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By STÉPHANE LE DIZÈS AND LAURENT LACAZE

Institut de Recherche sur les Phénomènes Hors Équilibre, 49, rue F. Joliot-Curie, BP 146,
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A large-axial-wavenumber asymptotic analysis of inviscid normal modes in an axisym-
metric vortex with a weak axial flow is performed in this work. Using a WKBJ
approach, general conditions for the existence of regular neutral modes are obtained.
Dispersion relations are derived for neutral modes confined in the vortex core (‘core
modes’) or in a ring (‘ring modes’). Results are applied to a vortex with Gaussian
vorticity and axial velocity profiles, and a good agreement with numerical results is
observed for almost all values of k. The theory is also extended to deal with singular
modes possessing a critical point singularity. We demonstrate that the characteristics
for vanishing viscosity of viscous damped normal modes can also be obtained. Known
viscous damped eigenfrequencies for the Gaussian vortex without axial flow are, in
particular, shown to be predicted well by our estimates. The theory is also shown to
provide explanations for a few of their peculiar properties.

1. Introduction
Kelvin modes are the inviscid normal modes which are associated with the rotation

of the fluid in a stable vortex. They often describe the possible small deformations
of the vortex. They are also known to be resonantly excited in various situations
(elliptic instability; precessional instability; parametric forcing). The goal of this work
is to construct an asymptotic theory which provides the spatial structure and the
dispersion relation of these modes.

The simplest Kelvin modes are for an infinite uniform solid-body rotation. In
that case, there exist plane wave solutions in the rotating frame (the so-called Kelvin
waves) which can be summed to form a localized inviscid normal mode (Greenspan
1968). If the solid-body rotation is within an infinite cylinder, the frequency ω of the
modes is discretized for any fixed axial wavenumber k and azimuthal wavenumber
m and satisfies a dispersion relation. Moreover, in that case, Kelvin modes form
a basis, so all the deformations can be expressed in terms of Kelvin modes. If
the solid-body rotation is surrounded by an irrotational fluid (Rankine vortex), the
Kelvin modes satisfy similar properties (e.g. Saffman 1992). They also form a basis
for the perturbations confined within the vortex core (Arendt, Fritts & Andreassen
1997).

Kelvin modes are also known to exist, when the vorticity field is not constant. Some
of their properties were analysed for a Gaussian vortex without axial flow in Fabre
(2002), Sipp & Jacquin (2003) and Fabre, Sipp & Jacquin (2005). Sipp & Jacquin
(2003) used an inviscid approach. They showed that regular inviscid normal modes
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exist in a frequency interval similar to that obtained for the Rankine vortex; however,
to the interval where ω/m is in the range of the angular velocity, has to be excluded.
In that frequency interval, regular inviscid normal modes do not exist anymore: they
possess a critical point singularity. If this singularity is smoothed by viscosity, these
modes apparently become damped with a damping rate which is largely independent
of viscosity (if sufficiently small) as shown by Fabre (2002) and Fabre et al. (2005).
An inviscid estimate of this damping rate can be obtained by avoiding the singularity
in the complex plane as was done by Sipp & Jacquin (2003). Such a procedure has
been justified in Le Dizès (2004) where the viscous critical layer has been resolved.
In the present work, we implicitly assume a viscous problem with vanishing viscosity.
This implies that, for a few modes, the path of integration of the inviscid equation
has to be deformed in the complex plane, for the equation to remain asymptotically
valid. In practice, this means that the critical point singularities have to be avoided
in the complex plane, following the classical rule used for two-dimensional modes in
planar flows (see Lin 1955).

When an axial flow is present, regular inviscid neutral modes are still expected to
exist, however, very little information on their properties is available in the literature.
Moreover, axial flow may promote instability in a stable vortex. For instance, the
Batchelor vortex, which is a vortex with Gaussian vorticity and axial velocity profiles,
is known to possess unstable inviscid modes if the axial flow is sufficiently large (see,
for instance Ash & Khorrami 1995). Here, our interest is not in these modes. Instead,
we shall focus on vortices which are stable in a non-viscous framework. Our goal is
to provide some information on the neutral and damped modes of such vortices in a
general setting using an asymptotic approach.

The approach is based on a large-axial-wavenumber asymptotic analysis. In this
limit, the radial structure of the normal modes varies on a faster scale than the
characteristic radial scale of the base flow. These fast variations can be captured by
a WKBJ theory (see for instance Bender & Orszag 1978) and are shown to depend
in a simple way on the base flow characteristics. For neutral modes, they are
also shown to be either pure oscillations or pure exponentials, with the transition
between the two types of behaviour occurring at the turning points where WKBJ
approximations break down. As with the original quantum mechanics framework,
eigenmodes are constructed by forming solutions which are localized in the oscillatory
regions; the dispersion relation being nothing but a discretization of the number of
oscillations.

In the present work, two types of modes are considered: modes confined between
the vortex centre and a turning point (‘core modes’) and modes confined between
two distant turning points (‘ring modes’). The paper is organized as follows. In
§ 2, base flow and perturbation equations are presented. Section 3 is devoted to
the large-wavenumber asymptotic analysis in a general setting. Conditions for the
existence of regular neutral modes in the WKBJ framework are derived. The spatial
structure and the dispersion relation of core modes and ring modes are then obtained.
The results are applied to a Gaussian vortex with or without axial velocity in § 4.
The case without axial flow is considered first in § 4.1. In this section, the results for
core modes are also extended to deal with a critical layer singularity. Both singular
neutral core modes and damped core modes are obtained and compared to numerical
results. In § 4.2, the asymptotic results are applied to the Gaussian vortex with axial
flow (Batchelor vortex). The last section summarizes the main results and discusses a
possible application of the results to the elliptic instability.
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2. Basic flow and perturbation equations
Consider a general axisymmetric vortex with axial flow, whose velocity field may

be written in cylindrical coordinates in the form:

Ub(r) = (0, V (r), W (r)). (2.1)

This vortex has an angular velocity Ω(r) and an axial vorticity ζ (r) given by:

Ω(r) =
V (r)

r
, (2.2a)

ζ (r) =
1

r

d(rV )

dr
. (2.2b)

In this study, viscous diffusion is not taken into account with the implicit assumption
that the Reynolds number is sufficiently large. The base flow, defined by (2.1), satisfies
the incompressible Euler equations regardless of the profile V and W , as long as
it represents a regular field in cylindrical coordinates (in particular V (0) = 0). The
asymptotic analysis detailed in the next section will be carried out for arbitrary
profiles. However, in the applications, we shall only consider Gaussian vorticity and
axial velocity profiles. Time and spatial scales are non-dimensionalized by the angular
velocity in the vortex centre, and the core size, respectively; such that Ω(r) and W (r)
read:

Ω(r) =
1 − e−r2

r2
, (2.3a)

W (r) = W0 e−r2

, (2.3b)

where W0 is a constant measuring the strength of the axial flow.
We shall be concerned with inviscid linear perturbations in the form of normal

modes:

(U, P ) = (u, v, w, p)eikz+imθ−iωt , (2.4)

where k and m are axial and azimuthal wavenumbers and ω is the frequency. The
equations for the velocity and pressure amplitudes (u, v, w, p) are:

iΦu − 2Ωv = −dp

dr
, (2.5a)

iΦv + ζu = − imp

r
, (2.5b)

iΦw + W ′w = −ikp, (2.5c)

1

r

d(ru)

dr
+

imv

r
+ ikw = 0, (2.5d)

where a prime denotes a derivative with respect to r , and

Φ(r) = −ω + mΩ(r) + kW (r). (2.6)

Equations (2.5a)–(2.5d ) can be reduced to a single equation for the pressure p (see
Saffman 1992; Le Dizès 2004) to form:

d2p

dr2
+

(
1

r
− ∆′

∆

)
dp

dr
+

(
2m

rΦ∆
(Ω ′∆ − Ω∆′) +

k2∆

Φ2
− m2

r2
− 2mkW ′Ω

rΦ2

)
p = 0, (2.7)

where

∆(r) = 2ζ (r)Ω(r) − Φ2(r). (2.8)
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If ∆ and Φ do not vanish at zero, the condition that p remains bounded at ∞ and
at r = 0 transforms (2.7) into an eigenvalue problem for ω (assuming k and m are
fixed). The case where Φ(0) is close to zero will not be considered here. It requires
a specific study by itself. We refer to Fabre (2002) for the Gaussian vortex without
axial flow. Partial results for the Batchelor vortex can also be found in Stewartson &
Leibovich (1987) and Stewartson & Brown (1985).

The objective of this work is to provide information on the dispersion relation and
on the spatial structure of the eigenmode. Our approach is based on an asymptotic
analysis for large k.

3. Large k asymptotic analysis
In this section, the asymptotic analysis is presented in a general framework. Applica-

tions are considered in the next section.
The principle of the analysis is to construct approximate solutions valid in the limit

k → ∞. For large k, when there is no axial flow, or if the axial flow scales as 1/k, the
expression before p in (2.7) becomes particularly simple as it reduces to a single term
k2∆/Φ2. Therefore, for large k, this term has to be equilibrated by rapid variation of
the pressure amplitude on the scale rk. Such variations can be captured by a WKBJ
analysis (see Bender & Orszag 1978). In this framework, the perturbation pressure is
expanded as

p =

(
p0(r) +

p1(r)

k
+ · · ·

)
ekφ(r). (3.1)

The expression for φ(r) is obtained at order k2:(
dφ

dr

)2

= − ∆

Φ2
, (3.2)

where we have assumed in the expression (2.6) for Φ that the axial flow is small and
can be written as

kW ≡ W1 = O(1). (3.3)

From (3.2), it follows that:

φ(r) = ±i

∫ r
√

∆

Φ
dr. (3.4)

At order k, an equation for p0(r) is obtained:

2φ′ dp0

dr
+

[
φ′

(
1

r
− ∆′

∆

)
+ φ′′

]
p0 = 0, (3.5)

which gives, for both functions φ,

p0(r) =

√
Φ

r
∆1/4. (3.6)

Expressions (3.1), (3.4) and (3.6) provide two independent leading-order approxima-
tions of solutions to (2.7). These so-called WKBJ approximations break down at the
vortex centre r = 0, and at the points where Φ or ∆ vanishes. The vortex centre
is a regular singularity which comes from the use of cylindrical coordinates. As
shown below, this singularity can be easily smoothed by carrying out a local analysis
for r = O(1/k). Points where ∆ =0 are the so-called turning points of the WKBJ
approximations. In the neighbourhood of these turning points, the two approximations
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are no longer independent. We can also show that higher-order corrections, such as
p1 in the expansion (3.1), diverge at turning points. These turning-point singularities
can also be resolved by a local analysis of the turning-point region (Bender & Orszag
1978, see also below). Finally, the singularities where Φ = 0, i.e. ω = mΩ + W1, are
the so-called critical points of the inviscid approximation. As our choice is to stay
inviscid, we shall not resolve these singularities here. Instead, if such a singularity
appears, it will be avoided by deforming the integration space of (2.7) in the complex
r-plane, in order to stay in the regions of the complex plane where the inviscid
approximation remains valid (Sipp & Jacquin 2003; Le Dizès 2004). In those cases,
the inviscid solutions would become singular in the physical domain.

If we restrict for a moment our attention to regular neutral eigenmodes, a few
results can be obtained in a general setting. By definition, for those modes, both the
frequency ω and the wavenumber k are real and Φ(r) never vanishes on the real axis.
The WKBJ approximations constructed for the present problem are then very similar
to those initially introduced by Wentzel, Kramers and Brillouin for describing the
bounded states of a particle in a potential well in quantum mechanics (see Landau &
Lifchitz 1966). If ∆ > 0, WKBJ approximations are oscillating functions, if ∆ < 0,
they are exponentials. In the semi-classical description of quantum mechanics, this
corresponds to oscillating wave functions in regions where the energy level is larger
than the local potential and evanescent exponentials where it is smaller. As in that
framework where it is proved that there is no energy level smaller than the potential
minimum, we can prove here that there does not exist a regular neutral eigenmode for
which ∆ remains negative for all r . Indeed if ∆ < 0 for all r , both WKBJ approxima-
tions are uniformly valid in any interval of ]0, +∞[, and no combination of these
approximations can be matched to solutions which are bounded at the origin and at
infinity (see also below). The conclusion is, therefore, that ∆ must be non-negative
somewhere for a regular neutral mode to exist. To analyse this condition of existence,
it is useful to define what is often called the epicyclic frequencies ω±(r) of the vortex
at the radial coordinate r:

ω± = mΩ(r) + W1(r) ±
√

2Ω(r)ζ (r). (3.7)

In this expression, the quantity Υ (r) = 2Ω(r)ζ (r) is what is called the Rayleigh dis-
criminant. It characterizes the unstable character of the vortex with respect to the
centrifugal instability (see Drazin & Reid 1981). In the stable vortex that we consider,
Υ is always non-negative which implies that ω+ and ω− are real functions. These two
functions provide the frequency interval where ∆ is positive, that is ∆(r) > 0 if and
only if ω−(r) < ω < ω+(r). It is also useful to consider the function

ωc(r) = mΩ(r) + W1(r), (3.8)

which provides the (critical) frequency of the mode that exhibits a critical point at
the radial location r . We can now easily deduce the frequency intervals where regular
neutral modes can exist. Their frequency must be somewhere between ω− and ω+

without being in the range of ωc. The regular neutral mode frequencies then satisfy

min(ω−) � ω � min(ωc), (3.9)

or

max(ωc) � ω � max(ω+). (3.10)

Moreover, the upper bound in (3.9) and the lower bound in (3.10) can be excluded if
the extrema are reached for finite r .
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In the quantum mechanics framework, bounded states are known to be discretized
by their number of oscillations in the potential well (see Landau & Lifchitz 1966).
We shall see below that the same result is obtained here: eigenmodes will be
localized in the region where ∆ > 0 and selected by a discretization condition on their
number of oscillations in that region. In the rest of this section, we shall obtain this
discretization condition when there is a single interval of positive ∆. More precisely,
we shall assume that the functions ∆ and Φ satisfy one of the two hypotheses:

Hypothesis H1. The function ∆ is positive for 0 � r < rt , negative for r > rt and has
a single zero rt . The function Φ does not vanish on the real axis.

Hypothesis H2. The function ∆ is positive for r1 < r < r2, negative for 0 � r < r1 and
r2 < r , and has two simpl zeros r1 and r2. The function Φ does not vanish on the real axis.

When Hypothesis H1 is satisfied, eigenmodes are localized between 0 and rt . We
shall denote such modes as ‘core modes’. When Hypothesis H2 is satisfied, eigenmodes
are localized between r1 and r2 and for this reason are termed ‘ring modes’. For the
vortices considered in § 4, regular neutral modes will be found to be either core modes
or ring modes. However, for vortices with a more complex profile, we could imagine
more complex modes, corresponding to configurations with multiple distinct regions
where ∆ is positive. Each type of mode would require a specific analysis, but it can
follow the approach which is now presented for ‘core modes’ and ‘ring modes’.

In § 4, it will also be shown how the above hypotheses can be extended to deal with
complex frequencies.

3.1. Core modes

When Hypothesis H1 is satisfied, the mode structure can be decomposed into four
regions.

(i) The neighbourhood of the centre r =0.
(ii) The ‘core’ region between 0 and rt .
(iii) The neighbourhood of the turning point rt .
(iv) The ‘outer’ region for r > rt .

In each region, a specific approximation of the mode is obtained. The condition of
matching of the different approximations will provide the dispersion relation.

The neighbourhood of r = 0

In order to smooth the singularity of the WKBJ approximations at r =0, we
introduce the local variable r̄ = kr and expand the perturbation pressure as

p̄(r̄) = p̄0(r̄) +
p̄1(r̄)

k
+ · · · . (3.11)

At leading order, p̄0 is found to satisfy:

d2p̄0

dr̄
+

1

r̄

dp̄0

dr̄
+

(
∆(0)

Φ2(0)
− m2

r̄2

)
p̄0 = 0. (3.12)

The solution which is bounded at r̄ =0 is given by:

p̄0 = a0J|m|(β0r̄), (3.13)
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where a0 is a constant, J|m| is the usual Bessel function of the first kind and β0 is a
positive constant given by:

β0 =

√
∆(0)

Φ(0)
. (3.14)

The ‘core’ region (0 < r < rt )

In the ‘core’ region, the WKBJ approximations are valid and are oscillating func-
tions. The matching with the solution valid in the neighbourhood of r = 0 provides a
condition on the solution in this region.

The function Jm(z) in (3.13) has the following expansion (see Abramowitz & Stegun
1965) for large |z|:

J|m|(z) ∼
√

2

πz
cos

(
z − 1

2
|m|π − 1

2
π
)
, |arg(z)| < π. (3.15)

This guarantees that the leading-order expression (3.13) can match (as r̄ → ∞) a
combination of WKBJ approximations:

p ∼ A+p0(r) ekφ + A−p0(r) e−kφ, (3.16)

provided that,

A+ ekφ(0) =
a0√

2π∆(0)k
e−i|m|π/2−iπ/4, (3.17a)

A− e−kφ(0) =
a0√

2π∆(0)k
ei|m|π/2+iπ/4, (3.17b)

that is,

A± = A0 e∓kφ(0) exp
(

∓ 1
2
i|m|π ∓ 1

4
iπ

)
. (3.18)

It follows that a leading-order approximation for the solution in this region is given
by

p ∼ A0

√
Φ

r
∆1/4 cos

(
k

∫ r

0

√
∆

Φ
dr − 1

2
|m|π − 1

4
π

)
, (3.19)

where A0 is a constant which can be expressed in terms of a0.

The ‘outer’ region (r > rt )

In the ‘outer’ region, one of the WKBJ approximations is exponentially increasing
while the other is exponentially decreasing. In order to form a solution which vanishes
for large r , the exponentially growing WKBJ approximation should not be present
in the solution. It follows that for r > rt , the solution can be written at leading
order as:

p ∼ B0

√
Φ

r
(−∆)1/4 exp

(
−k

∫ r

rt

√
−∆

Φ
dr

)
. (3.20)

The matching of the ‘outer’ region with the ‘core’ region is performed in the neigh-
bourhood of the turning point rt . This provides the dispersion relation and a relation
between the coefficients A0 and B0 of (3.19) and (3.20).

Neighbourhood of the turning point rt

The local analysis of the neighbourhood of a simple turning point is classical (see
for instance Bender & Orszag 1978). Following the textbooks, we introduce a local
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variable r̃ = (r − rt )k
2/3, where the power 2/3 is typical of a simple turning-point

analysis, and expands the perturbation pressure as:

p̃(r̃) = p̃0(r̃) + k−1/3p̃1(r̃) + · · · . (3.21)

At leading order, an equation is obtained for p̃0:

d2p̃0

dr̃2
− 1

r̃

dp̃0

dr̃
+

∆′
t r̃

Φ2
t

p̃0 = 0. (3.22)

This equation can be integrated as:

p̃0(r̃) = b0Ai′(κr̃) + c0Bi′(κr̃), (3.23)

where b0 and c0 are constants, Ai(z) and Bi(z) are Airy functions (see Abramowitz &
Stegun 1965) and κ = (−∆′

t /Φ
2
t )

1/3.

Dispersion relation

The matching of the ‘turning-point region’ with the ‘outer’ region requires that the
exponentially growing function Bi′ in (3.23) should not be present in the solution,
that is c0 = 0. Using the following expansions (Abramowitz & Stegun 1965) of Ai′(z)
for large |z|:

Ai′(z) ∼ − 1

2
√

π
z1/4 exp

(
− 2

3
z3/2

)
, |arg(z)| < π, (3.24a)

Ai′(−z) ∼ − 1√
π

z1/4 cos
(

2
3
z3/2 + 1

4
π
)
, |arg(z)| < 2

3
π, (3.24b)

we obtain the relation:

− b0

2
√

π
κ1/4k1/6 = B0

√
Φt

rt

(−∆′
t )

1/4, (3.25)

from the matching with the ‘outer’ region, and

− b0√
π

κ1/4k1/6 e−iπ/4 = A0

√
Φt

rt

(−∆′
t )

1/4 exp

(
ik

∫ rt

0

√
∆

Φ
dr − 1

2
i|m|π − 1

4
iπ

)
, (3.26a)

− b0√
π

κ1/4k1/6 eiπ/4 = A0

√
Φt

rt

(−∆′
t )

1/4 exp

(
−ik

∫ rt

0

√
∆

Φ
dr + 1

2
i|m|π + 1

4
iπ

)
, (3.26b)

from the matching with the ‘core’ region. Equations (3.25) and (3.26) yield

A2
0 = 4B2

0 (3.27)

and the dispersion relation that links k, m and ω:

exp

(
2ik

∫ rt

0

√
∆

Φ
dr − i|m|π

)
= 1, (3.28)

which can also be written as:

k =
|m|π + 2nπ

2

∫ rt

0

√
∆/Φ

dr, where n is a non-negative integer. (3.29)
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We recall that in the above expression, Φ and ∆ are given by (2.6) and (2.8) respec-
tively, and that rt is a zero of ∆. Expression (3.29) is the dispersion relation for ‘core’
modes in the limit of large k.

Spatial structure of the eigenmodes

Approximations for the pressure perturbation can now be obtained in each region
using (3.25) and (3.27). They depend on a unique amplitude factor A0 which can be
fixed to 1 such that a0, B0 and b0 are now given by

a0 =
√

1
2
π∆0k, (3.30a)

B0 = 1
2
(−1)n, (3.30b)

b0 = −k−1/6(−1)n
√

π

rt

Φ
2/3
t (−∆′

t )
1/6. (3.30c)

Approximations for the velocity field are also easily derived from p using (2.5) which
gives

u = − iΦ

∆

dp

dr
− 2imΩ

r∆
p, (3.31a)

v =
ζ

∆

dp

dr
+

mΦ

r∆
p, (3.31b)

w = − k

Φ
p. (3.31c)

We obtain the following expressions.
In the ‘core’ region:

p ∼
√

Φ

r
∆1/4 cos

(
k

∫ r

0

√
∆

Φ
dr − 1

2
|m|π − 1

4
π

)
, (3.32a)

u ∼ ik

√
Φ

r
∆−1/4 sin

(
k

∫ r

0

√
∆

Φ
dr − 1

2
|m|π − 1

4
π

)
, (3.32b)

v ∼ −kζ∆−1/4

√
rΦ

sin

(
k

∫ r

0

√
∆

Φ
dr − 1

2
|m|π − 1

4
π

)
, (3.32c)

w ∼ −k∆1/4

√
rΦ

cos

(
k

∫ r

0

√
∆

Φ
dr − 1

2
|m|π − 1

4
π

)
. (3.32d)

In the neighbourhood of rt (r − rt = O(k−2/3)):

p ∼ −k−1/6(−1)n
√

π

rt

Φ
2/3
t (−∆′

t )
1/6Ai′

(
κ(r − rt )k

2/3
)
, (3.33a)

u ∼ −ik7/6(−1)n
√

π

rt

Φ
1/3
t (−∆′

t )
−1/6Ai

(
κ(r − rt )k

2/3
)
, (3.33b)

v ∼ k7/6(−1)n
√

π

rt

Φ
−2/3
t (−∆′

t )
−1/6ζtAi

(
κ(r − rt )k

2/3
)
, (3.33c)

w ∼ k5/6(−1)n
√

π

rt

Φ
−1/3
t (−∆′

t )
1/6Ai′

(
κ(r − rt )k

2/3
)
, (3.33d)

with κ =(−∆′
t /Φ

2
t )

1/3.
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Near the origin r = O(1/k):

p ∼
√

π∆0k

2
J|m|(β0kr), (3.34a)

u ∼ −i

√
π

2
k3/2

(
J ′

|m|(β0kr) +
2mΩ0√
∆0kr

J|m|(β0kr)

)
, (3.34b)

v ∼
√

π

2
k3/2

(
ζ0

Φ0

J ′
|m|(β0kr) − mΦ0√

∆0kr
J|m|(β0kr)

)
, (3.34c)

w ∼ −
√

π∆0

2Φ2
0

k3/2J|m|(β0kr), (3.34d)

with β0 =
√

∆0/Φ0.
In the ‘outer’ region:

p ∼ 1
2
(−1)n

√
Φ

r
(−∆)1/4 exp

(
−k

∫ r

rt

√
−∆

Φ
dr

)
, (3.35a)

u ∼ −ik 1
2
(−1)n

√
Φ

r
(−∆)−1/4 exp

(
−k

∫ r

rt

√
−∆

Φ
dr

)
, (3.35b)

v ∼ 1
2
(−1)n

k(−∆)−1/4

√
rΦ

exp

(
−k

∫ r

rt

√
−∆

Φ
dr

)
, (3.35c)

w ∼ − 1
2
(−1)n

k(−∆)1/4

√
rΦ

exp

(
−k

∫ r

rt

√
−∆

Φ
dr

)
. (3.35d)

These expressions will be compared to numerical results in the applications con-
sidered in § 4.

3.2. Ring modes

When Hypothesis H2 is satisfied, the eigenmode structure can be divided into the
following regions:

(i) The neighbourhood of the origin.
(ii) The ‘outer’ region I for 0<r < r1.
(iii) The neighbourhood of the turning point r1.
(iv) The ‘ring’ region for r1 < r < r2.
(v) The neighbourhood of the turning point r2.
(vi) The ‘outer’ region II for r > r2.
The analysis is very similar to that performed for ‘core modes’. In the neighbourhood

of the origin, the pressure is expressed in terms of Bessel functions. A leading-order
approximation is given by (3.13), but β0 is now purely imaginary. Near the origin, the
pressure can be written as:

p̄0 = a0I|m|(γ0r̄), (3.36)

where a0 is a constant, I|m| is the usual Bessel function of second kind and,

γ0 =

√
−∆(0)

Φ(0)
. (3.37)
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For large r̄ , (3.36) becomes exponentially large. In the outer region I, the solution can
therefore be approximated by a single WKBJ wave:

p ∼ AI

√
Φ

r
(−∆)1/4 exp

(
k

∫ r

0

√
−∆

Φ
dr

)
, (3.38)

where the matching imposes a relation between AI and a0. Note that if ∆ was negative
everywhere, the outer region would extend up to infinity, and the approximation (3.38)
would be unbounded for large r , invalidating the boundary condition at +∞. This
justifies the condition of existence stated above which requires a region of positive ∆.

In the outer region II, the solution is, as above, given by the subdominant WKBJ
approximation:

p ∼ AII

√
Φ

r
(−∆)1/4 exp

(
−k

∫ r

r2

√
−∆

Φ
dr

)
. (3.39)

The solution in the turning point region near r2 which matches this expression is,
as above:

p ∼ a2Ai′(κ2ř), (3.40)

where ř =(r − r2)k
2/3 and κ = (−∆′

2/Φ
2
2 )

1/3.
Similarly, the solution in the turning point region near r1 which matches expression

(3.38) is:

p ∼ a1Ai′(κ1r̃), (3.41)

where r̃ =(r − r1)k
2/3 and κ = − (∆′

1/Φ
2
1 )

1/3.
Expressions (3.41) and (3.40) imply that in the ‘ring’ region, the solution admits

approximations of the form:

p ∼ A0

√
Φ

r
∆1/4 cos

(
k

∫ r

r1

√
∆

Φ
dr + 1

4
π

)
, (3.42)

and

p ∼ B0

√
Φ

r
∆1/4 cos

(
k

∫ r

r2

√
∆

Φ
dr − 1

4
π

)
, (3.43)

where A0 and B0 can be expressed in terms of a1 and a2, respectively. These two
expressions are compatible only if

sin

(
k

∫ r2

r1

√
∆

Φ
dr + 1

2
π

)
= 0,

that is,

k =
nπ + π/2∫ r2

r1

√
∆

Φ

, where n is a non-negative integer. (3.44)

Expression (3.44) is the dispersion relation for ‘ring modes’ in the limit of large k.

Spatial structure of the eigenmodes

As for the core modes, approximations for the pressure and the velocity field of
ring modes can now easily be obtained in each region. If we fix A0 = 1, we obtain in
each region the following expressions.
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In the ‘ring’ region

p ∼
√

Φ

r
∆1/4 cos

(
k

∫ r

r1

√
∆

Φ
dr + 1

4
π

)
, (3.45a)

u ∼ ik

√
Φ

r
∆−1/4 sin

(
k

∫ r

r1

√
∆

Φ
dr + 1

4
π

)
, (3.45b)

v ∼ −kζ∆−1/4

√
rΦ

sin

(
k

∫ r

r1

√
∆

Φ
dr + 1

4
π

)
, (3.45c)

w ∼ −k∆1/4

√
rΦ

cos

(
k

∫ r

r1

√
∆

Φ
dr + 1

4
π

)
. (3.45d)

In the region near the turning point r1, defined by r − r1 =O(k−2/3):

p ∼ k−1/6
√

πΦ
2/3
1 r

−1/2
1 (∆′

1)
1/6Ai′

(
κ1(r − r1)k

2/3
)
, (3.46a)

u ∼ −ik7/6
√

πΦ
1/3
1 r

−1/2
1 (∆′

1)
−1/6Ai

(
κ1(r − r1)k

2/3
)
, (3.46b)

v ∼ k7/6
√

πΦ
−2/3
1 r

−1/2
1 (∆′

1)
−1/6ζ1Ai

(
κ1(r − r1)k

2/3
)
, (3.46c)

w ∼ −k5/6
√

πΦ
−1/3
1 r

−1/2
1 (∆′

1)
1/6Ai′

(
κ1(r − r1)k

2/3
)
, (3.46d)

with κ1 = (∆′
1/Φ

2
1 )

1/3.
In the region near the turning point r2, defined by r − r2 =O(k−2/3):

p ∼ −k−1/6(−1)n
√

πΦ
2/3
2 r

−1/2
2 (−∆′

2)
1/6Ai′

(
κ2(r − r2)k

2/3
)
, (3.47a)

u ∼ −ik7/6(−1)n
√

πΦ
1/3
2 r

−1/2
2 (−∆′

2)
−1/6Ai

(
κ2(r − r2)k

2/3
)
, (3.47b)

v ∼ k7/6(−1)n
√

πΦ
−2/3
2 r

−1/2
2 (−∆′

2)
−1/6ζ2Ai

(
κ2(r − r2)k

2/3
)
, (3.47c)

w ∼ k5/6(−1)n
√

πΦ
−1/3
2 r

−1/2
2 (−∆′

2)
1/6Ai′

(
κ2(r − r2)k

2/3
)
, (3.47d)

with κ2 = (−∆′
2/Φ

2
2 )

1/3.
In the ‘outer’ region I:

p ∼
√

Φ

4r
(−∆)1/4 exp

(
k

∫ r

r1

√
−∆

Φ
dr

)
, (3.48a)

u ∼ ik

√
Φ

4r
(−∆)−1/4 exp

(
k

∫ r

r1

√
−∆

Φ
dr

)
, (3.48b)

v ∼ −k(−∆)−1/4

2
√

rΦ
exp

(
k

∫ r

r1

√
−∆

Φ
dr

)
, (3.48c)

w ∼ −k(−∆)1/4

2
√

rΦ
exp

(
k

∫ r

r1

√
−∆

Φ
dr

)
, (3.48d)

In the ‘outer’ region II:

p ∼ 1
2
(−1)n

√
Φ

r
(−∆)1/4 exp

(
−k

∫ r

r2

√
−∆

Φ
dr

)
, (3.49a)

u ∼ −ik 1
2
(−1)n

√
Φ

r
(−∆)−1/4 exp

(
−k

∫ r

r2

√
−∆

Φ
dr

)
, (3.49b)
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Figure 1. The functions ω± (solid lines) and ωc (dashed line) versus r for the Lamb vortex.
(a) m= 0; (b) m= 1; (c) m= 2; (d ) m= 3.

v ∼ 1
2
(−1)n

k(−∆)−1/4

√
rΦ

exp

(
−k

∫ r

r2

√
−∆

Φ
dr

)
, (3.49c)

w ∼ − 1
2
(−1)n

k(−∆)1/4

√
rΦ

exp

(
−k

∫ r

r2

√
−∆

Φ
dr

)
. (3.49d)

The above approximations for ring modes will be compared to numerical solutions
in § 4.2.

4. Applications
4.1. The Gaussian vortex without axial flow (Lamb vortex)

In this section, we consider a Gaussian vortex without axial flow. The base flow profile
is given by (2.3) with W0 = 0. In this case, the functions ω± and ωc have a limited
number of possible behaviours. In figure 1 the functions ω± and ωc are plotted for
m = 0, 1, 2, 3. For larger values of m (m > 3), results are similar to figure 1(d ): the
three functions ω+, ω− and ωc are monotonically decreasing to zero; their values at
r = 0 are ω+(0) = m + 2, ω−(0) = m − 2 and ωc(0) = m. The functions ω± and ωc, for
negative m, are obtained by making the transformations m → −m and ω → −ω.

4.1.1. Regular neutral core modes

The conditions (3.9) and (3.10) for the existence of regular neutral modes give
here −2 � ω � 2 for m =0, −1 � ω � 0 and 1 <ω � 3 for m =1, and m<ω � m+2 for
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Figure 2. Dispersion relation of neutral core modes of the Lamb vortex. Numerical results
(dotted lines) and large-k asymptotic results (expression (3.29) for n= 1, 2, 3, 4) (solid lines).
(a) m= 0; (b) m= 1; (c) m= 2. (d ) m= 3. The dashed line in (b) is expression (3.29) with n= 0.

m � 2. Inspection of figure 1a–d shows that in all these frequency intervals, Hypothesis
H1 is satisfied. We therefore expect all regular neutral modes of the Lamb vortex to
be core modes. In these frequency intervals, (3.29) can be applied. The results are
displayed in solid lines in figure 2 for the first branches (n= 1, 2, 3, 4). Dotted lines
represent the dispersion relation obtained by a numerical integration of (2.7). These
figures demonstrate the good agreement of the large-k dispersion relation with the
numerics for not only large k, but also for small values of k. The asymptotic results
also tend to be better for small m. For m =0, the asymptotic predictions are almost
identical to the numerical results for all values of k.

For m =1, note that there is an additional branch for ω < 0 in the numerics. This
branch turns out to be associated with the n= 0 mode in (3.29). For large k, a good
agreement is indeed obtained as demonstrated in figure 2(b). It is worth mentioning
that the n= 0 mode does not exist for ω > 1.

For all m � 1, the branches associated with frequencies in the interval m<ω � m+2
(that is, all the branches if m � 2) satisfy the same property. Their frequency starts
from ω =m at k = 0, and grows monotonically with k, to ω = m + 2. The vanishing
of k as ω → m+ is due to the displacement of a critical point toward the origin which
makes the integral in expression (3.29) divergent.

As explained above, the results for negative m are obtained by making the
transformations m → −m and ω → −ω.
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4.1.2. Singular neutral core modes

For m =1, the neutral branches, obtained in the previous section, stop abruptly
when ω reaches 0. For small positive frequencies, a critical point singularity rc is now
present and ∆ changes sign near this point (as seen in figure 1b). This invalidates
Hypothesis H1. If we wanted to stay on the real axis, near such a critical point, viscous
effects would have to be reintroduced to smooth the singularity. As mentioned above,
the inviscid equation can, however, remain valid if we avoid the critical point in the
complex plane following the rule of contour deformation prescribed by Lin (1955).
This rule, which can be justified in the present context by using the results of Le Dizès
(2004), states that the side where the contour is deformed, is obtained by considering
the displacement of the critical point for weakly amplified frequencies: if the critical
point goes in the lower quadrants (Im(rc) < 0), we have to deform the contour
above the critical point, if it goes in the upper quadrants, we have to deform the
contour below. In the following, this rule is systematically applied. The displacement
of the critical points is monitored and it is always checked that the integration
contour remains in the region of the complex plane, where the inviscid equation is
asymptotically valid. It is worth mentioning that by this procedure, the inviscid limit
of a viscous eigenvalue is obtained, but the corresponding eigenmode is no longer
regular on the real axis. On the real axis, the eigenmode is expected to exhibit viscous
oscillations which are not described by the present framework (see Fabre et al. 2005).

The deformation of the contour in the complex plane also implies constraints on
the large k analysis. Indeed, if the critical point shifts into the complex-r plane, the
validity of the WKBJ approximations in the complex plane has to be considered. In
principle, this requires the analysis of the characteristic curves associated with the
WKBJ approximations defined as Re(φ) = Constant and Im(φ) = Constant. Among
these curves, Stokes lines and Anti-Stokes lines are known to play a particular role
(Olver 1997; Fedoryuk 1993); they are defined, respectively, by:

Re

∫ r

rt

√
−∆

Φ
dr = 0, (4.1)

and

Im

∫ r

rt

√
−∆

Φ
dr = 0, (4.2)

where rt is any turning point. In the present work, we mostly use the following result
which can be deduced from theorem 11.1 of Olver (1997): The WKBJ approximations
are uniformly valid on any sufficiently regular finite path along which φ and p0 are
holomorphic and Re(φ) is monotonic. Using Olver’s terminology, we shall designate
such a path as a progressive path. Note in particular that a part of a Stokes line
which does not contain turning points and critical points is a progressive path. In
this section and in the following section, our objective is to demonstrate that the
asymptotic analysis of § 3.1 also applies to complex-plane configurations. The main
argument of the analysis is based on the fact that the matching procedure may be
performed by the same method provided that we remain on progressive paths. This
guarantees that the WKBJ approximations remain uniformly valid in each region.
The boundary conditions at infinity and at the origin are then transmitted up to the
turning point region without modification. For the core modes, the matching at rc

can then be performed in a similar way and it leads to the same dispersion relation.
For small positive values of ω, the Stokes line structure around the real axis has

the typical form displayed in figure 3. The critical point indicated by a star is close to
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Figure 3. Stokes lines (solid lines) and anti-Stokes lines (dashed lines) in the complex r plane
for the Lamb vortex and ω = 0.12 and m= 1. Black circles are turning points, the star is a
critical point. The dotted curve represents a progressive path along which the integration can
be carried out.
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Figure 4. Evolution of the function Re(φ)=Re(
∫ r(s)

rt

√
∆/Φ dr) along the path s → r(s)

indicated by a dotted line in figure 3.

two additional turning points indicated by black circles. What is remarkable is that
we can find a progressive path which connects the first turning point to infinity by
avoiding the critical point and the two nearby turning points in a complex region
where the inviscid equation is expected to remain valid. The progressive character of
the path is shown by checking that Re(φ), where φ is given by (3.4), is a monotonic
function along the path. This check has been performed and the results are shown in
figure 4 for the path indicated by a dotted line in figure 3.

As WKBJ approximations are uniformly valid along this progressive path, it can
replace the ‘real outer region’ which was considered in the previous section. The core
region is as previously the interval ]0, rt [. As this interval is along a Stokes line, it is
also a progressive path. Finally, the matching conditions across rt can now be applied
as in § 3.1, if the progressive path associated with the outer region reaches rt on the
opposite side of rt with respect to the core region. This condition can be expressed
in term of Stokes lines: the ‘outer’ progressive path must be in the (Stokes) sector
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Figure 5. Dispersion relation of singular core modes of the Lamb vortex for m= 1. (a) Re(ω)
versus k. (b) Re(ω) versus Im(ω). The thick solid lines indicate the neutral modes obtained in
§ 4.1.2. The dotted lines are inviscid numerical results by Sipp & Jacquin (2003). The Stokes
line structures of the eigenfrequencies indicated by stars in (b) are displayed in figure 6.

delimited by the two other Stokes lines issued from rt (i.e. different from the Stokes
line associated with the core region). The matching leads to the dispersion relation
(3.29) where rt is the first (smallest) turning point.

The typical structure (shown in figure 3), which leads to this result, is obtained in
the following cases:

m = 1: 0 < ω < ω(1)
c ≈ 0.1267,

m = 2: 0 < ω < ω(2)
c ≈ 0.3871.

The critical frequencies ω(1)
c and ω(2)

c are the frequencies for which the first and second
turning points collide for m =1 and m =2, respectively. These frequencies are also
visible in figures 1(b) and 1(c), they correspond to the maximum values of ω−(r).

If we apply relation (3.29) in these frequency intervals, we obtain the branches
which are plotted in thick solid lines in figure 5(a) for m =1 and in figure 7(a) for
m = 2. As will be discussed in more detail below, the agreement with numerical results
(dotted lines) is very good. However, it is noteworthy that the numerical frequencies
possess a small negative imaginary part when the first and second turning points are
close to each other. This is visible in figure 5(b) for m =1 close to Re(ω) ≈ 0.12, and
in figure 7(b) for m =2 close to Re(ω) ≈ 0.35. We think that this damping effect could
be associated with higher-order corrections in 1/k in the asymptotic analysis.

The singular neutral modes described here do not exist for m � 3 when no axial
flow is present. We shall see below, however, that they can appear for other values of
m when an axial flow is added.

4.1.3. Singular damped core modes

In this section, we demonstrate that (3.29) can also be applied to obtain the inviscid
limit of damped viscous eigenfrequencies. The principle has been explained above. It
is to replace the real intervals by complex progressive paths. The core region between
0 and rt is now a complex progressive path along which the two WKBJ approximations
are oscillatory. This means that the core region is along a Stokes line connecting rt

to the vortex centre. The turning-point region is in the complex plane, and the outer
region is a complex progressive path that goes from rt to +∞ (infinity on the real
axis) and which leaves rt on the opposite side of the core region, as explained above.
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Figure 6. Stokes line networks for m= 1 modes of the Lamb vortex. (a) ω = 0.095 − 0.142i;
(b) ω = 0.05 − 0.119i. Stars are critical points and black circles are turning points. The relevant
Stokes line network is indicated by a thick solid line. Short lines indicate on a grid the direction
of the characteristic curves Re(φ) =Constant.

In addition, the whole path that goes from 0 to ∞ (Stokes line between 0 and rt

and progressive path between rt and +∞) must avoid the critical point singularity
as prescribed by Lin’s rule. Checking these conditions requires a fine analysis of the
Stoke line network and a monitoring of the evolution of turning points and critical
points as the parameters are varied. Indeed, there are several turning points in the
complex plane, so we must check that an appropriate choice is made in (3.29). Note
that by contrast with the neutral modes, the integral in (3.29) has to be calculated in
the complex plane, as rt is now a complex number.

The procedure provides an asymptotic expression (for large k) for viscous damped
eigenfrequencies as viscosity goes to zero. However, it is worth mentioning that the
method does not provide the spatial structure of the eigenmodes on the real axis. The
damped modes obtained by the contour deformation procedure are indeed expected
to be singular on the real axis as the integration contour is separated from the real
axis by a critical point. In fact, it is known that the true viscous damped modes
exhibit viscous oscillations in an interval of the real axis (see Fabre et al. 2005), which
cannot be described by our inviscid approach.

Examples of Stokes line structures obtained for damped eigenfrequencies are shown
in figure 6 for m =1. The results for this value of m are shown in figure 5. Figure 5(a)
displays the real part of the frequency versus k for the first four branches. Figure 5(b)
shows Re(ω) versus Im(ω). Formula (3.29) tells us that, for all the branches, the
frequencies should be on the same curve. This curve is given by the vanishing of the
imaginary part in (3.29), i.e.

Im

( ∫ rt

0

√
∆

Φ
dr

)
= 0. (4.3)

This condition is the condition mentioned above, that is one of the Stokes lines
leaving the turning point rt should pass through the origin.

In figure 5, the numerical results obtained by Sipp & Jacquin (2003) by a non-
viscous shooting method with contour deformation are shown in dotted lines. As can
be seen, the agreement with the theory is very good. Of note is the convergence of
all branches as k goes to zero to a single frequency ω ≈ 0.0474 − 0.1144i. As pointed
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Figure 7. Dispersion relation of singular core modes of the Lamb vortex for m= 2. (a) Re(ω)
versus k. (b) Re(ω) versus Im(ω). The thick solid lines indicate the neutral modes obtained in
§ 4.1.2. The dotted lines are inviscid numerical results by Fabre et al. (2005). The Stokes line
structures of the eigenfrequencies indicated by stars in (b) are displayed in figure 8.

out by Sipp & Jacquin (2003), at this frequency, the integration contour is pinched
between two critical points. This is clearly visible on the Stokes line network shown
in figure 6(b). In our case, this means that a singularity (which cannot be removed)
appears in the integral of formula (3.29). The consequence is that the integral becomes
divergent, which implies that k has to go to zero. This behaviour is typical; as soon
as the integration contour is pinched between two critical points, the wavenumber
decreases to zero.

In figure 7 are the results for m =2 together with numerical results by Fabre et al.
(2005). The results by Fabre et al. (2005) have been obtained by an inviscid spectral
method. As in Sipp & Jacquin, the integration contour has been deformed in the
complex plane. Fabre et al. (2005) have also considered viscous effects. They have
demonstrated that both m = 1 and m =2 damped modes could indeed be obtained by
a viscous code with small viscosity, without deforming the integration contour. This
confirms that a correct integration contour has been chosen. What is surprising, in
figure 7(a), is the discontinuous behaviour of the spatial branches. This discontinuity
corresponds to the branch bifurcation shown in figure 7(b) at ω ≈ 0.1285 − 0.307i.
This strange behaviour can be traced back to a topological change of the Stokes
line structures. The Stokes line network at the crossing-point frequency is shown in
figure 8(b). Before and after the bifurcation point, the network has typically the form
shown in figures 8(a) and 8(c), respectively. The discontinuous behaviour is therefore
associated with a change of turning point. The dashed lines in figure 7 indicate the
predictions we would have obtained if we had kept the same turning point in (3.29).
Asymptotically, these predictions are not good because the Stokes lines network
no longer has the correct topology (as seen in figure 8c). Despite this point, some
numerical branches are shown to follow this prediction. For finite wavenumbers, we
can imagine that higher-order corrections are no longer negligible and sufficiently
modify the Stokes lines to jump from the configuration shown in figure 8(b), to that
shown in figure 8(a). For large wavenumbers, i.e. for large n, we are expecting all the
branches to follow the solid lines of figures 7.

Larger values of m provide results which are all similar: frequencies are almost
real near ω ≈ m − 2, and correspond to very large wavenumbers; then, they become
strongly damped. In figure 9 the results for m =3 are displayed. A typical Stokes
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Figure 8. Stokes line network for m= 2 modes of the Lamb vortex. (a) ω = 0.27 − 0.37i;
(b) ω =0.1285 − 0.307i; (c) ω = 0.12 − 0.315i. See figure 6 for explanation of the symbols.
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Figure 9. Dispersion relation of singular core modes of the Lamb vortex for m= 3. (a) Re(ω)
versus k. (b) Re(ω) versus Im(ω). The dotted lines are inviscid numerical results by Fabre et al.
(2005). The Stokes line network of the eigenfrequency indicated by a star in (b) is displayed in
figure 10.

line network for one of these modes is shown in figure 10. As seen in figure 9, the
numerical results do not follow the asymptotic predictions as well as for m = 1 or
m =2. This trend was noted above for regular core modes.
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Figure 10. Typical Stokes line network for m � 3 modes of the Lamb vortex. Here, m= 3
and ω =1.035 − 0.117i. See figure 6 for explanation of the symbols.

To close this section on the Lamb vortex, it is important to emphasize the following
point. We have been able to identify a few normal modes of the Lamb vortex as
core modes. Although we can reasonably think that all the neutral modes have been
identified, it is clear that an important number of inviscid damped modes do not
enter the category of modes described in this section. In particular, Fabre et al. (2005)
obtained numerically other families of inviscid damped modes. It is possible to check
by looking at their Stokes line structure that these modes are not core modes, but
exhibit more complex Stokes line networks.

4.2. The Gaussian vortex with axial flow (Batchelor vortex)

In this section, we attempt to account for the effect of an axial flow on the charac-
teristics of the normal modes. The base flow is assumed to be given by (2.3a) and
(2.3b). Only neutral modes will be considered. In particular, we shall not try to follow
these modes as they become damped owing to the appearance of a critical point
singularity, as was done in the previous section. As already emphasized in § 3, only
weak axial flow of order 1/k with k 
 1 can a priori be considered in the asymptotic
framework. However, as the previous asymptotic results have been shown to provide
good estimates for small wavenumbers without axial flow, we shall also consider here
finite values of the axial flow and finite wavenumbers.

As explained in § 3, the frequency intervals of regular neutral eigenmodes are
obtained by looking at the graph of the functions ω+, ω− and ωc. Without axial flow,
we have seen that a limited number of behaviours were possible, leading to core
modes only. With an axial flow, other behaviours are now possible, but they can only
provide ring modes. In figure 11, the functions ω+, ω− and ωc are plotted as a function
of the radial coordinate r , for m =1 and kW0 = −3 and for m =1 and kW0 = 1.2. It
can be seen in figure 11(a), that Hypothesis H2 is here satisfied in the frequency
interval (ω1, ω2). This means that regular neutral ring modes can be expected in this
frequency interval. Note also that, for these parameter values, regular neutral core
modes are also expected in the frequency interval (−4, −2).

In the frequency interval (ω1, ω2) shown in figure 11(b), there exist also ring modes,
but they are singular at the critical point which is present for large r . As for singular
neutral core modes, we could show that this critical point singularity can be avoided
in the complex plane without affecting the dispersion relation which can be calculated
for real r . These modes are singular neutral ring modes. We have been able to obtain
such modes only for m = ±x1. The regions of the parameter space where ring modes
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Figure 12. Regions of the (ω, kW0) space where neutral modes of Batchelor vortex are expec-
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singular neutral core mode region and the neutral ring mode region, respectively. The large
black region in (a) corresponds to regular neutral ring modes. The small singular neutral ring
mode region, almost invisible in (a) is enlarged in (b). The vertical dashed lines indicated the
parameter values for which ω± and ωc are plotted in figures 11(a) and 11(b).

are expected are indicated in black in figure 12(a) for m =1. The region where singular
neutral ring modes are expected is very small and limited to the black region shown
in figure 12(b). In figure 12, the other regions in pale grey and mid grey correspond to
regular neutral core modes and singular neutral core modes, respectively. The region
corresponding to the conditions (3.9) and (3.10) for the existence of regular neutral
modes is merely the union of regular core mode region and regular ring mode region.
This means that there is no other regular neutral modes in the white domains of
figure 12.

The position of ring mode and core mode regions varies with m. These variations are
weak if we plot ω − m − kW0 instead of ω as demonstrated in figure 13. For negative m,
the regions are obtained by the transformation (ω, k) → (−ω, −k). As seen in figure 13,
neutral core modes are expected only for frequencies satisfying −2 <ω − m − kW0 < 2.
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Figure 13. Regions of the parameter space where neutral modes of the Batchelor vortex are
expected. Pale grey, mid grey and black indicate the regular neutral core mode region, the
singular neutral core mode region and the regular neutral ring mode region, respectively.
(a) m= 0; (b) m= 1; (c) m= 2; (d ) m= 3. The very small region obtained for m = 1 where
singular neutral ring modes are expected is not indicated.

By contrast, neutral ring modes are located outside this frequency interval. It is
important to stress that (3.9) and (3.10) exactly correspond here to regular core mode
and regular ring mode regions. In particular, this implies that there is no regular
mode other than those considered here.

Formula (3.29) must be used in both grey regions, while (3.44) must be used in
the black regions. As an illustration, the dispersion relation is shown in figure 14
for m =1 and W0 = 0.3, for the first branches. Both numerical results and asymptotic
predictions using (3.29) and (3.44) have been plotted. Numerical results have been
obtained by a non-viscous shooting method, with a contour deformation procedure
for the singular modes. Only neutral modes have been plotted. Numerous singular
damped modes, consistent with those obtained in the previous section also exist, but
they have not been displayed. Figure 14 demonstrates that (3.29) also works well in
the case of a vortex with axial flow. Most of the branches are approximated well,
except, as for the case without axial flow, the first branch, which starts from k = 0.
The predictions for the regular ring modes are also fairly good. Note, however, that
there is no singular neutral ring mode for this value of W0.

Figure 15 shows the radial velocity distribution of two particular eigenmodes
as obtained from the asymptotic analysis and from the numerics. A core mode is
displayed in figure 15(a). The solid curves correspond to the different leading-order
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Figure 14. Dispersion relation of neutral modes of the Batchelor vortex for m= 1 and
W0 = 0.3. Solid lines are asymptotic results. Dashed lines are numerical results. Dotted lines
are the limits of the regions shown in figure 13. The insert gives a close view of the region
associated with regular ring modes.

approximations obtained in § 3.1 near the origin (O), in the core region, near the
turning point (T) and in the outer region. The thick part of each solid curve indicates
the region where each approximation should apply. As expected, it is in these regions,
that the asymptotic results are the closest to the numerical results (dotted curve). A
ring mode is shown in figure 15(b). In that case, we have used for the solid curves
the leading-order approximations obtained in § 3.2 in the outer regions I and II, near
each turning point r1 and r2 (T1 and T2), and in the ring region. Again, a good
agreement of each approximation with the numerics is obtained in the region where
the approximation is expected to be valid.

5. Conclusion
In this paper, an asymptotic description of the normal modes in a stable vortex

has been proposed. It is based on a large axial wavenumber WKBJ analysis. A
considerable effort has been made to connect the properties of the neutral modes to
the characteristics of the base flow. In particular, we have shown how the analysis of
a few quantities which are the epicyclic frequencies ω±(r), and the critical frequency
ωc(r) defined in (3.7) and (3.8), respectively, permits the regions of existence of neutral
modes to be located in the parameter space. Two types of neutral normal mode have
been considered, which are either confined in the vortex core (core modes) or in a ring
(ring modes). General dispersion relations have been derived for both cases. In the
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Figure 15. Radial velocity profiles of eigenmodes of the Batchelor vortex for W0 = 0.3. Dotted
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the approximation is expected to be valid. (a) Regular core mode (m= 1, k = 8, ω ≈ 3.91);
(b) Regular ring mode (m= 1, k = −13, ω ≈ 0.27).

WKBJ terminology, core modes correspond to oscillating modes between the origin
and a turning point, while ring modes are oscillating modes between two distant
turning points. The asymptotic dispersion relations have been applied to a Gaussian
vortex with and without axial flow. For the Gaussian vortex without axial flow (Lamb
vortex), neutral modes have been shown to be core modes only. Their asymptotic
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dispersion relation has been found to be in very good agreement with numerical
results, even for small values of the wavenumber. For the Gaussian vortex with axial
flow (Batchelor vortex), neutral modes have been shown to be either core modes or
ring modes. A comparison with the numerics has been carried out in a single case,
and a good agreement has also been observed, for both core modes and ring modes.
The spatial structure of the eigenmodes has also been shown to be reproduced well.

The influence of critical point singularities has been analysed in detail. We have
shown that core modes can remain neutral at leading order, even if they possess
a critical point singularity. Such ‘singular neutral core modes’ have been exhibited
for m =1 and m =2 in the case without axial flow. They have also been shown to
exist in the presence of axial flow. The critical point singularity damps the normal
modes when it enters the core region. We have shown that the associated complex
eigenfrequencies can still be computed with the same relation applied in the complex
plane if the critical point singularities are correctly avoided in the complex plane
following Lin’s rule. This rule guarantees that the vanishing viscosity limit of genuine
viscous eigenfrequencies is considered. However, a fine monitoring of the evolution of
turning points and critical points must be performed to track the different branches.
This procedure has been carried out for two families of modes for the Lamb vortex
(m =1 and m =2). The frequencies of damped core modes which have been obtained
in this way, have been compared favourably with numerical simulations by Sipp &
Jacquin (2003) and Fabre et al. (2005). We have been able to provide an explanation
to the peculiar behaviour of the branches for m =2: two different turning points have
been shown to intervene in the eigenvalue relation.

For the applications, it is important to emphasize that the present theory permits
us to obtain information on neutral modes by a very simple procedure. We therefore
expect our asymptotic results to be valuable for describing instabilities, such as the
elliptic instability, which result from the interaction of neutral modes. As reviewed by
Kerswell (2002), the elliptic instability is due to the resonance of two normal modes
with the underlying strain field responsible for the elliptic deformation of the vortex.
When the strain field is stationary, two neutral modes resonate if their frequencies
and axial wavenumbers are identical, and their azimuthal wavenumbers differ by 2
(see e.g. Kerswell 2002). The present analysis allows to locate easily the regions of the
parameter space where two neutral normal modes of azimuthal wavenumbers m − 1
and m +1 can possibly resonate; we just have to find the intersection of the regions
where the two neutral modes exist. For the Batchelor vortex studied in § 4.2, this
procedure leads to the results displayed in figure 16. In each of these regions, resonance
is a priori possible. Moreover, from the nature of the mode in each region, we have the
following information: resonance is possible only between regular neutral core modes
and singular neutral core modes. In particular, this implies that ring modes cannot
be excited resonantly by the elliptical instability. The fine analysis of the resonance
conditions in each region and its dependence with respect to W0 is an important
issue which could have applications in the aeronautical context, where the elliptical
instability in a vortex with axial flow is known to be present. This will be the subject
of a future study.

While we have focused on stable vortices, it is worth emphasizing that the same
analysis could also be useful for describing unstable modes in other types of vortex.
For instance, the axisymmetric unstable modes associated with the centrifugal instabi-
lity can be captured by our analysis. These modes are stationary and localized in
the radial region where the Rayleigh discriminant Υ (r) = 2Ω(r)ζ (r) is negative (e.g.
Rossi 2000). Bayly (1988) demonstrated that a large k-asymptotic analysis could be
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Figure 16. Region in the (ω, kW0) space of possible resonance of two neutral normal modes
of azimuthal wavenumbers m − 1 and m + 1 for various m for the Batchelor vortex.

possible to describe these modes. With our terminology, these modes would be ring
modes localized between two turning points satisfying ∆ =0, i.e. Φ(r) = −Im(ω). The
most unstable modes would correspond to the configuration where the two turning
points are close to the minimum of Υ . We refer to Bayly (1988) and Rossi (2000) for
details. Gallaire & Billant (2003) have shown that the same analysis could also be
used to extend the Rayleigh instability criterion to non-axisymmetric modes.

This work has benefited from discussions with D. Fabre, A. Antkowiak and F.
Gallaire. We would also like to thank D. Sipp and D. Fabre for having provided the
numerical data plotted in figures 5, 7 and 9. Thanks also to Kris Ryan for his careful
reading of the manuscript.

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions . Dover.

Arendt, S., Fritts, D. C. & Andreassen, O. 1997 The initial value problem for Kelvin vortex
waves. J. Fluid Mech. 344, 181–212.

Ash, R. L. & Khorrami, M. R. 1995 Vortex stability. In Fluid Vortices (ed. S. I. Green), chap. 8,
pp. 317–372. Kluwer.

Bayly, B. J. 1988 Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows.
Phys. Fluids 31, 56–64.

Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers .
McGraw–Hill.

Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability . Cambridge University Press.

Fabre, D. 2002 Instabilités et instationnarités dans les tourbillons: application aux sillages d’avions.
PhD thesis, ONERA/Université Paris VI.
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