
J. Fluid Mech. (2007), vol. 577, pp. 1–23. c© 2007 Cambridge University Press

doi:10.1017/S0022112006004472 Printed in the United Kingdom

1

Acoustic near field of a transonic instability
wave packet
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We consider the problem of acoustic radiation generated by a spatial instability wave
on a weakly developing shear flow. Assuming a local WKBJ approximation for the
instability wave near its maximum, we compute the acoustic pressure field by using
a Fourier transform along the streamwise direction. When the instability wave is
close to transonic near its maximum amplitude, approximations for this pressure field
are obtained by a steepest descent method. A branch cut and several saddle points
are shown possibly to contribute to the approximation. A detailed analysis of these
contributions is provided. The modifications of the acoustic field when we pass from
subsonic to supersonic are examined. In particular, the superdirective character of the
acoustic field of subsonic instability waves and the directivity pattern of supersonic
waves are shown to be both compatible with our mathematical description and
associated with a single saddle-point contribution.

The acoustic near field is also shown to possess a caustic around which a specific
approximation is derived. In a large region of the physical space, the near field is
composed of two saddle-point contributions. Close to the shear flow, one of these
contributions degenerates into a branch-point contribution which always becomes
dominant over the instability wave downstream of a location that is computed. An
interesting phenomenon is observed in certain regions downstream of the maximum:
the transverse behaviour of the instability wave has to be exponentially growing far
from the shear layer to match the acoustic field. We demonstrate that this phenomenon
neither requires a branch-point contribution nor a supersonic instability wave.

1. Introduction
The processes by which sound is generated from fluid dynamics have been the

subject of numerous works since Lighthill (1952). It was rapidly recognized that
small-scale turbulence and coherent structures can both generate sound with different
characteristics (Crighton 1975; Goldstein 1984). In terms of acoustics, turbulence is
usually described as moving sources of quadrupoles, whereas coherent structures are
often considered as oscillating surfaces, or wavy walls. In this analogy, the oscillating
surface mimics a coherent structure in the form of an instability wave. The sound
generated by such a surface is easily calculated as it amounts to solving the Helmholtz
equation with simple boundary conditions on a plane. In a fluid at rest, it is found
that there is generation of sound only if the phase velocity of the oscillating surface
is larger than the ambient speed of sound a0, that is, for supersonic convective Mach
number Mc ≡ ω/(ka0) > 1. The sound is then a (Mach) wave propagating in the
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angular direction defined by the Mach angle relation cos θ =1/Mc. In this framework,
the acoustic far field is considered as a superimposition of Mach waves generated
by perturbations. In particular, the most intense noise radiation direction in the far
field is expected to be given by the Mach angle obtained from the convective Mach
number of the most amplified instability wave, that is, Mc = ω/(αa0), where α is the
wavenumber at maximum amplitude.

In supersonic flows, several comparisons have been made between acoustic field
and instability characteristics using this approach. Most of them concern supersonic
jets. We can cite Yu & Dosanjh (1971), McLaughlin, Morrison & Troutt (1975,
1977), Morrison & McLaughlin (1980), Stromberg, McLaughlin & Troutt (1980) and
Troutt & McLaughlin (1982) among the experimental works, and Tam, Chen & Seiner
(1992), Mitchell, Lele & Moin (1997), Morris et al. (1997), Malik & Chang (2000)
and Mohseni, Colonius & Freund (2002) among the numerical and theoretical works.
For highly supersonic jets, it was shown that there is a good correlation between the
properties of the most unstable (helical) mode and the acoustic far-field characteristics.
For low supersonic jets (M < 1.5), it was, however, observed that the acoustic field is
dominated by a less unstable axisymmetric mode, in agreement with the most unstable
helical mode having a subsonic convective Mach number (see Millet & Casalis 2004).
Tam (1995) demonstrated that nonlinear harmonics or the interaction of an instability
wave with a shock cell structure of an imperfectly expanded supersonic jet are sources
of noise which can also be described in the same framework.

The sound generated by coherent structures in subsonic jets or mixing layers has
been understood using the same analogy. However, the sound is not directly created
by the phase speed of the instability wave, but by its amplitude modulation whose
wavenumber spectrum possesses supersonic phase velocities. To determine sound
radiation, a global solution of the entire wave-propagation phenomenon is necessary.
Crighton & Huerre (1990) analysed how the acoustic field depends on the amplitude
modulation profile by seeking asymptotic expansions of the general integral solution.
They suggested that the decay changes from exponential to algebraic around some
penetration distance. They found a superdirective behaviour in the acoustic field when
the penetration distance and the acoustic wavelength are comparable, a condition
that can be met for a Gaussian amplitude modulation.

For a given instability wave packet, the acoustic far field is provided by the same
expression for both supersonic and subsonic waves. This expression is easily obtained
by the method of stationary phase and depends strongly on the large-scale envelope
function that modulates the instability wave. For a Gaussian wave packet, the two-
dimensional pressure far field has the following form (e.g. Avital & Sandham 1997)

〈p2(r, θ)〉 ∼ (sin θ)2

r
exp[−δ(1 − Mc cos θ)2], (1.1)

where δ is a constant which is proportional to the integral scale of the wave packet.
For small convective Mach numbers, the acoustic far field is exponentially small in all
directions and maximum in the downstream direction for which cos θ is of order unity.
The antenna factor (exponential term in (1.1)) has been observed in measurements by
Laufer & Yen (1983) on a low-Mach-number jet, and a theoretical model based on
global modes has been provided by Cooper & Crighton (2000). Colonius, Lele & Moin
(1997) and Freund (2001), among others, were also able to capture the superdirective
behaviour associated with the antenna factor in numerical simulations of mixing layer
and jet, respectively. Expression (1.1) demonstrates that, for large Mach numbers, the
acoustic far field is dominant in the Mach angle direction. However, as in the subsonic
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case, it is also exponentially small in the downstream direction. It is worth mentioning
that it is only for transonic convective Mach numbers (Mc ∼ 1) that the acoustic
field is not exponentially small for small angles. We shall see below that it is for this
reason that, in the transonic regime, the interaction of the instability wave with the
acoustic field can be captured by a local analysis.

The link between the instability wave and the acoustic field was first examined in
the context of shear flows by Tam & Morris (1980). They computed the acoustic far
field using the local stability characteristics of spatial developing subsonic instability
waves. In the present paper, we shall use some of their data to illustrate our calculation
of the near field. In particular, we shall analyse how the pressure directivity varies in
the near field.

For supersonic flows, Tam & Burton (1984a, b) pointed out the importance of the
matching procedure between the instability wave and the acoustic field expression to
provide the characteristics of the near field. They showed that as the spatial behaviour
of a supersonic instability wave changes from growth to decay, the transverse structure
of the wave is also radically modified. The instability wave is localized in the shear
flow during its growth, but when it reaches its maximum and becomes damped,
the transverse behaviour of the instability wave is no longer bounded. Tam &
Burton showed that the matching with the acoustic field could impose the spatially
damped instability wave to be exponentially increasing in the transverse direction.
This peculiarity was associated by Tam & Burton with the crossing of the branch
cut defined in the integral expression of the acoustic field by the local complex
wavenumber of the instability wave. We shall see, in the present paper, that this
phenomenon actually depends on other characteristics of the wave packets, and that
it can also affect subsonic wave packets.

Tam & Burton (1984a, b), in their matching procedure, only considered the acoustic
contribution of the instability wave. They did not consider the feedback of the acoustic
field on the shear flow. For small θ , that is in the shear flow, the contribution given
by (1.1) has to be compared with the instability wave. Both are exponentially small
for non-transonic Mach numbers, but the acoustic contribution is always larger than
the instability wave packet, sufficiently far downstream, as the acoustic field decreases
algebraically. To understand how and where the instability wave is superseded by the
acoustic field constitutes one of the main motivations of this work. In the transonic
regime, the acoustic far field remains algebraic within the shear flow. It is therefore
expected to become dominant over the instability wave packet that has generated
it downstream of a location near the instability wave maximum. The transonic
hypothesis will then permit us to describe the interplay between the instability wave
and its acoustic field by a local analysis near the instability wave maximum.

The paper is organized as follows. In § 2, the wavy wall analogy framework is
presented for two-dimensional flows. The scalings that we consider are introduced.
The general integral expression for the acoustic pressure field is shown to reduce for
our scalings to a simple generic problem which is treatable by asymptotic techniques.
Asymptotic estimates for the integral are obtained through a steepest descent analysis
in § 4. The different contributions (branch point, saddle points) are analysed in detail,
in particular, to identify the regions where they are present. Stokes lines and anti-
Stokes lines which characterize the approximation are in particular determined. The
acoustic field is also shown to exhibit a caustic around which a specific approximation
is obtained in that section. Features of the acoustic field are computed in § 4 for a few
specific cases. In § 5, the form of the acoustic field close to the shear flow is studied.
A branch-point contribution is shown to be present in the shear flow downstream
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of a streamwise location which is computed. The condition of matching the acoustic
field with the instability wave is also analysed. It is shown that it may require an
exponential growth of the instability wave in the transverse direction. The last section
briefly summarizes the main results of the article. An application of the results to the
data provided by Tam & Morris (1980) for a two-dimensional mixing layer is also
provided.

2. The basic equations
We consider a two-dimensional spatial instability wave of real frequency ω in a

pre-existing two-dimensional mixing layer. The basic flow is assumed to be weakly
non-parallel, such that the pressure of the instability wave can be described by a local
plane wave approximation (WKBJ approximation)

pi(x, y; X) = qi(y; X) exp

{
i

ε

∫ X

α(s) ds

}
, (2.1)

where the small parameter ε measures the non-parallel character of the flow along
the streamwise direction x. This parameter can be defined, for instance, as the ratio
of a characteristic instability wavelength by a streamwise evolution length. The
non-parallel character implies that the streamwise velocity and density of the base
flow depend on the transverse coordinate y and on a slow variable X = εx. The
local complex wavenumber α(X) varies on the same slow streamwise variable. It is
obtained by solving a local Rayleigh equation for the transverse structure qi(y; X) of
the perturbation pressure with suitable boundary conditions. We shall see below that
boundary conditions are not a trivial matter. A priori, they should be deduced from
the condition of matching with the acoustic field. We shall come back to this issue at
the end of the paper. In the following, we assume that α(X) is known and that the
matching can be performed.

If the fluid is at rest far from the shear flow, the instability wave pressure behaves
for large y (y > 0) as a complex exponential

pi(x, y; X) ∼ p
(∞)
i (x; ε) exp

{
−

√
α2(X) − k2

0 y

}
, (2.2)

where the branch point k0 is defined from the speed of sound a0 by k0 =ω/a0, and

p
(∞)
i (x; ε) = A(X) exp

{
i

ε

∫ X

α(s) ds

}
. (2.3)

In the dimensionless wave equation of Crighton & Huerre (1990), the length scale
is given by the wavelength 1/α, whereas Tam & Burton (1984a) used the initial
thickness of the mixing layer. Using the dimensionless space coordinates of Tam &
Burton (1984a), the role of the convective Mach number of Crighton & Huerre (1990)
is played by k0 in our problem.

As mentioned above, the definition of the square root results from a condition
of matching. We shall see in § 6 that in certain conditions, the matching imposes

Re(
√

α2 − k2
0) < 0 such that the instability wave is exponentially growing in the

transverse direction, for y > 0.
In the outer region (far from the shear flow), the pressure field p0(x, y) satisfies the

Helmholtz equation

∂2p0

∂x2
+

∂2p0

∂y2
+ k2

0p0 = 0. (2.4)



Acoustic near field of a transonic instability wave packet 5

k0

–k0

ki

kr

Branch cut

Figure 1. Integration contour and branch cut in the complex k-plane for the definition of
the acoustic field expression (2.6).

Tam & Morris (1980) showed that a solution to (2.4) can be matched to (2.2) if we
assume that it satisfies the boundary condition

p0(x, 0) = p
(∞)
i (x; ε). (2.5)

This constitutes the oscillating surface, or wavy wall analogy. The general solution of
this ‘outer’ problem, that we shall call the acoustic field, can be written

p0(x, y; ε) =

∫ +∞

−∞
p̂

(∞)
i (k; ε) exp(ikx −

√
k2 − k2

0 y) dk, (2.6)

where

p̂
(∞)
i (k; ε) =

1

2π

∫ +∞

−∞
p

(∞)
i (x; ε) e−ikx dx, (2.7)

defines the Fourier transform p̂
(∞)
i (k; ε) of p

(∞)
i (x; ε).

The branch cut is defined by the condition −π/2 � arg(
√

k2 − k2
0) < π/2, such that

the contributions to the integral as y tends to infinity are bounded or represent
outgoing waves. This corresponds to a causality condition which guarantees that the
integral tends to zero as y → ∞ for any frequency with a positive imaginary part
(Im(k0) > 0). The integration contour and the branch cut are illustrated in figure 1.

The behaviour of the acoustic field for large values of x2 + y2 is readily obtained
from (2.6) by the steepest-descent method. If x = r cos θ and y = r sin θ , we obtain
as r → ∞, the acoustic far-field expression

p(r, θ) ∼
√

2πk0

r
sin θ exp(ik0r − iπ/4)p̂(∞)

i (k0 cos θ; ε). (2.8)

Equation (1.1) is obtained from this expression with a Gaussian wave packet for p
(∞)
i .

Such a Gaussian wavepacket is generically obtained for p
(∞)
i from (2.3) in the neigh-

bourhood of its maximum location Xm where Im(α(Xm)) = 0. Indeed, using k0 to non-
dimensionalize all spatial variables (this amounts to replacing k0 by 1 in the formulae
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given above), (2.3) reduces at leading order to

p
(∞)
im (x; ε) ∼ Am exp

{
−e−iχ |α′

m|(X − Xm)2

2ε

}
eiαmx, (2.9)

where αm = α(Xm), α′
m is the derivative of α with respect to X, evaluated at Xm and

χ = 1
2
π − arg(α′

m). (2.10)

Expression (2.9) is valid as long as higher-order terms, such as α′′
m(X − X)3/(3ε), do

not intervene in the exponential. This requires that |X − Xm| 	 ε1/3 or equivalently

|x − xm| 	 ε−2/3. (2.11)

In the following, we also assume that the maximum is not degenerated, that is the
angle χ is such that −π/2 < χ < π/2. When χ = 0, or equivalently α′

m is purely
imaginary, expression (2.9) is just a wave of wavenumber αm modulated by a Gaussian
amplitude, as considered by Crighton & Huerre (1990).

Close to k = αm, we expect the Fourier transform of p
(∞)
i to be given by the Fourier

transform of (2.9). Thus, to the lowest order, p̂
(∞)
im can be written as

p̂
(∞)
im (k; ε) ∼ Ameiχ/2

√
2πε̄

exp

{
−eiχ (k − αm)2

2ε̄

}
e−i(k−αm)xm, (2.12)

with ε̄ = ε|α′
m|. It will be convenient to write (2.12), using (2.9), as

p̂
(∞)
im (k; ε) ∼ eiχ/2p

(∞)
im (x; ε)√
2πε̄

exp

{
−eiχ [k − αm − α′

m(X − Xm)]2

2ε̄

}
e−ikx. (2.13)

Our purpose is to analyse the way in which the instability wave is transformed into
the acoustic far field (2.8). As explained in § 1, when instability wavenumber αm and
branch point k0 are close to each other, this transformation is expected to occur in
the neighbourhood of Xm. We shall characterize the size of this neighbourhood by a
new small positive parameter µ. The scalings for the variables k and y in term of µ

can be obtained from expressions (2.6) and (2.12). We immediately see that all the
wavenumbers have to be in a O(µ) neighbourhood of the branch point. Moreover,
the acoustic field component associated with the square root term in (2.6) is present
at the same order if y =O(µ3/2/ε). The corresponding physical domain is indicated
in figure 2.

In the following, we shall assume that the small parameter µ satisfies the condition
√

ε 	 µ 	 ε1/3. (2.14)

The condition µ 	 ε1/3 guarantees that the Gaussian approximation for the wave
packet can be used. The other condition µ �

√
ε is to guarantee that the integral (2.6)

remains, in the domain of study, an integral with a rapidly varying phase, allowing
the asymptotic analysis performed in the next section. Under hypothesis (2.14), the
streamwise scale µ/ε of the acoustic field is larger than the wave-packet scale 1/

√
ε,

but smaller than the large evolution scale or integral scale 1/ε of the base flow. Note
that the domain of study contains the small angle direction (tan θ =O(

√
µ)) along

which the acoustic far field is maximum.
For the analysis, it is convenient to introduce the local variables X̄, Ȳ and K̄ defined

by

X̄ =
X − Xm

µ
=

ε(x − xm)

µ
, (2.15a)
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µ/ε

µ3/2

—–ε

Figure 2. Location of the region of study in the acoustic field region (delimited from below
by the solid curve). The far-field region is above the dashed curve. The wave-packet scale 1/

√
ε

and the integral scale 1/ε are indicated on the plot of the instability wave amplitude. The
parameter µ is such that

√
ε 	 µ 	 ε1/3.

Ȳ =
εy

µ3/2
, (2.15b)

K̄ =
k − 1

µ
. (2.15c)

The local instability wavenumber αm is also assumed to be in the O(µ) neighbourhood
of the branch point k0 = 1. The parameter µ can then be renormalized such that αm

can be written, up to o(µ) terms, as

α(Xm) ∼ 1 + ᾱµ, (2.16)

where ᾱ = 1 for the (weakly) subsonic case and ᾱ = −1 for the (weakly) supersonic
case. The transonic case (ᾱ = 0) corresponds to configurations where |αm − 1| 	 µ.

Substituting the above expansions in (2.6) with (2.13), the acoustic pressure field
can be written at leading order as

p0(X̄, Ȳ ; ε, µ) ∼ q(x; ε, µ)

∫ +∞

−∞
exp

{
µ2ψ(K̄, X̄, Ȳ )

ε̄

}
dK̄, (2.17)

with

q(x; ε, µ) =
µeiχ/2

√
2πε̄

p
(∞)
im (x; ε), (2.18a)

ψ(K̄, X̄, Ȳ ) = − 1
2
eiχ (K̄ − ᾱ − α′

mX̄)2 − |α′
m|

√
2K̄Ȳ . (2.18b)

We shall see in § 6 that this expression is convenient for analyzing the matching
of the acoustic field with the instability wave. For an estimation of the integral in



8 S. Le Dizès and C. Millet

a general framework, it is useful to go one step further in the reduction. For this
purpose, we define renormalized variables

X̂ = |α′
m|X̄, (2.19a)

Ŷ =
|α′

m|Ȳ
|N(X̂)|3/2

, (2.19b)

K̂ =
K̄

2N(X̂)
, (2.19c)

ε̂ =
ε̄

2[µN(X̂)]2
, (2.19d)

where the real function N(X̂) > 0 is defined by

N(X̂)eiφ(X̂) = X̂ − ieiχ ᾱ. (2.20)

In contrast with χ , which is a constant parameter characterizing the instability wave
near its maximum, the other parameters Ŷ and φ are functions that vary with the
location X̂. For instance, as X̂ varies from −∞ to +∞, the function φ varies from −π
to 0− in the subsonic case (ᾱ = 1), and from +π to 0+ in the supersonic case (ᾱ = −1).
In the transonic case, φ remains constant and equal to zero.

With these new variables, the expression for p0 becomes

p0(X̂, Ŷ ; ε, µ) ∼ q̂(x; ε, µ)

∫ +∞

−∞
exp

{
ψ̂(K̂, Ŷ , φ, χ)

ε̂

}
dK̂, (2.21)

with

q̂(x; ε, µ) =

√
2µN(X̂)eiχ/2

√
πε̄

Am exp

{
−eiχ µ2ᾱ2

2ε̄

}
eix+iᾱµxm, (2.22a)

ψ̂(K̂, Ŷ , φ, χ) = −
√

K̂Ŷ + ieiφK̂ − eiχK̂2. (2.22b)

In the complex K̂-plane, there is now a unique branch cut, issuing from the branch
point K̂ = 0. To be in agreement with the definition of the Fourier transform, this
singularity must remain above the integration contour.

3. Steepest descent analysis
In this section, an asymptotic estimate of

I (Ŷ , φ, χ) =

∫ +∞

−∞
exp

{
ψ̂(K̂, Ŷ , φ, χ)

ε̂

}
dK̂, (3.1)

is obtained as ε̂ → 0. The form of this expression is well-adapted to the steepest-
descent method as explained in several textbooks (e.g. Erdélyi 1956). The idea of the
method is to use the analyticity of the integrand to justify deforming the integration
contour, initially taken along the real axis, to a new contour on which the phase ψ̂

has a constant imaginary part. Such a contour is called a constant-phase contour, or
equivalently, a steepest-descent contour. The contributions to the integral are then
found to come from saddle points and from singularities that cannot be avoided.
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3.1. Saddle-point contributions and integration contour

The saddle points K̂s are points in the complex K̂-plane at which two or more distinct
steepest-descent curves can intersect. They are defined by

∂K̂ψ̂(K̂s) = 0,

that is, substituting (2.22b) into the above equation, we obtain

− Ŷ

2
√

K̂s

+ ieiφ − 2eiχK̂s = 0. (3.2)

Equation (3.2) possesses three complex solutions for
√

K̂s which may be computed
using Cartan’s method. However, it provides at most only two different values of K̂s

for a given Riemann sheet, that is, for a given 2π range of variation of K̂ . We shall
denote these saddle points by K̂ (1)

s and K̂ (2)
s . The unique singularity that can also

contribute to the integral is the branch point K̂ = 0. We shall see below that except
for Ŷ → 0, this singularity can always be avoided by deforming the branch cut issuing
from K̂ = 0.

The leading-order contribution from a simple non-zero saddle point K̂ (j )
s , where j

is an index which will be defined in the following, is found to be

I (j )
s (Ŷ , φ, χ) ∼

√
−2πε̂

∂K̂K̂ ψ̂
(
K̂

(j )
s , Ŷ , χ

) exp

{
ψ̂

(
K̂ (j )

s , Ŷ , φ, χ
)

ε̂

}
, (3.3)

with

ψ̂
(
K̂ (j )

s , Ŷ , φ, χ
)

= −Ŷ

√
K̂

(j )
s + ieiφK̂ (j )

s − eiχ
(
K̂ (j )

s

)2
, (3.4a)

∂K̂K̂ ψ̂
(
K̂ (j )

s , Ŷ , χ
)

=
Ŷ

4K̂
(j )
s

√
K̂

(j )
s

− 2eiχ . (3.4b)

The main difficulty is to determine which saddle point contributes to the integral
as the parameters Ŷ , φ and χ vary. A priori this requires the detailed analysis of the
constant phase contours in the complex K̂-plane to determine whether the integration
contour can be deformed to pass through the saddle points along a steepest-descent
contour. When there are two saddle-point contributions, one is much larger than the
other unless we have Re(ψ̂ (1)

s ) = Re(ψ̂ (2)
s ), where ψ̂ (j )

s is the phase evaluated at K̂ (j )
s

(j = 1, 2). For a given χ , this condition defines Stokes lines in the parameter space
(Ŷ , φ). Along Stokes lines, both saddle-point contributions are of the same order,
and as such a line is crossed, we expect the two saddle-point contributions to change
dominance. Other important curves are defined by the anti-Stokes lines. These lines
delimit regions in the parameter space where we may change from one to two saddle-
point contributions. Accordingly, they are defined by Im(ψ̂ (1)

s ) = Im(ψ̂ (2)
s ). Thus, for a

given χ , the problem of evaluating (3.1) reduces to determining the Stokes lines and
the anti-Stokes lines in the parameter space (Ŷ , φ). (The Stokes line and anti-Stokes
line terminology varies from one author to the other. Here we have followed the
definition used by Bender & Orszag 1978).

Stokes lines and anti-Stokes lines satisfy particular properties near turning points
(Ŷ c, φc) where the saddle points merge. For instance, we know that three Stokes lines
and three anti-Stokes lines issue from turning points with a 2π/3 angle between two
lines. The turning points can be obtained from

∂K̂ψ̂ = ∂K̂K̂ ψ̂ = 0,
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Figure 3. Stokes lines (solid lines) and anti-Stokes lines (dashed lines) in the parameter space
(Ŷ , φ) for χ = π/4. The circles are the turning points (or caustics) T ±

c . The thick lines delimit

the different characteristic regions D
±
j .

which gives

K̂ (j )
s =

iei(φ−χ)

6
=

(
Ŷ e−iχ

8

)2/3

. (3.5)

We deduce two turning points T +
c = (Ŷ c, φ

+
c ) = ((2/3)3/2, χ/3 + π/6) and T −

c =

(Ŷ c, φ
−
c ) = ((2/3)3/2, χ/3 − π/2) with their associated double saddle points

K̂+
c =

e(2i/3)(π−χ)

6
, K̂−

c =
e−2iχ/3

6
. (3.6)

It is easy to follow numerically in the parameter space the Stokes lines and anti-
Stokes lines from each turning point. However, only two anti-Stokes lines and one
Stokes line from each turning point are relevant in our problem, as in a large part
of the parameter space, there is a single saddle-point contribution. Two saddle-point
contributions are involved in the regions D

±
j (j =2, 3) delimited by the anti-Stokes

lines (figure 3). In these regions, the two contributions are of the same order on the
Stokes lines. Each region delimited by a Stokes line or an anti-Stokes line corresponds
to a region in which the integration contour in the integral (3.1) has to be deformed
in a typical way (figure 4). Note that, in most cases, the position of the branch cut has
to be modified such that the steepest-descent contour does not cross the branch cut.
As (Ŷ , φ) rotates around the turning points, the saddle points tend to rotate around
the associated double saddle point K̂±

c . Each performs a π rotation as a complete
rotation of 2π is performed around the turning point. In order to unambiguously
define the saddle points K̂ (j )

s , it is therefore necessary to position two branch cuts
issuing from each turning point in the (Ŷ , φ) space, as shown in figure 3 by the two
Stokes lines S± = D

±
2 ∩ D

±
3 .

Suppose the saddle-point contribution in region D1 is given by I (1)
s . By shifting the

original integration path from the real axis into the complex plane so that it follows
a steepest-descent curve passing through one or two saddle points, the asymptotic
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Figure 4. Typical constant-phase (steepest descent) contours of ψ̂ (dashed lines) in the
complex K̂-plane. Solid lines are level curves on which the real part of ψ̂ is constant.
The branch cut is indicated by a thick solid line. Circles are saddle points. From (a) to (c), the
region index varies in the region φ < 0. The associated regions are respectively D−

2 , D−
3 and

D1, along the line Ŷ = 0.4. From (d) to (f), the region index varies in the region φ > 0, from
D1 to D+

3 along the line Ŷ =0.4. The figures (c) and (d) correspond to the same region D1,
but with two different positions of the branch cut and for different parameters, respectively,
φ = −2 and φ = 1/2.

behaviour of I is completely determined by

I ∼
{

I (1)
s (Ŷ , φ) ∈ D1,

I (1)
s + I (2)

s (Ŷ , φ) ∈ D
±
2,3,

(3.7)
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Ŷ

–3

–2

–1

0φ

1

2

3(c)

0.3 0.2

0.1

0

–0.2 –0.4

–0.6

Figure 5. Level contours of Re(ψ̂ (1)) in the (Ŷ , φ)-plane for (a) χ = −π/4, (b) χ = 0 and (c) χ =
π/4. The Stokes lines and anti-Stokes lines delimiting characteristic regions are, respectively,
represented by solid and dashed lines. The turning points (or caustics) are plotted as circles.

where I (1)
s and I (2)

s are given by (3.3). The above approximation is also valid on the

Stokes lines S+ and S−. With our definition for K̂ (1)
s , the contribution from the other

saddle point K̂ (2)
s remains exponentially small up to the Stokes lines on which both

contributions are of the same order. In terms of asymptotic approximations (in the
sense of Poincaré), (3.7) can be written

I ∼
{

I (1)
s (Ŷ , φ) /∈ S±,

I (1)
s + I (2)

s (Ŷ , φ) ∈ S±.
(3.8)

The form of the saddle-point contribution tells us that the modulus of I is governed
almost everywhere by the levels of Re(ψ̂ (1)). In figure 5, these levels are plotted in
the (Ŷ , φ)-plane together with the Stokes and anti-Stokes lines for different values
of χ . At the turning points T ±

c , both approximations for I (1)
s and I (2)

s diverge owing

to the vanishing of ∂K̂K̂ ψ̂ . These points are so-called ‘caustics’ of the acoustic field.
The existence of caustics has also been pointed out by Goldstein & Leib (2005) in
a more general WKBJ framework, but they did not provide any solution valid near
the caustics. Here, an adequate approximation for I near the caustics is obtained in
the next section. Note also that when Ŷ goes to zero, one of the two saddle points
collapses with the branch point K̂ = 0. The contribution from the saddle point K̂ = 0
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is, in that case, no longer given by an expression of the form (3.3), but by another
expression that we shall derive in § 3.3.

3.2. Approximation near the caustics

The method for obtaining an approximation of the integral I near a caustic is classical
and presented in several textbooks (see e.g. Kravtzov & Orlov 1990). The idea is to
reduce the integral I in a suitable neighbourhood of T ±

c to the caustic normal form
which describes the singularity. Here the caustic is a fold singularity, that is the
simplest catastrophe (Arnold 1978). This singularity is described by the Airy function

Ai(x) =
1

2π

∫ +∞

−∞
exp

{
i
u3

3
+ iux

}
du.

It is easy to see by expanding ψ̂ in Taylor expansions with respect to Ŷ c, φ±
c and

K̂±
c , that expression (3.1) for I can be written as

I ∼
ε̂1/3 exp

{
ψ̂c + ψ̂ Ŷ δŶ + ψ̂φδφ

±

ε̂

}
(

− i

2
ψ̂K̂K̂K̂

)1/3
Ai

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ̂ Ŷ K̂δŶ + ψ̂φK̂δφ±(
− iε̂2

2
ψ̂K̂K̂K̂

)1/3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (3.9)

in the region defined by δŶ = O(ε̂2/3) and δφ± = O(ε̂2/3), where δŶ = Ŷ − Ŷ c and
δφ± = φ − φ±

c . In this expression, the derivatives are evaluated at the turning points.
By applying (3.9) near the turning points T +

c and T −
c , the integral I can finally be

written, respectively,

I ∼ Q exp

{
1 + 2

√
6δŶ − 2iδφ+

12ei(χ−π)/3ε̂
+

11iπ

18

}
Ai

⎛
⎝ δŶ − i

√
2
3
δφ+

31/6
√

2ei(6χ+π)/9ε̂2/3

⎞
⎠ , (3.10a)

I ∼ Q exp

{
−1 − 2

√
6δŶ + 2iδφ−

12eiχ/3ε̂
+

9iπ

18

}
Ai

⎛
⎝ δŶ − i

√
2
3
δφ−

31/6
√

2ei(2χ+3π)/9ε̂2/3

⎞
⎠ . (3.10b)

with

Q =
ε̂1/3e−10iχ/18

91/3
. (3.11)

3.3. Approximation for small Ŷ

When Ŷ tends to zero, one of the two saddle points tends to the branch-point
singularity K̂ = 0. Expansions for both saddle points as Ŷ → 0 are easily obtained as

K̂ (0)
s = −e−2iφ

4

(
Ŷ 2 + iei(χ−3φ)Ŷ 4

)
+ O(Ŷ 6), (3.12a)

K̂s =
i

2
ei(φ−χ) − Ŷ

2
√

2
ei(φ+χ)/2e−iπ/4 + O(Ŷ 2), (3.12b)

where the saddle point which is close to the branch point K̂ = 0 as Ŷ tends to zero
is designated by K̂ (0)

s . According to the general expression (3.3), the saddle-point
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Figure 6. Typical contour plots when there is a branch-point contribution. The branch cut,
indicated by a thick solid curve, has been deformed to be aligned along with a contour of
constant imaginary part of ψ̂ . (a) Ŷ = 0 and φ = −0.3. (b) Ŷ = 0 and φ = 1.1 (note that the
branch cut has been moved to the other side of the saddle point).

contributions can be written, respectively, as

I (0)
s ∼ Ŷ

√
πε̂e−3iφ/2 exp

{
ie−iφ

4ε̂
Ŷ 2 − ei(χ−4φ)

16ε̂
Ŷ 4 − i

π

4
+ O

(
Ŷ 6

ε̂

)}
, (3.13a)

Is ∼
√

πε̂e−iχ/2 exp

{
−ei(2φ−χ)

4ε̂
− eiπ/4ei(φ−χ)/2

2ε̂
Ŷ + O

(
Ŷ 2

ε̂

)}
. (3.13b)

Note that in order to determine the amplitude of I (0)
s as φ tends to zero, we have

kept terms up to Ŷ 4/ε̂ in (3.13a). Note also that the Stokes and anti-Stokes lines
that delimit the regions in figure 3 may be computed from the phases in (3.13a) and
(3.13b). We obtain φ

±
S = χ/2±π/4 for the Stokes lines, φAS = χ/2 and φ

±
AS = χ/2±π/2

for the anti-Stokes lines, which is in total agreement with figure 3. Indeed, the two
anti-Stokes lines issued from the turning points merge at φAS = χ/2 for Ŷ =0.

The correspondence between K̂ (1)
s , K̂ (2)

s and the saddle points defined by (3.12a)
and (3.12b) can be established using (3.2). We find

K̂ (1)
s =

{
K̂ (0)

s , φ−
S < φ < φ+

S ,

K̂s, φ < φ−
S or φ > φ+

S ,
(3.14)

and the complementary relation for K̂ (2)
s . From (3.7), we deduce

I ∼
{

Is, φ < φ−
AS or φ > φ+

AS,

I (0)
s + Is, φ−

AS < φ < φ+
AS.

(3.15)

It is important to keep in mind that the steepest-descent method requires a large
phase term ψ̂/ε̂. Here, this condition implies that Ŷ must satisfy

Ŷ 2 � ε̂, (3.16)

or equivalently, y2 � N(X̂)µ/ε. When this condition is not satisfied, the saddle point
K̂ (0)

s merges with the branch point K̂ =0 and approximation (3.15) is a priori no longer
valid. The saddle-point contribution is transformed into a branch-point contribution.
Such a contribution is present when the steepest-descent contour has to be deformed
around the branch point (figure 6). The branch-point contribution comes from the
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origin K̂ =0 in the vicinity in which the phase is dominated by the linear term ieiφK̂ .
This contribution can be captured by performing the change of variable

−η = ieiφK̂/ε̂. (3.17)

Substituting (3.17) into (2.22b) gives

ψ̂ = −ηε̂ + ei(χ−2φ)(ηε̂)2 − Ŷ e−iφ/2−iπ/4
√

−ηε̂. (3.18)

As soon as we have Ŷ 2 	 ε̂, the contribution coming from the neighbourhood of the
branch point is obtained from

Icut ∼ −ie−iπ/4Ŷ
√

ε̂e−3iφ/2

∫
Fη

√
−ηe−η dη, (3.19)

with the Hankel’s contour integral∫
Fη

√
−ηe−η dη = i

√
π, (3.20)

where the path of integration starts at +∞ on the real axis, circles the origin in a
counterclockwise direction and returns to the starting point. Finally, we obtain

Icut ∼ e−iπ/4Ŷ
√

πε̂e−3iφ/2. (3.21)

This expression corresponds to the leading-order expression of I (0)
s for Ŷ 2/ε̂ 	 1. As

the contribution for the other saddle point K̂s is not modified for Ŷ 2 	 ε̂, this implies
that the approximations (3.13a, b) are also valid when Ŷ 2 	 ε̂.

4. Acoustic near field
In the previous section, we have obtained approximations for the generic integral

I that intervenes in the expression of the acoustic field. In the present section, these
approximations are used to plot the level contours of the acoustic near field in the
physical space (x, y).

Expressions for φ and Ŷ in terms of x and y can be deduced from (2.15a, b),
(2.19a, b) and (2.20). If we use the expression ᾱµ = (1/Mc − 1) where Mc is the
convective Mach number, we obtain

φ = arg

(
x − xm + ieiχ 1 − 1/Mc

ε̄

)
, (4.1a)

Ŷ =
y√
ε̄

∣∣∣∣x − xm + ieiχ 1 − 1/Mc

ε̄

∣∣∣∣
−3/2

. (4.1b)

Similarly, we can express x and y in terms of φ and Ŷ . We obtain

x = xm +
1 − 1/Mc

ε̄

[
sin(χ) +

cos(χ)

tan(φ)

]
, (4.2a)

y =
|1 − 1/Mc|3/2

ε̄

∣∣∣∣cos χ

sin φ

∣∣∣∣
3/2

Ŷ . (4.2b)

Note that the parameter ε̄ is also related to physical quantities: it is given by
ε̄ = |α′

c/α
2
c |.

In the limit of vanishing ε̄, we have seen that, almost everywhere, the integral I can
be estimated by a single saddle-point contribution I (1)

s whose amplitude is dominated
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Figure 7. Sound pressure levels in the physical (x, y) space. The Mach number is 0.85 in the
top line, 1 in the middle line and 1.15 in the bottom line. The parameter χ is −π/4, 0 and
π/4 in the left-hand row, middle row and right-hand row, respectively. The caustic (circle),
the Stokes lines (thick solid curves) and the anti-Stokes lines (thick dashed lines) are also
indicated. The parameter ε̄ is here ε̄ = 0.04.

by the levels of Re(ψ̂ (1)
s ) which have been displayed in figure 5. In this limit, the main

behaviour of p can be deduced from these figures using (2.21) and the mapping
(4.1). For small but finite value of ε̄, both the amplitude factor and the second
subdominant contribution create amplitude corrections which can become non-
negligible. In figure 7, the complete approximation obtained from (3.7) is plotted for
a given value ε̄ =0.04. The sound pressure levels defined by

Sp = 10 log10〈p2〉

are given for three different values of χ and three different Mach numbers. Note that
we have normalized the pressure such that Sp= 0 at the maximum of the instability
wave. These pressure levels therefore measure the transmission loss of the instability
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Figure 8. Sound pressure levels near the caustic (circle). The solid line corresponds to the
Stokes line on which local minima of pressure are present. Here, Mc = 1.1, ε̄ = 0.0002 and
χ = −π/4.

wave in the plane. The caustic point, the Stokes and anti-Stokes lines are also
indicated in figure 7. The anti-Stokes lines delimit the region where the acoustic
field is approximated by the sum of two contributions. Near the anti-Stokes line, the
subdominant contribution is exponentially small in the limit of small ε̄. Here, the
finite value of ε̄ induces a weak discontinuous behaviour across the anti-Stokes line.

Characteristic features can be noted from these plots. Whatever χ and the
convective Mach number, the acoustic field is a maximum along a direction whose
angle varies between π/8 and π/4. The peak angle increases with χ and the convective
Mach number. Note also that the maximum is always located in a region where the
pressure approximation has a single saddle-point contribution. The directivity pattern
of the pressure field is therefore not due to the presence of several contributions. As
expected, we can also see that the acoustic field is weak for subsonic Mach numbers,
but strong for supersonic Mach numbers.

The caustic, indicated by a circle in figure 7, corresponds to a singularity of
approximation (3.7). This point is given in physical variables by

xc = xm +
2(1 − 1/Mc)

ε̄
cos(χ/3 + π/6), (4.3a)

yc =
|1 − 1/Mc|3/2

ε̄

∣∣∣∣ 2 cosχ

3 sin(χ/3 + π/6)

∣∣∣∣
3/2

. (4.3b)

Near such a point the local approximation (3.10a) or (3.10b) has to be used. Figure 8
shows the sound pressure level near the caustic obtained with this approximation for
χ = −π/4 and Mc = 1.1. A smaller value of ε̄ than in figure 7 has been used in order
to see the peculiar structure of the field near the caustic. Note in particular that the
pressure field possesses a series of minima corresponding to the zeros of the Airy
function. Near these minima, higher order terms have to be considered to derive
an adequate approximation of the pressure field. These minima are located on the
Stokes line. They are the signature of the destructive interactions of the two wave-like
contributions I (1)

s and I (2)
s .

5. Branch point contribution in the shear flow region

Close to the shear-flow region, Ŷ becomes small and expressions (3.15) for I must
be used to obtain an approximation for the pressure field. We have seen in § 3.3
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that for small Ŷ , I possesses two possible contributions Is and I (0)
s associated with a

saddle point and a branch point, respectively. The pressure field ps associated with
the saddle-point contribution reduces, for 1 	 y 	 1/

√
ε, to

ps ∼ p
(∞)
im (x; ε) exp{−

√
2[α(X) − 1]y}. (5.1)

It exactly matches the instability wave approximation (2.2) for large y, when the
wave is close to transonic. The pressure field pcut associated with the branch-point
contribution I (0)

s can be simplified to:

p(0)
s ∼ p̂

(∞)
im

y
√

2πeix−iπ/4(
x − xm + ieiχ

1 − 1/Mc

ε̄

)3/2
, (5.2)

using (2.12). This expression is in agreement with (2.8) for small inclination angles.
As shown in § 3.3, the instability wave contribution is present everywhere. The

branch-cut contribution appears when the anti-Stokes angle φ
±
AS = χ/2±π/2 is crossed,

and becomes dominant when we cross the Stokes angle φ
±
S = χ/2 ± π/4. In terms of

real variables, this means that the branch-cut contribution appears in the pressure-field
approximation downstream of the location

xAS = xm +
1 − 1/Mc

ε̄
tan(χ/2), (5.3)

and becomes dominant downstream of

xS = xm +
|1 − 1/Mc|

ε̄
. (5.4)

These two characteristic locations can also be obtained easily from geometrical
arguments. Indeed, the phase given by (2.18b), from which we deduce the different
contributions, can be simplified for small Ȳ as

µ2ψ = −eiχ

2

[
K̄ −

(
1

Mc

− 1

)
− ε̄ie−iχ (x − xm)

]2

. (5.5)

Thus, the instability-wave contribution comes from the saddle point

K̄s = 1/Mc − 1 + ε̄ie−iχ (x − xm) ∼ α(X) − 1. (5.6)

In figure 9, this point and the characteristic curves Re(ψ) = 0 and Im(ψ) = 0 are
plotted in the complex K̄-plane. The branch cut issued from K̄ = 0 is also indicated.
The existence of the branch-cut contribution depends on the position of branch
point K̄ = 0 with respect to the characteristic curves. If the branch point is in the
sector A limited by the steepest descent path (on which Im(ψ) = 0), the branch-point
contribution is present (see figure 6). Moreover, this contribution is larger than the
saddle-point contribution if it possesses a larger Re(ψ), that is, if the branch point is
in the sector B limited by Re(ψ) = 0 curves. Both (5.3) and (5.4) can be obtained by
taking K̄ = 0 to be on the boundaries of the sectors A and B, respectively.

A third sector, C, has also been indicated in figure 9. When the branch point is in
this sector, the branch cut has to be displaced to the other side of the saddle point for
the steepest descent path to go through this point (as illustrated in figure 6b). This

means that
√

K̄s is on the second Riemann sheet on which Re(
√

K̄s) < 0. In view of
(5.6) and (5.1), this implies that the instability-wave contribution has an exponentially
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Figure 9. Phase contours for small Ŷ . Location in the complex K̄-plane of the saddle point
K̄s , the characteristic curves Re(ψ) = 0 (solid lines) and Im(ψ) = 0 (dashed lines) with respect
to the branch cut (thick solid line). The pressure field approximation possesses specific features
when the branch point K̄ = 0 is in the sectors A, B and C (see text).

growing behaviour with respect to y in this sector. This peculiar transverse behaviour
of the instability wave occurs in the following physical regions:
For Mc > 1:

0 < x − xm <
1 − 1/Mc

ε̄ tan(χ/2)
if χ > 0, (5.7a)

0 < x − xm if χ < 0. (5.7b)

For Mc < 1:

1 − 1/Mc

ε̄ tan(χ/2)
< x − xm if χ < 0. (5.8a)

It is worth mentioning that the exponentially growing behaviour of the instability
wave is neither directly related to the existence of a branch point contribution nor
to the supersonic character of the instability wave. It can occur in both subsonic
and supersonic cases and also in configurations in which there is no branch-point
contribution. However, it always occurs downstream of the maximum amplitude of
the instability wave, that is, in regions where the wave is spatially damped. However,
again, being downstream of Xm is not a sufficient condition for either supersonic nor
subsonic waves.

The boundaries of the different regions associated with the sectors A, B and C
where the pressure-field approximation changes in nature can be expressed in terms
of a single rescaled variable

ξ = ε̄
x − xm

|1 − 1/Mc|
. (5.9)

These boundaries are plotted in figure 10.
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Figure 10. Curves in the (ξ, χ)-plane where the pressure near field (for small Ŷ ) changes in
nature. (a) Mc < 1; (b) Mc > 1. The branch-point contribution is present on the right-hand side
of the solid line (sector A), and dominant on the right-hand side of the dashed line (sector B).
The instability wave exhibits an exponentially growing transverse behaviour (sector C) on the
right-hand side of the dotted line, except for Mc > 1 and ξ > 0 for which such a behaviour
occurs in between the two dotted lines.

6. Discussion
In this article, we have analysed the acoustic near field generated by a close-to-

transonic instability wave. We have shown that the conversion of the instability wave
into an acoustic field is governed by the structure of the perturbation in the near-field
region close to the location Xm where the instability wave reaches its maximum.
By a local analysis near Xm, we have been able to determine the generic structure
of the acoustic near field. Using a steepest descent method, approximations for the
acoustic near field have been derived. We have shown that the acoustic field is either
composed of a single saddle-point contribution or of two saddle-point contributions.
The region where two contributions are present has been determined. A caustic where
the two saddle points merge has also been identified. A specific approximation for the
acoustic field has been obtained near such a point.

The acoustic near field close to the shear-flow region has also been studied. We have
shown that two contributions are present downstream of a location which has been
calculated. One of these contributions reduces to the instability wave whereas the
other one, associated with a branch-point singularity, is an algebraic field which is in
agreement with the far-field expression of the acoustic field. The algebraic contribution
becomes dominant over the instability wave downstream a specific location. We have
also demonstrated that the instability wave should have an exponentially growing
transverse behaviour in certain regions downstream of Xm to match the acoustic
field. This peculiar behaviour of the instability wave had been noticed by Tam &
Burton (1984a) for supersonic convective Mach numbers. Here, we have provided
an explanation and identified the parameters governing this phenomenon for both
supersonic and subsonic convective Mach numbers.

We would be interested to compare our predictions for the acoustic near field with
numerical and experimental data. Unfortunately, we have not found any data of
the acoustic near field generated by a transonic wave packet in a two-dimensional
flow. Tam & Morris (1980) provided some predictions for the noise directivity in
the far field using the local stability properties of a spatially developing wave packet
in a two-dimensional shear layer. Their stability results can be used to calculate
the near field in our framework. For the strongest Mach number they considered
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Figure 11. (a) Sound pressure levels in the physical (x, y)-space and (b) acoustic near-field
directivity for Mc = 0.88, χ = −0.54 and ε̄ = 0.017. The dashed line corresponds to the acoustic
far field.

(M = 1.75), the convective Mach number of their temporally forced instability wave
is approximatively Mc � 0.88 and we can estimate χ � −0.54 and ε̄ � 0.017 using
figures 3 and 4 of their paper. Figure 11(a) shows the sound pressure levels for the
instability wave packet corresponding to these parameters. The near-field directivity
patterns are shown in figure 11(b) for several radial distances from xm and compared
to the acoustic far field given by (2.8) with (2.12). Note first that the far-field directivity
peaks at 20◦ and possesses a similar form to the directivity pattern obtained by Tam &
Morris (1980) (compare with figure 14 of Tam & Morris 1980 for angles between
0 and 40◦). This means that our Gaussian approximation for the wave packet is
sufficient to capture the main feature of the directivity pattern in the far field in
that case. Secondly, it is worth pointing out that the directivity pattern varies in
the near field. In particular, the peak angle decreases as we become closer to the
instability wave maximum. Note also that the width of the peak does not have a
monotonous behaviour: the directivity pattern has its more pronounced peak at a
distance approximatively equal to the integral scale 1/ε̄. Tam & Morris (1980) also
noticed that the radiation patterns are similar for all frequencies. Here, this property is
obtained in a straightforward manner by simply noticing that none of the parameters
Mc, χ and ε̄ depends on the frequency.

As already mentioned in § 1, there are many works on both subsonic and supersonic
jets. For instance, Mitchell et al. (1997) computed the acoustic near field of a
supersonic wave packet in an axisymmetric M = 2 jet. They obtained, by direct
numerical simulation, sound pressure patterns which resemble our results (see their
figure 4). Yet, our results cannot be applied directly to their case. The behaviour
of the perturbations in the near field of a jet involves special functions which have
not been taken into account in our analysis. In particular, Bessel functions should
be present in the integral expression (2.6) of the acoustic near field. These functions
modify the near-field characteristics, but they do not affect the directivity pattern in
the far field. Therefore, it is not surprising that some characteristics of the acoustic
far field associated with perturbations in jets can still be captured by our analysis.

Although the general agreement of the directivity of the Mach wave radiation and
its peak Strouhal number are indirect evidence supporting the linear theory, the recent
numerical simulation of Mohseni et al. (2002) indicates that nonlinear effects may
be of importance in sound fields of supersonic jets. Nonlinear effects are expected to
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affect the characteristics of instability wave packets, but if the acoustic propagation
remains linear, our analysis can a priori still be used. It would be interesting to analyse
the modifications of the sound field associated with these effects in our framework.
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