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Institut de Recherche sur les Phénomènes Hors Équilibre – CNRS UMR 6594,
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The linear stability of a rotating flow in an elliptically deformed cylindrical shell with
an imposed radial temperature contrast is studied using local and global approaches.
We demonstrate that (i) a stabilizing temperature profile can either increase or decrease
the growth rate of the elliptical instability depending on the selected mode and on
the strength of the radial buoyancy force; (ii) when the temperature profile is destabi-
lizing, the elliptical instability coexists with two-dimensional convective instabilities at
relatively small values of the Rayleigh number, the fastest growing mode depending
on the relative values of the Rayleigh number and of the eccentricity; (iii) the elliptical
instability totally disappears for larger values of the Rayleigh number. We argue that
thermal effects have to be taken into account when looking for the occurrence and
influence of inertial instabilities in geophysical and astrophysical systems, especially
in planetary cores.

1. Introduction
The elliptical instability corresponds to the three-dimensional destabilization of two-

dimensional flows with elliptical streamlines. It comes from the parametric resonance
of two inertial waves of an undistorted circular flow induced by an underlying strain
field (see for instance the review by Kerswell 2002). Most studies of this mechanism
have been motivated by applications in turbulence and vortex dynamics, where it
is seen as a generic source of intermittency and breakup (e.g. Pierrehumbert 1986;
Bayly 1986). But elliptical instabilities also arise in geophysical and astrophysical
configurations where rotating fluid bodies are tidally deformed. For instance, their
presence has been suggested (i) in binary stars and accretion disks, where they could
participate in the energy and angular momentum exchanges between neighbouring
systems (e.g. Lubow, Pringle & Kerswell 1993), and (ii) in planetary cores, where they
could participate in the generation or induction of a magnetic field (e.g. Aldridge
et al. 1997; Kerswell & Malkus 1998; Lacaze et al. 2006). In all these natural
systems however, thermal effects are also of fundamental importance and lead to
various configurations, from stratification to turbulent convection. Results from purely
hydrodynamical studies must thus be used with caution and it appears necessary to
investigate how inertial waves and the resonance mechanism leading to the elliptical
instability are affected by temperature differences. In particular, one would like to
answer the following three questions: (i) How is the growth rate of the elliptical
instability modified by thermal effects? (ii) Could the elliptical instability persist in
the presence of convection and modify its organization? (iii) What is the predominant
mechanism at the planetary scale?
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In this paper, we study analytically the linear stability of a rotating flow in an
elliptically deformed cylindrical shell with an imposed radial temperature contrast.
Even though this cylindrical geometry is not directly relevant to planetary cores, it
appears as a natural, mathematically tractable, first step and has the advantage of
being feasible in the laboratory. Historically, it has also been used in the first studies
of elliptical instabilities and rotating convection (e.g. Malkus 1989; Busse & Carrigan
1974, respectively), and we expect that it will give us interesting insight into the
physics of their interaction.

2. Basic flow and perturbation equations
We consider a fluid of density ρ, viscosity ν, thermal expansion α and thermal

diffusivity κ in a shell between an inner cylinder of radius R1 and temperature T1

and an outer cylinder of radius R2 and temperature T2. The whole system of height
H̃ is rotating at a constant angular velocity Ω . We mainly focus on a laboratory
experiment in progress, where the rotation rate is large enough for the vertical gravity
to remain negligible compared to the centrifugal acceleration: the fluid is subjected to
a radial buoyancy force B(r) = α[T (r) − T1]Ω

2r . The temperature T1 can be chosen
either lower or larger than T2 to induce convection or radial stratification, and the
circular sections of both cylinders are slightly deformed into ellipses of eccentricity
ε to generate the elliptical instability. Note that this configuration is also relevant
to planetary cores, where the radial buoyancy is due to gravity instead of rotation
(Busse & Carrigan 1974): B(r) = α[T (r) − T1]g(r), with g(r) depending linearly on
the radial coordinate r .

In the following, the non-dimensionalization of the Navier–Stokes and temperature
equations is made using Ω−1 as a time scale, R2 as a length scale, T2 − T1 as a
temperature scale and ρ0R

2
2Ω

2 as a pressure scale. Our system is then characterized by
the Ekman number Ek = ν/ΩR2

2 , the Rayleigh number Ra = B(R2)/Ω
2R2, the Prandtl

number Pr = ν/κ and the geometrical parameters F = R1/R2, ε and H = H̃ /R2.
The base state corresponds to an elliptic flow with a purely diffusive temperature

profile. The base flow velocity is given in Cartesian coordinates by

ub = (−(1 + ε)y, (1 − ε)x, 0), (2.1)

with streamlines defined by Γ 2
ε = x2/A + y2A = const, where A is the ellipticity

A =
√

(1 + ε)/(1 − ε). For small eccentricity and diffusive effects (i.e. ε � 1, Ek ∼ O(ε)
and Pr ∼ O(1) as will be considered in the following), isotherms are elliptically
deformed such that

Tb = 1 − ln(Γε)

ln(F )
, (2.2)

and the basic flow pressure field is given, with our normalization, by

∇pb = −(ub · ∇)ub = (1 − ε2)r. (2.3)

Within the Boussinesq approximation, the Navier–Stokes and temperature equ-
ations for the velocity, pressure and temperature perturbations (u, p, T ) to the above
base flow reduce to

∂u
∂t

+ (ub · ∇)u + (u · ∇)ub = −∇p + RaT ∇pb + Ek∇2u, (2.4a)

∂T

∂t
+ (ub · ∇)T + (u · ∇)Tb =

Ek

Pr
∇2T , (2.4b)

∇ · u = 0. (2.4c)
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In addition, the boundary conditions impose (i) no radial velocity, no shear and
vanishing temperature fluctuations at the inner and outer deformed cylinders and
(ii) no axial velocity, no shear and no heat flux at the top and bottom of the shell.
The goal of the present paper is to obtain information on the normal-mode solution
of the above system using analytical approaches.

3. Global approach
The spatial structure of the unstable modes can be determined using a global

approach in the limit of small ε and small Ek. We first perform an inviscid analysis
of the complete geometry following the approach of Waleffe (1990) and Kerswell
(1993), then we add viscous and thermal diffusion effects in the small-gap limit (i.e.
F → 1). Both simplifications have advantages and drawbacks. On the one hand, the
small-gap approximation allows a complete analytical resolution of the problem, but
is a priori not adapted to the laboratory and planetary applications we want to study
(for instance on the Earth, F ∼ 0.3). On the other hand, neglecting diffusive effects is
fully adapted to the study of inertial instabilities, but prevents the determination of a
small-scale cut-off, hence of a critical Rayleigh number for convection.

3.1. Inviscid approximation

At order zero in ε, perturbations in a cylinder of height H can be sought in the form
of normal modes

(u, p, T ) = (u0(r) cos(lz), v0(r) cos(lz), w0(r) sin(lz), p0(r) cos(lz), T0(r) cos(lz))eiωt+imθ ,

(3.1)

where the axial boundary conditions simply imply l = nπ/H, n being an integer. For
l �= 0, the system (2.4) can then be reduced to a single Bessel equation for the axial
velocity amplitude w0 (Ek = 0, ε = 0):

r
d

dr

(
r
dw0

dr

)
+ (k2r2 − m̃2)w0 = 0, (3.2)

with k2 =
4 − R̃a − λ2

λ2
l2 and m̃2 = m2

(
1 +

R̃a

λ2

)
, Re(m̃) � 0. (3.3)

Here, λ = ω+m is the mode frequency in the frame rotating with the cylindrical shell

and R̃a = −Ra/ln(F ) is positive for a destabilising temperature profile (T1 < T2). If
we enforce the boundary conditions u0(1) = u0(F ) = 0, i.e.

r
dw0

dr
+

2m

λ
w0 = 0 at r = F, 1, (3.4)

to the general solution of this equation

w0 = C1Jm̃(kr) + C2Ym̃(kr), (3.5)

we obtain the dispersion relation between the frequency λ (or ω in the non-rotating

frame) and the axial wavenumber l for given values of m and R̃a. Note that the
system is invariant by changing l to −l so only l > 0 is considered. For l = 0, (3.2)
does not apply and the relevant equation is for the radial velocity amplitude u0:

d2u0

dr2
+

3

r

du0

dr
− m2 − 1 + m2R̃a/λ2

r2
u = 0, (3.6)
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Figure 1. Frequency Re(ω) and growth rate −Im(ω) of the first azimuthal mode m = −1
determined from the inviscid analysis (continuous line) and the viscous small-gap analysis

(dashed line) for R̃a = 1.66, F = 0.3,Ek = 10−4,Pr = 7. Inertial modes correspond to the
oscillatory neutral modes (non-zero frequency and zero growth rate), whereas convective
modes have an almost zero frequency in the rotating frame and a non-zero growth rate. (a)
Small l, (b) large l.

which admits solutions of the type

u0 = C1r
−1+m

√
1+R̃a/λ2

+ C2r
−1−m

√
1+R̃a/λ2

. (3.7)

The boundary conditions u0(F ) = u0(1) = 0 provide an explicit expression for λ

λ2 = − R̃a

1 + (pπ/mln(F ))2
, (3.8)

where p is a non-zero integer denoting the number of radial structures.
The dispersion relation leads to infinitely many branches discretized by the radial

wavenumber k. The first is shown in figure 1(a) for m = − 1 and R̃a = 1.66. Results

at lower/higher R̃a can be deduced qualitatively by shifting the axes towards the

right/left. For R̃a < 4, neutral inertial waves exist for l � li(R̃a, m). From (3.3), we
can show that their frequency in the rotating frame satisfies

−
√

4 − R̃a � λ �
√

4 − R̃a. (3.9)

The threshold wavenumber li vanishes for R̃a � 0, and is given by li =√
m2R̃a/(4 − R̃a) for R̃a > 0. Then, one stable and one unstable mode appear in

the vicinity of l = 0. These modes are localized near the inner cylinder and can
coexist with inertial waves, localized near the outer cylinder. They persist for l � lc =√

m2R̃a/(4 − R̃a)F 2. The maximum growth rate takes place at l = 0 and is provided
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Figure 2. Normalized growth rate of the elliptical instability σ divided by the eccentricity

ε versus R̃a for F = 0.3. Symbols: numerical computations of the global growth rate for
the first mode (circles) and the third mode (crosses); dashed lines: small-gap growth rate
according to the analytical formula (3.17) with k = π/(1 − F ) and k = 3π/(1 − F ) respectively;
continuous lines: local growth rate according to the analytical formulas (4.7) and (4.8) with
k = π/(1 − F ) and k = 3π/(1 − F ) respectively. (a) Inviscid results and (b) viscous results for
Ek = 10−4,Pr = 7.0, ε =0.1.

by (3.8): it corresponds to the well-known two-dimensional (w = 0) z-independent
Busse columns at onset of convection (see for instance the review by Busse 2002).

This two-dimensional convective mode is dominant for relatively small R̃a. For

R̃a > 4, the inertial modes disappear and all axial wavenumbers become unstable by
convection. The most unstable mode at a given m changes from l = 0 to l → ∞ for

some R̃a ∼ O(4).
In order to describe the elliptical instability in this global framework, mode coupling

at the order ε has to be taken into account. As shown in Moore & Saffman (1975),
the elliptical instability results from the resonant coupling of the strain field due to
the elliptical deformation with two inertial modes of azimuthal wavenumbers m and
m+2 and identical axial wavenumber l and frequency ω. The most unstable resonant
configuration corresponds to the coupling between the two azimuthal modes m =1
and m = − 1 at ω = 0 with the same radial wavenumber k. The elliptical instability
growth rate σ can then be obtained using Kerswell’s (1993) analysis: it is reported
in figure 2(a) as a function of the Rayleigh number. Note that the resonance of two
azimuthal modes m =1 and m = −1 with p radial structures can only be obtained for

−1 − (pπ/ln(F ))2 < R̃a < 3. (3.10)

The axial wavenumber l of the resonant modes increases with R̃a and goes to

infinity when R̃a → 3 and to 0 when R̃a → −1 − (pπ/ln(F ))2. For R̃a > 3 and

R̃a < −1− (pπ/ln(F ))2, no coupling is possible and elliptical instability is expected to

disappear. Note that a stabilizing temperature profile (i.e. −1−(pπ/ln(F ))2 < R̃a < 0)
can either increase or decrease the growth rate of the elliptical instability, depending

on the selected resonance. For 0 � R̃a < 3, the elliptical instability is in competition
with the convective instability, the fastest growing mode depending on the relative

value of R̃a and ε.

3.2. Small-gap approximation

In the small-gap limit (i.e. F ∼ 1), one can neglect curvatures effects and take r ∼ 1
everywhere, the radial dependence only appearing in the radial derivatives. The
perturbed equations (2.4) then reduce to a single linear equation of order 8 for the



194 M. Le Bars and S. Le Dizès

temperature amplitude T0 of the normal mode (3.1):[(
d2

dr2
− (m2 + l2)

)
L2

1L2 − (m2 + l2)R̃aL1 − 4(imEk − 1)2l2L2

]
T0 = 0, (3.11)

with the boundary conditions T0(1) = T0(F ) = 0, where the operators L1, L2 are defined
by

L1 = iλ − Ek

(
d2

dr2
− (m2 + l2)

)
, L2 = − iλ +

Ek

Pr

(
d2

dr2
− (m2 + l2)

)
. (3.12)

Solutions are sought in the form T0(r) = Tp sin(k(r − 1)), where Tp is a constant
and k = pπ/(1 − F ) with p a positive integer. Substituting in (3.11), we obtain the
dispersion relation

λ3 − iK2Ek(2 + 1/Pr)λ2 − K6Ek2(1 + 2/Pr) + 4(imEk − 1)2l2 − (m2 + l2)R̃a

K2
λ

+ i(K6Ek3/Pr + 4(imEk − 1)2l2Ek/Pr − (m2 + l2)R̃aEk) = 0 (3.13)

with K =
√

k2 + l2 + m2. The dispersion relation is of order 3 in λ= ω + m, which

means that for each given set of parameters (R̃a, Ek, Pr, F, l, m, k), three different
modes coexist: a purely diffusive mode that disappears for Ek =0 and two inertial
modes.

As shown in figure 1(a), the small-gap limit captures well the inertial modes of
m = − 1 for values of F as small as 0.3. Note however that the unstable convective
mode and neutral inertial mode cannot coexist in the small-gap limit: they both
possess the same sinusoidal profile which does not allow the localization near one
boundary. Besides, the behaviour at large l significantly changes, as seen in figure 1(b):
we first recover the inviscid results in the intermediate limit 1 � l2 � 1/Ek, but in the
limit l2 	 1/Ek, the asymptotic behaviour of the three solutions of (3.13) is

Re(λ) → 0 and Im(λ) ∼ l2
Ek

Pr
for the diffusive mode, (3.14a)

Re(λ) → ±2 and Im(λ) ∼ l2Ek for the two inertial modes. (3.14b)

In fact, at small wavelength, the diffusive effects completely kill convective effects

and we end up with exactly the same modes as in the case R̃a = 0. This limit is not
interesting since all the modes as well as the elliptical instability are then damped by
viscosity.

The onset of convection can be analysed by considering two-dimensional modes
(l = 0). Then, the dispersion relation (3.13) admits an unstable solution provided

Ra � Rac =
27π4

4

Ek2

Pr(1 − F )3
. (3.15)

With the standard definition of the Rayleigh number using the ratio of buoyancy
with diffusion (rather than inertia), this means

αg(T2 − T1)(R2 − R1)
3

κν
�

27π4

4
, (3.16)

as already found for the onset of Rayleigh–Bénard convection as well as for the onset
of convection in the rapidly rotating cylindrical shell (Busse 1970).
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Figure 3. Most dangerous instability in the eccentricity ε–Rayleigh number R̃a plane for an
adjusted cylinder with F = 0.3. Dashed line: small-gap viscous results with Ek = 10−4,Pr = 7,
k = π/(1 − F ) and continuous line: local inviscid results. (b) A zoom of (a) in the parameter
range that will be explored by the experimental device.

The viscous growth rate of the elliptical instability σ can be calculated explicitly,
assuming Ek ∼ O(ε) and Pr ∼ O(1):

σ =
9 − 3R̃a + (36 − 18R̃a + 2R̃a2)/k2 + (18 − 12R̃a + 2R̃a2)/k4

16 − 4R̃a + (54 − 36R̃a + 6R̃a2)/k2 + (18 − 30R̃a + 14R̃a2 − 2R̃a3)/k4
ε

− k2Ek
8 − R̃a(1 + 1/Pr) + (11 − 2R̃a − R̃a(4 − R̃a)/Pr)/k2 + (3 − R̃a − R̃a(3 − R̃a)/Pr)/k4

8 − 2R̃a + (3 − 4R̃a + R̃a2)/k2

(3.17)

As shown in figure 2(a), this formula provides a good approximation of the numerical
results, even for F = 0.3. Regarding diffusion, one can see that the first corrective term
at large k is proportional to k2Ek, as in the non-thermal case (see Eloy, Le Gal &
Le Dizès 2003). But, surprisingly, diffusive effects are expected to have a destabilizing

influence on the elliptical instability at positive R̃a and relatively small Pr. Convection
has a general stabilizing influence on the elliptical instability: since increasing the
thermal diffusion leads to decreasing the intensity of convection, one can expect that
for a given value of the Rayleigh number, the growth rate of the elliptical instability
at small Pr will be relatively larger.

Finally, the competition between the elliptical and the convective instabilities can
also be investigated explicitly, supposing that the most dangerous mode will be the

fastest growing one: it is shown as a function of R̃a and ε in figure 3 for the first
unstable mode (i.e. p = 1).

4. Local approach
The local approach is based on the inviscid short-wavelength Lagrangian theory

developed by Bayly (1986) and Craik & Criminale (1986) and generalized by
Friedlander & Vishik (1991) and Lifschitz & Hameiri (1991). In this approach,
perturbations are sufficiently localized in order to be advected along flow trajectories
defined by

x(t) = r
√

A cos(γ t), y(t) =
r√
A

sin(γ t), z(t) = const, (4.1)

where r is a given constant and γ =
√

1 − ε2. Perturbations are sought as local plane
waves of the form

(u(x, y, z, t), p(x, y, z, t), T (x, y, z, t)) = (u(t), p(t), T (t)) eik(t)·x, (4.2)
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with a wavevector k defined by

k(t) = k

(
sin(a)√

A
cos(γ (t − t0)), sin(a)

√
A sin(γ (t − t0)), cos(a)

)
, (4.3)

where k, a, t0 are constants, such that the phase of the wave (4.2) is conserved.
The local approach allows a complete viscous analytical resolution of the system.

When (4.2) and (4.3) are inserted into (2.4), a system of ordinary equations is obtained
in the Lagrangian frame for the perturbation amplitude (u(t), p(t), T (t)). When the
base flow is undistorted (ε = 0) and inviscid (Ek = 0), (2.4) reduces to a single equation
for the amplitude of the axial velocity

d2w0

dt2
+ (4 − R̃a) cos2(a)w0 = 0, (4.4)

where the subscript 0 indicates the order zero of the perturbative approach in ε. The
solution is given by w0 = C1e

if t + C2e
−if t , where C1 and C2 are constants and f is

given by the dispersion relation

f =
√

4 − R̃a cos(a). (4.5)

According to this dispersion relation, several cases are possible depending on the

Rayleigh number R̃a. If R̃a < 4, the undistorted system is inviscidly stable. However,
as shown for instance by Waleffe (1990) and Le Dizès (2000), an elliptical instability
is possible in the elliptically deformed system if the frequency f of the plane wave
solution matches the frequency of the elliptical forcing in the Lagrangian frame, that
is f = ± 1. From (4.5), such a resonance is possible when

cos(a) =
±1√
4 − R̃a

, (4.6)

The growth rate associated with this resonance can be obtained by an asymptotic
analysis for small ε (e.g. Le Dizès 2000). The maximum growth rate is obtained when
k is orthogonal to the base flow velocity (i.e. t0 = 0, see Sipp & Jacquin 1998) and is
found to be given by the simple formula

σ =
9 − 3R̃a

16 − 4R̃a
ε. (4.7)

As shown in figure 2, this fully agrees with the numerical results of the inviscid global
approach and with the small-gap analytical results (3.17) in the limit k → ∞ relevant
to the local approach. Diffusive effects can be easily taken into account in the limit
Ek ∼ O(ε) and induce a correction

−k2Ek(8 − R̃a(1 + 1/Pr))/(8 − 2R̃a), (4.8)

in agreement with the first corrective term induced by diffusion in the small-gap

formula (3.17). As R̃a increases, the growth rate decreases and the resonant wavevector
given by (4.6) progressively aligns with the rotation axis. Motions then depend on
z only, which implies from the mass conservation equation that w = 0: convective
effects thus tend to bidimensionalize the perturbed flow (see also Busse 1970), hence

killing the three-dimensional elliptical instability. For R̃a > 3, the perfect resonance is
impossible and the elliptical instability disappears, as also seen in the global approach.

No lower bound is found for R̃a in the local approach, in agreement with (3.10) in
the relevant limit p → ∞.
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If R̃a > 4, f given by (4.5) is purely imaginary: the undistorted system thus

admits local unstable modes with a maximum growth rate σ =
√

R̃a − 4 obtained for

cos(a) = 1. This instability criterion R̃a > 4 is the direct translation of the well-known
criterion for centrifugal instability G2 > Φ , where −G2 is the Brunt–Väisälä frequency
and Φ the Rayleigh discriminant (Eckhoff 1984; Sipp et al. 2005). These unstable
modes should be distinguished from the two-dimensional Busse columns, for which
w0 = 0 and all variables are z-independent. Such instabilities can be obtained for
the local approach by considering local plane waves satisfying cos(a) = 0. For these
two-dimensional waves, we immediately write a single equation for the temperature
amplitude T0

d2T0

dt2
+ k2Ek

(
1 +

1

Pr

)
dT0

dt
+

(
k4Ek2

Pr
− R̃a(1 − cos2 t0)

)
T0 = 0, (4.9)

from which we deduce the criterion for instability, R̃a > R̃ac = k4Ek2/Pr, and the
value of the most unstable growth rate.

The local approach thus leads to the same conclusions as the global approach,
but in addition it allows a simpler and fully analytical resolution of the system
without using the small-gap approximation. In particular, the competition between
two-dimensional convection and three-dimensional elliptical instability can be solved
analytically: based on the local inviscid results, we expect convection to be dominant

over the elliptical instability when R̃a � 0.32ε2, as shown in figure 3.

5. Conclusion
We have studied by complementary analytical methods the linear stability of a

rotating flow in an elliptically deformed cylindrical shell with an imposed radial
temperature profile. We have shown that the elliptical instability has a decreasing

growth rate with R̃a. It is active for R̃a < 3 and is in competition with the two-
dimensional convection instability leading to Busse columns as summarized in figure 3.
From the linear study proposed here, we can only expect that the most dangerous
mode will be the fastest growing one. Nonlinear processes of this competition will be

studied in a future laboratory experiment, in the parameter ranges −10−2 � R̃a � 10−2

and 0 � ε � 0.20 (see figure 3b).

In the bulk of the Earth’s core, R̃a ∼ O(0.1 − 10) and ε ∼ O(10−7), thus two-
dimensional convection is expected to dominate over elliptical instability: it is sup-
posed to drive motions in the form of mainly axial propagating cells powering the geo-
dynamo (see for instance the review by Busse 2000). However, this does not preclude
the presence of elliptical instabilities, either superimposed on the mean temperature
profile induced by convection or in the outer stratified part of the core (Kerswell 1993).
In Jupiter’s satellite Io, the temperature gradient in the core is unsufficient to drive con-
vection (Wienbruch & Spohn 1995): our study thus suggests that the elliptical instabil-
ity could be the dominant phenomenon with a growth rate slightly smaller than the
usual asymptotic value of 9/16ε (see Kerswell & Malkus 1998). Note however than the
results shown here are adapted to the experimental configuration, where the centrifugal
acceleration replaces the radial gravity. In particular, the equipotentials remain circular
at first order in ε. One could suggest in planetary applications that tides in the core
also deform equipotentials elliptically: in this case, the local approach gives a modified

growth rate σ = [(9 − R̃a/2)/(16 − 4R̃a)]ε, which is a growing function of R̃a, unlike
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the previous results. Nevertheless, we also find that the elliptical instability is only pos-

sible provided R̃a < 3 and that its growth rate remains of order (0.1 − 1.0)ε typically.
So as a conclusion, we emphasize that even though the quantitative results depend

on the chosen model of the planetary core, the physics of the interaction between
thermal effects and elliptical instability will remain similar to what is studied here.
Thermal effects have thus to be taken into account when studying the occurrence
in planetary cores of inertial processes such as tidal instabilities, but also such as
precession, which similarly involves inertial wave coupling.
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