rate obtained by a direct simulation of the
interaction of two Gaussian vortices for a/b ranging from 0.05 to 0.23 and different
Reynolds numbers between 1000 and 8000. For these values, Ω/(2µ) = (a/b)2 varies
from 2.5×10−3 to 5.3×10−2. Their results demonstrate that (4.7) provides an excellent
estimate for a/b < 0.18. For 0.18 < a/b < 0.23, it slightly underestimates the strain
rate with a relative error which increases with a/b but remains less than 5%.

Similar results are provided for two non-symmetrical cases in figure 5(a, b). On
these plots, the real ratio is obtained by direct simulation. In each case, the simulation
is started with a1/b = a2/b = 0.05 from two axisymmetric Gaussian vortices. The
scattering of the numerical values of K for small |Ω/(2µ1)| is associated with the non-
viscous adaptation of each vortex with respect to the other. In this initial regime, the
internal strain rate exhibits oscillations which are rapidly damped on a non-viscous
time scale (Le Dizès & Verga 2002). In the simulations, both the radius and the
relative angular frequency of the vortex system evolve in time by viscous diffusion.
As already mentioned, this evolution is slow and has no significant influence on the
characteristics of the system at a given instant. This evolution is convenient from
a numerical point-of-view however as it permits us to cover an important range of
parameters by a single simulation (see § 7). Interestingly, one finds numerically that
radius and angular frequency are always related to each other by (4.6). This relation
is indicated in figure 5 by the thin solid line.

Figure 5 demonstrates that after the initial adaptation process and up to the end
of the simulation, which corresponds to the beginning of straining, good agreement
between the numerics and the model is obtained.

For other values of Λ, a similarly good agreement has also been observed which
makes us confident of the validity of the model.

5. Wavenumber selection
The stability analysis of § 3 has provided an expression for the instability growth

rate as a function of the inclination angle ξ of the inertial wavevector in the vortex
core. So far, there has been no restriction on ξ. The goal of this section is to show
that ξ can take only prescribed values which depend on the axial wavenumber of the
perturbation. For this purpose, we shall use an alternative description of the elliptical
instability based on the resonant coupling of vortex normal modes (‘Kelvin modes’)
with the strain field. Such a description was first presented for general vortices by
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Figure 5. Strain ratio K in the centre of vortex Γ1 for (a) Λ = 0.2 and (b) Λ = −0.2. Symbols (◦)
are the ratio of the numerically calculated internal strain rate and Γ2/(2πb

2). The thick line is the
theoretical prediction K = KNL(Ω/2µ1) defined by (4.5). As explained in the text, the numerical
results in each figure are obtained by a single simulation starting from a1/b = a2/b = 0.05 at
Re1 = 2500. The computed relation between the relative angular frequency Ω/(2µ1) and a1/b is
drawn as a thin line using the right-hand vertical axis.

Moore & Saffman (1975). Specific results for a Gaussian vortex can be found in Eloy
& Le Dizès (1999) and Sipp (1999). The main ideas of Moore & Saffman’s analysis
are now presented.

As in § 3, it is assumed that each vortex is only slightly deformed by the field
induced by the other vortex. This means that, in (3.1), all the non-axisymmetric
terms Ψn(r), n > 1 are small compared to the axisymmetric term Ψ0. Moreover, it is
assumed that among these non-axisymmetric terms, Ψ2(r) is dominant in the vortex
core such that only the (elliptical) instability induced by this term is considered.
Under these conditions, the vortex is at leading order axisymmetric. Thus, it possesses
velocity–pressure perturbations (u, p) in the form of normal (Kelvin) modes:

(u, p) = (u0(r), p0(r)) eikzz+imθ−iωt, (5.1)

where (kz, m, ω) are the axial wavenumber, the azimuthal wavenumber and the fre-
quency of the Kelvin mode.

In Moore & Saffman’s analysis, the elliptical instability occurs when two neu-
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tral Kelvin modes (k1, m1, ω1) and (k2, m2, ω2) are resonantly coupled by the elliptic
correction. Here, the elliptic correction is stationary in the rotating frame. In the
fixed frame, unlike Moore & Saffman’s case, the elliptic correction is therefore not
stationary. Using expression (3.1), it can be written as Re{Ψ2(r) exp(2i(θ−Ωt))}. The
condition of coupling thus yields the following conditions of resonance:

k1 − k2 = 0, (5.2a)

m1 − m2 = 2, (5.2b)

ω1 − ω2 = 2Ω. (5.2c)

When these conditions are satisfied, there is instability and the instability mode is at
leading order the sum of the two resonant Kelvin modes. In this description, it is
therefore clear that the stability analysis mainly reduces to the study of the resonance
condition for the Kelvin modes.

Eloy & Le Dizès (2001) studied these conditions for all azimuthal wavenumbers
for a Rankine vortex in the non-rotating case (Ω = 0). They showed that there
exist infinitely many resonant configurations for each pair of azimuthal wavenumbers
(m1, m1 − 2) and they computed the growth rate of the most unstable ones using
Moore & Saffman’s method. Interestingly, they demonstrated that the most unstable
configurations have a frequency close to ωc = (m1 + m2)µ/2 = (m1 − 1)µ and a growth
rate approximately equal to the most unstable growth rate obtained from the inertial
wave estimate (3.9). Le Dizès (2000b) provided an explanation for this result by
connecting the Kelvin modes to the inertial waves seen in § 3. He showed that the
Kelvin modes in the vortex core were indeed a sum of most unstable inertial waves
if the resonant frequency satisfied the above condition. For the rotating case, he
obtained the following condition on the frequencies:

ω1 ≈ m1 + m2

2
µ+ Ω = (m1 − 1)µ+ Ω, (5.3a)

ω2 ≈ m1 + m2

2
µ− Ω = (m2 + 1)µ− Ω. (5.3b)

We shall see below that the same condition also applies for a general vortex once one
requires the resonant Kelvin modes to be a sum of the most unstable inertial waves
near the vortex centre. The more restrictive conditions (5.3a, b) should therefore be
considered in order to be able to connect the resonant Kelvin modes to the unstable
inertial waves analysed in § 3. This would also provide a consistent justification of the
use of formula (3.10) for the instability growth rate.

Let us now analyse these conditions in our case. Although the Kelvin modes
are known for a Rankine vortex, very few results are available for a Gaussian
vortex. Recent results by Sipp (1999) demonstrate that unlike the Rankine vortex,
the Gaussian vortex exhibits (linear) Kelvin modes which are damped even in the
large Reynolds number limit. The damping character is associated with the presence
of a viscous critical layer singularity in the perturbation spatial structure. The fine
structure of such a singularity is not known but it is of the same nature as for the basic
flow correction studied in the previous section: it occurs when the angular frequency
is within the range of the angular velocity of the vortex, that is when 0 < ω/m < µ.
Sipp (1999) obtained his numerical results by integrating the non-viscous perturbation
equation on a contour in the complex plane which avoids the critical point singularity
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as is done for shear flow perturbations (see for instance Lin 1955). His results were
recently confirmed by Fabre (2002) with a viscous spectral code.

Outside the critical layer range, Gaussian-vortex Kelvin modes seem to share
similar properties as Rankine-vortex Kelvin modes (Sipp 1999): their frequencies are
real (for large Reynolds numbers) and satisfy (m − 2)µ 6 ω 6 (m + 2)µ. Moreover,
the dispersion relation of Kelvin modes possesses the following important symmetry
property: it is invariant under the transformation

k → k, m→ −m, ω → −ω∗. (5.4)

If one excludes from the analysis Kelvin mode frequencies in the critical layer
range, one immediately sees that

(i) for 0 < Ω 6 µ, conditions (5.2a, b) and (5.3a, b) cannot be satisfied by any pair
of Kelvin modes;

(ii) for −µ < Ω 6 0, conditions (5.2a, b) and (5.3a, b) can only be satisfied by the
‘bending’ Kelvin modes m1 = 1, m2 = −1.

Strictly speaking, the first assertion implies that there should be no Kelvin mode
resonance in co-rotating vortex systems. This would be a very disappointing result in
contradiction with known experimental evidence (Meunier 2001; Meunier & Leweke
2001).

The exclusion of the whole critical layer range is therefore excessive. Indeed, one
can imagine that conditions (5.2a, b) and (5.3a, b) could be satisfied at leading order
in the critical range if the damping rates of the resonant Kelvin modes are small. It
turns out that this occurs for the couple (m1 = 1, m2 = −1) for small positive Ω/µ.
In fact, Sipp’s computations demonstrate that the damping rate of the first bending
Kelvin modes (i.e. of small wavenumber) is negligible as long as their frequency
satisfies ω/(2µ) < 0.06 (Sipp 1999). This peculiarity may be connected to the fact
that, for these frequencies, the critical point singularity is far from the vortex centre
and in a region where the way the singularity is smoothed has no influence on the
mode characteristics. For two-dimensional modes, Briggs, Daugherty & Levy (1970)
showed that in such cases the damping rate was proportional to the vorticity gradient
at the critical point (see also Le Dizès 2000a). Such a result for three-dimensional
Kelvin modes would be consistent with Sipp’s observation.

In the following, only the resonance of the bending modes m1 = 1 and m2 = −1
is considered. This is consistent with the above considerations, experimental evidence
(Meunier 2001) and the numerical results presented in the next section. The symmetry
property (5.4) of the dispersion relation guarantees that condition (5.3b) is satisfied
once (5.3a) is satisfied, so only one of the two conditions need be considered.

On figure 6 the frequency of the first three bending Kelvin modes (m = 1) obtained
for infinite Reynolds numbers is plotted as a function of the non-dimensionalized
wavenumber kza. For −0.06 < ω/(2µ) < 0.06, a good estimate for the frequency of
the first few branches (at least the first three branches) is obtained with the linear fit

ωn

2µ
=

(2.26 + 1.69n)− kza
14.8 + 9n

, (5.5)

where the integer n = 0, 1, 2, . . . is the index of the branch. This expression will be used
in the general formula for the growth rate. One therefore should keep in mind that it is
an estimate of the dispersion relation which only applies for −0.06 < ω/(2µ) < 0.06,
that is for wavelengths of the nth branch satisfying

1.37 + 1.15n < k(n)
z a < 3.15 + 2.23n. (5.6)
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Figure 6. Linear dispersion relation for the Kelvin mode m = 1 (Re = ∞). Thick lines are numerical
results for the first three branches Re(ω/2µ) = f(kza) as obtained by Sipp (1999). The mode is
almost neutral (Im(ω/2µ) < 0.01) on the solid part of the curve and strongly damped on the dashed
part. Thin solid lines are linear fits given by (5.5) for n = 0, 1, 2.

It is important to point out that expression (5.5) is a restriction on the perturbations
associated with global effects. In particular, the discretization of the frequencies results
from the finite radius of the vortex. Different relations are expected for other vortex
profiles but they should be always discrete if the vortex radius is finite.

A relation between the frequency of the Kelvin mode and the inclination angle ξ
of the inertial waves described in § 3 can now be obtained by analysing the resonant
Kelvin modes near the vortex centre. A simple approximation of the resonant bending
modes (m1 = 1, m2 = −1) is provided by expanding the perturbation equations near
the vortex centre. For instance, consider the equation for the pressure of the Kelvin
mode (kz, m, ω) (see Saffman 1992, p. 244): for the pressure amplitude p0 it becomes
near r = 0:

d2p0

dr2
+

1

r

dp0

dr
+

(
k2
z

∆m

σ2
m

− m2

r2

)
p0 = 0, (5.7)

where

∆m = 4µ2 − σ2
m, (5.8a)

σm = mµ− ω. (5.8b)

The bounded solution of (5.7) is

p0 = Jm(βmr) (5.9)

with

β2
m = k2

z

∆m

σ2
m

. (5.10)

Using the following expression for the Bessel function Jm(z):

Jm(z) =
1

2πim

∫ 2π

0

eiz cos a eima da,
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the expression for both resonant Kelvin modes m = 1 and m = −1 deduced from
(5.9) can be written, in the frame rotating at the angular frequency Ω, as a sum of
inertial waves (3.5) provided that (see Waleffe 1990)

βm = k0 sin ξ, (5.11a)

kz = k0 cos ξ, (5.11b)

(ω − m(Ω + µ̃))2 = 4(Ω + µ̃)2 cos2 ξ. (5.11c)

Note that these expressions are also compatible with (5.8) and (5.10) since µ = µ̃+Ω.
By contrast with expression (5.5), these relations do not depend on the vortex profile
as it is only based on a local analysis. They can be considered as simple conditions of
compatibility of two representations of the same perturbation near the vortex centre.

If one writes (5.11c) for the mode m = 1 as

cos ξ =
µ− ω

2µ
, (5.12)

expression (5.5) for the frequency leads to the relation between cos ξ and kz we were
seeking:

cos ξ =
1

2
− (2.26 + 1.69n)− kza

14.8 + 9n
, n = 0, 1, 2, . . . . (5.13)

6. Theoretical formula for the elliptic instability growth rate
If we collect the results of the previous sections, we obtain a formula for the

elliptic instability growth rate in each vortex as a function of the perturbation
wavenumber kzb and the global parameters of the vortex system, that is a1/b, a2/b,
Λ = Γ1/Γ2, Re1 = Γ1/ν (or Re2 = Γ2/ν). If the growth rate is normalized by the
global turnover time of the vortex system tg = 2πΩ = 4π2b2/|Γ1 + Γ2|, we obtain the
following formulae for each branch n = 0, 1, 2, . . . :

σ∗1 =
2π

|1 + Λ|

√(
3

4
− Ω1

2

)4

K2
NL(Ω1)− 4Λ2b2

a2
1

( 1
2
− Ω1 − cos ξ(n)

1 )2

− 4π2|Λ|(kzb)2

Re1|1 + Λ| cos2 ξ
(n)
1

, (6.1a)

σ∗2 =
2π|Λ|
|1 + Λ|

√(
3

4
− Ω2

2

)4

K2
NL(Ω2)− 4b2

Λ2a2
2

( 1
2
− Ω2 − cos ξ(n)

2 )2

− 4π2(kzb)
2

Re2|1 + Λ| cos2 ξ
(n)
2

, (6.1b)

where

cos ξ(n)
1,2 =

1

2
− (2.26 + 1.69n)− kza1,2

14.8 + 9n
, n = 0, 1, 2, . . . ,

KNL(x) = 1.5 + 0.038 (0.16− x)−9/5,

Ω1 = Ω/(2µ1) =
(1 + Λ)a2

1

2Λb2
, Ω2 = Ω/(2µ2) =

(1 + Λ)a2
2

2b2
.
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Figure 7. Comparison of the stability characteristics of co-rotating vortices and counter-rotating
vortices for Reynolds numbers Re = 7000 (continuous lines) and Re = ∞ (dashed lines). The
thick lines are for co-rotating vortices (Λ = 1) with a1/b = a2/b = 0.18. The thin lines are for
counter-rotating vortices (Λ = −1) with a1/b = a2/b = 0.18. Only the first two branches (n = 0, 1)
are plotted. All the other branches are damped for Re = 7000.

Naturally, the normalization by tg is not adequate for counter-rotating vortices of the
same intensity (Λ = −1). In that case, one can, for instance, use the time associated
with the translational motion: tc = b/U = 2πb2/|Γ1|. This leads to the following
formulae for Λ = −1:

σ1tc =

√(
3
4

)4
K2
NL(0)− 4b2

a2
1

( 1
2
− cos ξ(n)

1 )2 − 2π(kzb)
2

Re1 cos2 ξ
(n)
1

, (6.2a)

σ2tc =

√(
3
4

)4
K2
NL(0)− 4b2

a2
2

( 1
2
− cos ξ(n)

2 )2 − 2π(kzb)
2

Re2 cos2 ξ
(n)
2

, (6.2b)

where KNL(0) ≈ 2.52. Before showing specific comparisons with the numerics, it may
be useful to illustrate the above formulae by some examples. For instance, it is clear
that the elliptic instability is affected by the rotation of the vortex pair. This effect
is illustrated on figure 7 where the growth rate (normalized by tc) is plotted as
a function of the perturbation wavenumber for two co-rotating and two counter-
rotating vortices of the same a/b and the same Re. As expected from the above
discussions, the instability bands are shifted towards larger wavelengths for the co-
rotating vortices. This has an effect on the viscous damping which then becomes
smaller. The non-viscous growth rate is also increased by the rotation of the pair.
These two effects make co-rotating vortices more unstable than counter-rotating
vortices. On figure 7, one sees for instance that, for Re = 7000 and a/b = 0.18, the
co-rotating vortices exhibit two instability bands, while the counter-rotating vortices
are unstable in a single thin band.

The critical Reynolds number for instability is immediately obtained from (6.1).
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Figure 8. Critical Reynolds number versus a/b for two identical co-rotating vortices (Λ = 1,
a1 = a2 = a; solid line) and two identical counter-rotating vortices (Λ = −1; a1 = a2 = a;
dashed line).

One obtains for each vortex

Re1c =
2π|Λ|(2.26− 14.8Ω1)

2b2

(1/2− Ω1)2(3/4− Ω1/2)2KNL(Ω1)a
2
1

, (6.3a)

Re2c =
2π(2.26− 14.8Ω2)

2b2

(1/2− Ω2)2(3/4− Ω2/2)2KNL(Ω2)|Λ|a2
2

. (6.3b)

One can see from these formulae that the critical Reynolds number for instability
in vortex Γ1 is roughly proportional to (b/a1)

2|Γ1/Γ2|. This implies that between
two vortices of the same radius, the weaker vortex becomes unstable for a smaller
value of the Reynolds number. The comparison of the critical Reynolds number for
co-rotating vortices and counter-rotating vortices is made on figure 8. Again, as noted
above, one can observe that co-rotation enhances the instability: two identical co-
rotating vortices become unstable for a smaller Reynolds number than two identical
counter-rotating vortices.

7. Comparisons with numerical predictions
In this section, formulae (6.1a, b) are tested using numerical simulations of the

instability. Two complementary tests are considered. The first one is performed by
large-eddy simulation (LES) methods for very high Reynolds number configurations
(Re > 105) which are relevant to aeronautical applications (see discussion in the next
section). The other is performed by direct numerical simulations (DNS) for low
Reynolds number configurations (Re = 2500–5000) for comparison with other recent
experimental results by Meunier (2001).

Only numerical predictions of the instability for the co-rotating case (0 < Λ 6 1)
are presented. Results related to the counter-rotating case Λ = −1 have been obtained
by Laporte & Corjon (2000) at low Reynolds numbers for a/b ' 0.25. Although a/b
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is close to the limit value imposed for the validity of the theory, good agreement
with the present theoretical prediction has nevertheless been found for both the
most unstable wavenumber of the first unstable branch, and its growth rate. These
results have been extended to high Reynolds numbers and smaller a/b and excellent
agreement has also been found (Laporte 2002).

7.1. The numerical tool

The numerical tool used to simulate the two-dimensional as well as the three-
dimensional dynamics of the two-vortex flows is the NSMB 3D finite-volume Navier–
Stokes solver developed in a European consortium including CERFACS. Both DNS
and LES are performed with the NSMB code. This solver works on multi-blocks
structured meshes. The simulations are performed using a four-stage Runge–Kutta
method for the temporal integration. This method is fourth-order accurate when
applied to a linear advection–diffusion equation. The advective terms are discretized
with a fourth-order centred scheme developed at CERFACS (Ducros et al. 2000).
This scheme is used without any addition of artificial dissipation. The diffusive terms
are discretized with a standard second-order centred Jameson scheme. Large-eddy
simulations are performed using the three times Filtered Structure Function subgrid-
scale model (Ducros, Comte & Lesieur 1996) applied to the filtered Navier–Stokes
equations. This model leads to the following expression for the turbulent viscosity at
the point x = (x, y, z) and at the time t:

νt(x, ∆c, t) = 0.00084∆c

√
F̃2

(3)
(x, ∆c, t), (7.1)

where ∆c is the cutoff length corresponding to the cutoff wavenumber kc = π/∆c. This
length is defined by ∆c = (∆x∆y∆z)

1/3, where ∆i is the local cell size in the direction

i. The superscript (3) indicates that the second-order velocity structure function F̃2

is calculated using a velocity field filtered three times with a Laplacian filter. The
second-order velocity structure function is defined as

F̃2(x, ∆c, t) = 〈‖u(x+ r, t)− u(x, t)‖2〉‖r‖=∆c , (7.2)

where 〈 〉 denotes the average and u, x and r are the resolved velocity vector, the
position vector and the separation vector. This model does not add any turbulent
viscosity for laminar flows as long as there is no energy at the cutoff wavelength. This
feature is particularly important for the simulation of the transitional flows under
consideration in the present paper.

7.2. The numerical set-up

The generic flow under consideration for the simulations is initially composed of a
pair of co-rotating cylindric vortex tubes. Periodic boundary conditions are applied
in the direction of the vortex axis.

In order to predict numerically the instability bands, the axial dimension L is
systematically chosen to be equal to the wavelength of the potentially unstable mode
whose growth rate is to be determined. This procedure enables the selection of the
chosen mode to be enforced without simulating modes whose wavelength is close
to the chosen wavelength. This procedure also allows the growth of modes with
wavelengths equal to L/n to be captured where n is an integer depending on the
axial discretization. In practice, n 6 3 with the current discretization. In some other
cases, the axial dimension L is set to pλ where p is an integer and λ is the wavelength
of the unstable mode to be computed (the corresponding wavenumber is k = 2π/λ).
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This choice permits the simulation of the linear regime, but also the simulation of the
nonlinear regime and the transition to a three-dimensional turbulent flow containing
wavelengths larger than the elliptic wavelength. For all cases, the regular discretization
in the axial direction is such that a wavelength of the elliptic mode to be simulated
comprises 12 to 16 mesh points.

The mesh is locally refined in cross-flow planes in the region of the two vortices, so
as to obtain 11 points in the vortex core radius. The boundaries in the corresponding
directions are set far from the vortex system (the distance between one vortex
and the closest cross-flow boundary is of the order of 6 times the initial vortex
separation distance) and far-field boundary conditions are applied, by extrapolating
the primitive variables using characteristic variables. This treatment aims at providing
a non-reflecting boundary condition for the waves leaving the computational domain.

7.3. The initial conditions

Both the two-dimensional dynamics and the three-dimensional dynamics associated
with the elliptical instability have been simulated. Two-dimensional simulations have
been performed in order to assess the validity of the hypotheses made in §§ 2 and 4
for the modelling of the vortex system. They are also necessary to obtain the two-
dimensional basic flow on which the evolution of three-dimensional perturbations
is analysed. As already mentioned in § 4, the two-dimensional basic flow for given
parameters a1/b, a2/b, Λ and Re1 is obtained by a viscous relaxation process of an
initial condition composed of two circular Gaussian vortices of the same circulation
but smaller a1/b and a2/b. In all two-dimensional simulations, the same scenario,
described in detail in Le Dizès & Verga (2002) for identical co-rotating vortices,
has been observed. First, the initially circular vortices adapt to each other on a
non-viscous time scale and their core becomes elliptical. The vortex system then
reaches a quasi-steady state in the rotating frame. In fact, for the Reynolds numbers
we have considered (Re > 2500), this state is, to a good approximation, a stationary
solution of the Euler equations. Scatter plots, such as the one shown on figure 3 which
demonstrates the functional relation between the vorticity ω and the streamfunction
Ψ (for the configuration without straining), can be used to check this property.

However, the vortex system slowly evolves due to viscous diffusion. As demonstrated
in Le Dizès & Verga (2002), the main effect of viscosity is to increase of the vortex size,
which evolves according to (2.8). It is this latter property which is used to obtain a
two-dimensional flow of given parameters a1/b and a2/b. Let us denote by (u, v) such
a two-dimensional two-vortex flow. A three-dimensional white noise is added to the
unperturbed local velocity vector (u, v, w)T to obtain the initial perturbed velocity field
(u0, v0, w0)

T that will trigger the elliptic instability. The local perturbation procedure
applied at each grid point of the three-dimensional space is

u0 = u× (1 + rA),

v0 = v × (1 + rA),

w0 = 0,

 (7.3)

where r = r(x, y, z) is a local random number in the range [−1/2, 1/2], and A a fixed
perturbation amplitude. In the simulations, A is chosen between 10−6 and 10−3.

The evolution of the amplitude of the instability mode is obtained by the following
procedure. A signal associated with a single vortex is first obtained by averaging
the instantaneous local kinetic energy over the domain D1. This provides the kinetic
energy as a function of the axial direction z. The square root of this signal is then
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Figure 9. Typical evolution of the unstable mode amplitude as a function of the non-dimensional
time t∗ = tΓ/(2π2b2), for the system Λ = 1, a1/b = a2/b = a/b = 0.15, Re = 5× 105, λ/a = 3.25.

decomposed into Fourier modes. The growth rate of the instability is finally obtained
from the time evolution of the most amplified Fourier mode. More details on this
procedure are given in Laporte & Corjon (2000).

7.4. Results for the symmetric case Λ = 1

For the symmetric case Λ = 1, a1 = a2 = a, three different sets of parameter have
been considered. A reference case for small a/b and large Reynolds number was
first performed for a single axial wavelength to test the validity of the theory with a
parameter clearly within the bounds imposed by the theory. A complete instability
diagram is also obtained by varying the axial wavelength for a larger parameter
a/b. This set of simulations enables comparison of the first two instability bands as
obtained by the simulation and by the theory. Finally, some simulations have been
performed at low Reynolds numbers in order to provide comparisons with the viscous
prediction and experimental results.

The reference case is defined by the configuration a/b = 0.15 and the Reynolds
number Re = 5× 105. For this case, the LES version of the code is used, simulating a
domain of axial dimension corresponding to the non-dimensional wavelength λ/a =
3.25. Figure 9 presents the evolution of the amplitude of the unstable elliptic mode as
obtained by the Fourier analysis described above. The wavelength corresponds to the
theoretically most unstable wavelength of the first branch for this case, λ/a = 3.25.
The linear regime (corresponding to an exponential growth of the elliptic mode)
is simulated, and the evolution towards the saturation of the unstable mode can
be observed through the stabilization of the mode in the nonlinear regime. The
non-dimensional growth rate obtained in the linear regime is

σ∗ = σ
2π2b2

Γ
' 4.5, (7.4)

which is reasonably close to the value σ∗ = 4.86 (7% relative error) obtained from
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Figure 10. Typical contour plot for the perturbation axial velocity in a plane perpendicular to the
vortex axes for two identical co-rotating vortices. System parameters are the same as in figure 9 and
t∗ = 1.31. Solid lines (resp. dashed lines) correspond to positive velocities (resp. negative velocities).
Vortex cores are represented by thick solid lines (ω/ωmax = 1/e).

formula (6.1). Note that for this Reynolds number, the viscous correction is almost
equal to the inviscid prediction, which is σ∗ = 4.89.

On figure 10 are displayed the axial velocity contours for the perturbation in a
plane perpendicular to the vortex axis at the end of the linear regime. The two-lobes
structure, characteristic of the helical modes m1 = 1 and m2 = −1, is clearly visible
and very similar to theoretical predictions for the elliptic instability (Waleffe 1990).
Moreover, the perturbation structure is oriented perpendicularly to the direction of
stretching in each vortex (which is approximatively vertical in figure 10) in agreement
with the linear instability mechanism. This observation constitutes a validation of the
resonance mechanism between the Kelvin modes m1 = 1 and m2 = −1 described in
§ 5. It also justifies the hypothesis made in § 2 for not having considered other sources
of instability in the flow. In particular, no influence of the local instability near the
hyperbolic points of the system has been detected.

Note that the perturbation axial velocity in both vortices is here antisymmetrical
with respect to the central hyperbolic point. This means that the perturbation axial
vorticity is also antisymmetrical with respect to that point. Core deformations are
thus in phase in each vortex as illustrated below in figure 13(a).

Because the instability is initially triggered by injecting a white noise into the flow,
the subgrid-scale model may detect the presence of energy at the cutoff wavelength
for large Reynolds numbers. As a consequence, the numerical model may react by
dissipating this energy as if it were isotropic and homogeneous turbulence. This
artificial addition of turbulent viscosity νt (recall that the total viscosity νtot in the
flow is νtot = ν + νt, where ν is the kinematic viscosity) is in fact responsible for
a global decrease of the Reynolds number in the flow. This effect depends on the
initial amplitude of the white noise, and may be minimized by damping the initial
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Figure 11. Evolution of the normalized vortex core radius a/a0 in the simulation.
The theoretical core evolution (7.5) corresponding to Re = 5× 105 is also presented.

energy at the cutoff wavelength (such a procedure has been applied for this particular
simulation). An estimation of the effective Reynolds number in the flow may be
obtained by measuring the evolution of the vortex core sizes, which evolve as

a(t) =

√
4νtott+ a2

0 , (7.5)

and permits the determination of νtot, and consequently of the effective Reynolds
number Reeff = Γ/νtot. For the present case, the procedure minimizing the artificial
dissipation effect has been proved to be efficient. In figure 11 the effective core
evolution measured in the flow is compared to the theoretical evolution given by
equation (7.5) for Re = 5× 105. The two results are essentially the same in the linear
regime (the differences are smaller than the measurement errors), therefore we have
νtot = ν and Reeff = Re. This constitutes an a posteriori validation of the expected
neutral behaviour of the subgrid-scale model in the linear regime. In the nonlinear
regime, as soon as the transition to turbulence starts, the vortex radius increases as
expected.

The complete set of large-eddy simulations has been performed at the Reynolds
number Re = 105 for the case a/b = 0.21, by varying the axial dimension of the
calculation domain in the range 1.35 6 L/a 6 5.95. The numerical results are
compared with the theory in figure 12, where the non-dimensional growth rates are
plotted against the non-dimensional wavelength of the mode. The numerical growth
rates are obtained by a Fourier analysis in the axial direction, as for the previous
case. The numerical results in the linear regime are shown by the circles, whereas the
solid lines are formula (6.1) for the first three unstable bands (n = 0, 1, 2). The overall
agreement between the simulated growth rates and the predicted unstable bands is
good, despite the fact that the parameter a/b is large, and close to the limit imposed
by the theory. This means that reliable predictions may be obtained with the present
theory for configurations close to the merging limit (a/b ' 0.23) in the symmetric
case Λ = 1, a1 = a2 = a.

Note also the good agreement of the numerical results with formula (6.1) outside
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Figure 12. Unstable bands as predicted by numerical simulations (circles) and by the theory for the
first three unstable bands (solid lines becoming dashed lines outside the theoretical limits) for the
vortex system Λ = 1, a1/b = a2/b = a/b = 0.21, Re = 105.

the theoretical limits imposed in § 5 (dashed lines in figure 12). As explained in § 5,
outside these limits, no resonance of linear Kelvin modes leading to instability should
be possible as the linear modes are strongly damped. Instability therefore means that
the Kelvin modes are not as damped as expected. This could be the signature of the
appearance of nonlinearity in the characteristics of the Kelvin modes.

So far, very large Reynolds numbers have been considered for which viscous effects
on the perturbation were negligible. It is therefore interesting to consider configu-
rations for which this is no longer the case. Results obtained by direct numerical
simulations for Re = 2500 and Re = 5000 are now presented. These simulations were
also motivated by recent results by Meunier & Leweke (2001) who experimentally
investigated the instability for such low Reynolds numbers. Their experimental re-
sults have been proved to be satisfactory (Leweke et al. 2001), despite the difficulty in
analysing the instability characteristics in these regimes. One of the difficulties is due
to the influence of viscous diffusion on the instability characteristics. Indeed, one of
the basic assumption of the linear stability analysis is that the instability time scale
Ta = 2π2b2/Γ should remain much smaller than the viscous evolution time scale
Tν = 2πa2/ν of the basic flow. The ratio of these two time scales is

Ta

Tν
=

π

Re(a/b)2
. (7.6)

For a two-vortex flow at Re = 2500, the above ratio becomes small (say smaller than
0.1) when a/b > 0.12 only. This means than the time-scale separation needed to
justify the linear stability analysis is not satisfied for a/b < 0.12. As a/b increases
with time, the time scales separate progressively and the stability analysis becomes
increasingly valid, provided that other rapid phenomena such as vortex merging have
not started. The vortex merging phenomenon provides the second limitation. For a
two-dimensional flow, it starts for a/b ≈ 0.23 (Meunier et al. 2002). However, it is not
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Re a/b λ/a σnum σthV σthNV σexp

2700 0.212 3.6 3.8 3.12 5.41 3.5± 0.5
5000 0.203 3.8 5.0 4.2 5.45

Table 1. Comparison of simulated and predicted unstable elliptic mode characteristics for different
Reynolds number and parameter a/b. The growth rates provided by the numerical simulation,
the viscous theoretical prediction and the inviscid prediction are denoted respectively by σnum, σthV
and σthNV . The last column σexp corresponds to experimental results by Meunier & Leweke (private
communication, see also Meunier 2001).

impossible that it occurs earlier in presence of a three-dimensional instability. Thus
it may have an influence on the instability characteristics for smaller a/b.

The initial configurations in the simulations have been chosen to be very close to
the initial measurements of Meunier & Leweke, which approximately correspond to
a0/b ' 0.15. In the simulations, as in the experiments, a delay is always observed before
the unstable mode starts being amplified. During this period, the flow configuration
evolves through viscous effects, so that a/b increases. Therefore the instability analysis
must be based on the instantaneous a/b corresponding to the onset of the linear regime
of the instability. This procedure has been applied here. Note also that the finite axial
dimension of the simulation domain allows only a finite number of unstable modes
within each unstable band to be predicted. Due to the viscous effects on the parameter
a/b, it is therefore very unlikely that the mode associated with the most unstable
wavelength will be simulated exactly. Table 1 presents the results obtained for different
Reynolds numbers and different flow configurations.

The simulated growth rates are found to be systematically larger than the vis-
cous predictions, but always lie between the viscous and the inviscid predictions.
The relative error between simulation and theory is of the order of 20% for the
lower Reynolds numbers, while it was within 10% for the large Reynolds number
configurations studied above. This is slightly surprising as one would have expected
time-dependent effects associated with low Reynolds numbers to remain smaller. A
similar underestimation of the growth rate was also noted in Meunier (2001) where
experimental results are also compared with the present theory for different Reynolds
numbers. We have no clear explanation for such a discrepancy. As mentioned above,
it could be due to an insufficient time-scale separation or to an interaction with the
merging process. Another cause could be the effect of viscosity on the Kelvin mode
characteristics. In the theory, we have used the Kelvin mode characteristics for infinite
Reynolds numbers. For low Reynolds numbers, this could become a crude approxima-
tion. Fabre (2002) recently analysed the evolution of the Kelvin mode characteristics
for Reynolds numbers ranging from Re = 103 to 105. He showed that for Re > 104

the infinite Reynolds number estimate for the frequency is very good whatever the
wavenumber. For Re = 103, a weak discrepancy becomes visible, notably near the
wavenumbers in figure 6 for which the frequency departs from the linear fit. Fabre
showed that viscous effects tend to decrease the frequency of the Kelvin mode m = 1.
Here, this would affect the Kelvin modes resonance by slightly shifting the instability
bands towards larger wavelengths. Viscous damping would therefore be smaller. Thus,
taking into account viscous effects in the Kelvin mode characteristics could increase
the theoretical growth rate and diminish the differences observed between theory and
experiments.

Figure 13 presents the complete two-vortex flow dynamics from the linear regime
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Figure 13. Linear and nonlinear regimes of the instability leading to the unstable merging at
Re = 5× 104 for a symmetric configuration Λ = 1 defined by a1/b = a2/b = 0.178. Isocontours and
isosurfaces of the vorticity magnitude are plotted at times (a) t∗ = 1.1, (b) t∗ = 1.2, (c) t∗ = 1.4, (d )
t∗ = 1.7, (e) t∗ = 1.9 and ( f ) t∗ = 2.2.

for Re = 5× 104. The nonlinear regime, the saturation, and the local transition to
a turbulent flow which ultimately relaminarizes to form a single and well-defined
vortex can be observed. The visualization at the end of the linear regime (time
t∗ = 1.1) provides information on the instability mode, which is seen to induce an
in-phase undulation of each vortex core. Such an undulation has also been observed
in experiments (Meunier 2001). The in-phase character of the undulations cannot
be explained by our approach as we do not consider any coupling between the
perturbation modes of each vortex. Sipp (1999) analysed this coupling for two
counter-rotating vortices by considering the linear stability of the pair. He showed
that for a/b < 0.2, symmetric and antisymmetric modes have the same growth rate
and that above a/b > 0.2, the antisymmetric mode leading to in-phase undulations
is only slightly more amplified. He argued that the experimental results (Leweke
& Williamson 1998) where in-phase undulations are almost systematically observed
cannot be explained by a linear selection of the instability mode. Direct simulations
by Laporte (2002) also systematically show in-phase undulations for a/b > 0.15.
Laporte (2002) however succeeded in exhibiting uncoupled modes for very small
a/b ≈ 0.1. Although these results are for counter-rotating vortices, one could expect
similar results to apply to co-rotating vortices. In particular, one could easily imagine
that uncoupled instability modes exists for very small a/b, and that above a critical
value of a/b, which is probably close to 0.15, the antisymmetric mode giving rise
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Figure 14. Evolution of the kinetic energy of the unstable mode of vortex Γ1 for the configuration
Λ = Γ1/Γ2 = 0.7, a1/b = 0.15, a2/b = 0.18 and Re2 = 106. The wavelength of the amplified mode
is λ/a1 = 3.35.

to in-phase undulations is selected by the nonlinear dynamics. Here we have not
considered sufficiently small values of a/b to observe uncoupled undulations.

From figure 13, note also that the merging process which occurs between t∗ = 1.4
and t∗ = 1.9 implies very complex three-dimensional dynamics. This affects the char-
acteristics of the final vortex which are significantly different from the characteristics
that would have been obtained after a two-dimensional merging (see also Meunier
& Leweke 2001, concerning this point). As mentioned above, the critical a/b thresh-
old for two-dimensional merging is approximately a/b = 0.23 for symmetric vortex
dipoles. This criterion is purely two-dimensional, and would certainly not apply in the
present three-dimensional flow configuration. In fact, merging can occur either from
the two-dimensional dynamics that were recalled earlier, or from the elliptic instability
as simulated here. In the present case, the initial parameter a/b leading to merging
via the elliptic instability is smaller than the threshold given by the two-dimensional
criterion. Similar observations were made by Meunier & Leweke (2001).

7.5. A result for the asymmetric case Λ < 1

A single three-dimensional large-eddy simulation has been performed for the asym-
metric case Λ = Γ1/Γ2 = 0.7. The configuration is defined by a1/b = 0.15 and a2/b =
0.18 at the Reynolds number Re2 = 106. The axial length of the computational
domain is L/a1 = 3.35, corresponding to the theoretically most unstable wavelength
of the first instability band, for vortex Γ1. The theory also predicts that the instability
is stronger in vortex Γ1 than in vortex Γ2. For vortex Γ1, the non-dimensional growth
rate obtained by the Fourier analysis is between σ∗1 = 5.2 and σ∗1 = 5.6 for the non-
dimensional wavelength λ/a1 = 3.35 (figure 14). The theoretical prediction obtained
from formula (6.1a) for this wavelength is σ∗1 = 5.87 which differs between 5% and
12% from the numerical value. Thus, there is a good agreement between simulation
and theory.

The axial box length L allows the simulation of all the modes of wavelengths
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Figure 15. Comparison between simulation and theory for vortex Γ2 in the asymmetric configuration
(Λ = 0.7, a1/b = 0.15, a2/b = 0.18, Re2 = 106). The simulated growth rate is shown by a circle,
whereas the first three instability bands predicted by the theory are displayed as solid lines. The
vertical dotted lines indicate the instability wavelengths which were possible in the simulation.

λp = L/p, p = 1, 2, 3, . . . in both vortices. Figure 15 displays for vortex Γ2 the first
three unstable bands (solid lines) given by formula (6.1b) for n = 0, 1, 2, and the first
axial normalized wavelengths λp/a2 = L/(pa2) (dotted lines) that can be simulated
with the given axial length L. As can be observed, the largest unstable wavelength that
can be simulated corresponds to the second axial Fourier mode p = 2, and belongs to
the third instability band. This mode of wavelength λ/a2 = 1.42 is indeed the mode
observed in the simulation. Its growth rate σ∗2 = 3.73, shown by a circle on figure 15
is very close to the theoretical prediction.

In conclusion, the successful comparison made here for both vortices Γ1 and Γ2 is
a further validation of the linear theory for asymmetric cases.

8. Discussion
In this paper, we have considered the linear stability of a generic flow composed of

two parallel Gaussian vortices of different circulations and vortex radii when the flow
is quasi-steady in the frame of reference rotating with the vortex system. Validity limits
associated with the quasi-steadiness constraint have been provided in terms of global
characteristics of the two-dimensional vortex system by analytical considerations and
numerical simulations. Both vortices have been shown to be potentially unstable
(with different instability characteristics) to three-dimensional perturbations, due to
the elliptic deformation of their core. Such a deformation is due to the strain induced
by one vortex on the other. The analysis has provided the viscous growth rate of
the global instability modes from local stability considerations in the centre of each
vortex. An explicit formula for the elliptic instability has been used, which depends on
two undetermined coefficients. These coefficients are the (internal) strain rate in the
centre of the vortex, and the orientation angle of the local perturbation wavevector.
The internal strain rate is obtained by assuming that each is vortex alone in a
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uniform rotating external strain field whose characteristics are provided by a point
vortex model. This has permitted application of an existing relation linking internal
and external strain rates. Direct numerical simulations of several two-vortex flows
have been performed to validate the expression obtained for the strain rate. The
orientation angle of the local perturbation wavevector has been determined by using
the linear normal-mode description of the elliptical instability. It has been argued that
the most unstable elliptical modes are necessarily a combination of two Kelvin modes
of azimuthal wavenumbers m = 1 and m = −1, which has allowed the determination
of the orientation angle from the dispersion relation of the Kelvin mode m = 1. The
final formula, which gives the growth rate as a function of the axial wavenumber, has
been tested using direct numerical simulations and large-eddy simulations. A good
agreement for high Reynolds number flows (Re > 105) has been demonstrated for
both symmetric and asymmetric configurations. An underestimation of 20% by the
theory has also been noted for small Reynolds numbers (Re = 2500–5000). Specific
difficulties associated with small Reynolds number flows have been discussed and
possible causes of the weak discrepancy have been provided.

In summary, the theoretical formula has been shown to provide a good or fairly
good estimate for the instability growth rate in all the configurations we have sim-
ulated. A similar good agreement with experimental results has also been obtained
elsewhere (Meunier 2001).

The generic two-vortex flow analysed in the present paper may be found in a large
number of different flows. In the aeronautical context, the wake shed by an aircraft
may initially be composed of several co- and counter-rotating vortices, depending on
the spanwise load distribution on the wings and the high-lift elements. For example
a wing equipped with a single flap generates in the near field a wing-tip vortex and
a co-rotating outboard flap-tip vortex. In general, these vortices may have different
vortex core sizes and circulations. They are also well separated in the near field, so
that the stability analysis of this asymmetric two-vortex flow may be obtained by
the present analysis, provided that the flow may be assumed to be locally parallel
and the axial velocity negligible. Spatial and temporal simulations by the second
author have shown that such realistic asymmetric flap-tip vortex systems are indeed
unstable (Laporte 2002). The elliptic instability has been demonstrated to develop in
both vortices and the instability has been proved to be convective. In general, the
co-rotating vortices generated by the flap and the wing tips merge at a finite distance
from their generation point. Then a single vortex remains downstream of each wing.
The complete wake is then composed of a single counter-rotating symmetric vortex
pair. Again, the present theory applies to this two-vortex flow. Note that asymmetric
counter-rotating vortices may also be found for wings equipped with multiple flaps.
All the cited cases show that the growth formula provided by the linear theory may be
of interest to detect the most unstable flow configurations that could be exploited to
destabilize the vortex system and that could ultimately result in a faster decay of the
wake vortices. Once the selection of the most unstable flow configurations is made,
the numerical simulation or experiments may be used as a necessary complement
to assess the transition regime and the late stages that result from the instability
mechanism, and that are relevant in the case of an aircraft/vortex encounter.

This work has benefitted from discussions with Patrice Meunier and Thomas
Leweke. We would like to thank them for having communicated their experimental
results all along this work. Financial support by DGA, contract number 97-1097
(SLD) is also gratefully acknowledged.
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