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Stability analysis of plane wave solutions of the discrete Ginzburg-Landau equation
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The discrete Ginzburg-Landau model for a family of oscillators linearly coupled with their first neighbors is
studied. The full linear stability analysis of the nonlinear plane wave solutions is performed by considering
both the wave numbedk) of the basic states and the wave numfagrof the perturbations as free parameters.

In particular, it is shown that nonlinear plane waves can be destabilized not only by den@)( or short
(g= ) wave perturbations, but also by intermediate wave numbetsq ). Finite size effects are also
considered and discussed in connection with experiments on coupled oscillating wakes.

PACS numbds): 47.20.Lz, 47.52+j, 05.45.xt

[. INTRODUCTION They showed that destabilization can occur due to finite
wave number perturbations which implies more complex dy-
The interest in the dynamics of discrete systems comegamical behaviors as those usually analyzed. Direct numeri-
from the diversity of their numerous applications in physicalcal simulations of the continuous version of the CGLE also
and biological sciences. The structure of such systems infdleémonstrated the richness of the coupled oscillator system
plies that their dynamics is the result of an interaction befor which spatiotemporal chaos was in particular observed
tween individual dynamical entities. Molecular chains andl17]. Here, it is our purpose to fully describe the stability of
arrays of wave guides in Opt|¢§_], Josephson junctior[g] the non“near plane wave Sqlutions of the discretized com-
are examples referred to as coupled oscillaf@s Also, Plex Ginzburg-Landau equation.
models for life sciences can be investigated by considering FOr a discrete system, the possible wave numbers of the
the behavior of Coup|ed Ce||8:ardiac muscle defibrillation nonlinear plane wave are related to the number of OSCi||atOI’S,
[4], |egged |ocom0tior[5]' fireflies synchrony[6], neural the bOUndary conditions, and the nature of the COUpling term
networks [7]). We focus in this paper on the complex between the oscillators. These wave numbers range between
Ginzburg-Landau equatiofCGLE) in one space dimension. k=0 where the oscillators are in phase &7 where two
Very often used in fluid mechanics as a phenomenologicafonsecutive oscillators are in phase opposition. As far as we
equation, the CGLE and its different forms were analyticallyknow, the stability analysis of a nonlinear plane wave was
derived in various applicationsee Ref[8], for instancg  Performed for the modulation wave numbeys-0 and g
where it appears as an amplitude equation for a rapidly os= only [9]. In this paper, we extend this study to account
cillating wave propagating in a nonlinear medium. The dis-for any modulation wave number.
cretized form of the CGLE has been used for describing
vortex line dynamicg$9] and in the study of coupled wakes Il. THEORY
[10]. In these two examples, the oscillation of each isolated . )
cell (each vortex or each wak@beys a Landau equation The complex Ginzburg-Landau equation takes the form
which is the normal form of the Hopf bifurcation that gives dA
birth to each oscillator. The global behavior of the vortex or b} =A;—(1+ iC2)|Aj|2Aj +n(l+icy)
wake arrays can consequently be described by the dynamics dt
of coupled Hopf oscillators. Various mathematical shapes of
coupling can be considered, such as linear or nonlinear, local
or global[11]. Motivated by the observation of a short-range yhere the oscillatorg\; ,j e {1, . .. n} also satisfy the peri-
|_nterac'qon betvv_een Wakés_Z], we festrlct our analysis tq @ odicity conditionsA,=A,, andA,, ;= A,. The real numbers
first neighbors linear coupling as it was also the case in e andc, measure the influence of the coupling on the phase
studies of Willaimeet al.[9] and Le Ga[10]. Since Eckhaus 4 its nonlinear correction, respectively. The real numper
[13], most stability analysis have been carried out for theharacterizes the strength of the linear coupling. This addi-
continuous version of the Ginzburg-Landau equation. Thiona| parameter is specific to discrete systems as for con-

instability arises from a resonance mechanism between waug, ous systems it can be scaled out by a change of spatial
trains, and is called the Benjamin-Feir instabili4] (or the | 5rigples.

sideband instability Newell’'s criterion provides a condition The nonlinear plane wave solutions are defined by
for the destabilization of plane waves by long wavelength
modulations[15]. More recently, Matkowsky and Volpert Aj=AgKimen, ®)
[16] considered perturbations of arbitrary wave numbers.

with i?=—1. The amplituded, the wave numbek, and the

frequencyw satisfy the nonlinear dispersion relation
*Present address: Center for BioDynamics, Boston University,

Boston, MA 02215. |A|2=1—27[1-cogk)]=0, (3a)

X(Aj1tA _1—2A)), (1
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w=4n(c,—Cy)sir?| = | +c¢,. (3b)

2
For a given couple of parametecs andc,, amplitude and
frequency depend on the two parameteesd 1/;. The first

relation defines the domain of existence of the basic state.

Here it is implicitly assumed that the coupling is “attrac-
tive” such that the homogeneous plane wake=Q) is the
only possible solution near threshold for smally1Af the
coupling was “repulsive,” the instability threshold would
occur near bj=4, and the mode selection would yield the
phase opposition nonlinear plane wave=(7) [9]. Hereaf-
ter, we focus on cases with “attractive” coupling. Results
for “repulsive” coupling are deduced by the following
transformations:k—7—k and 1h—4—1/n. The wave
numbersk are quantified by the periodicity conditioh,
=A; which impliesk,=21/n wherel is an integer between
0 and the integer part af/2. In the following, the analysis is
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FIG. 1. Stability character of the nonlinear plane wave of wave
numberk versus 1#. The regionS above the upper bold line is the

done for continuous wave numbers which is equivalent tglomain of stability with respect to any modulation wave number.
assuming that the number of oscillators is infinite. Particu-The dotted areas correspond to destabilization by a modulation of
larities associated with a finite number of oscillators are disWave numbeq—0 orq= (see Ref[9]). The lower bold line is
cussed at the end of the paper in connection with numericahe boundary of the domain of existence of the nonlinear plane

and experimental results.

The stability analysis is done by superimposing a pertur-

bation aj(t) to the amplitude of the nonlinear wave at the
locationj:

A—A+a(t). (4)
The amplitude modulation is searched in a normal form:
aj(t)=ae’'e', (5)

wherea is the complex constant amplitudg the real wave
number, and=s, +is; the complex growth rate. In view of
Egs.(2) and(4), this amplitude modulation is in fact associ-
ated with a plane wave perturbation of wave numberq. It
follows that if s,>0 in Eq. (5), the underlying nonlinear
plane wave of wave numbéris then destabilized by a per-
turbation of wave numbek+ g. Below, g is used as an in-

dependent parameter for convenience, but we keep in mind

waves given by conditio3a).

Co=1-Cq, Cpy=1+cf, (7
Cy=c0%0q), Sy=sin(q),

CK:]-_Ck! C12=1+C102.

After some algebraic manipulations, the condition for insta-
bility (s,>0) reduces to

Br<0 )
Ye— 4By, — 4B Bivi>0 9

or
BZ+ B+, <0. (10)

thatk+q is the wave number of the structure that is gener-

ated by instability. Substituting expressio®, (4), and(5)

into Eq.(1) leads to a linearized equation for the perturbation

and to a relation for the growth ragawhich reads
s?+2Bs+ y=0. (6)

The real and imaginary parts @ and y are given, respec-
tively, by

Br=1+27y9 -1+ Ck(1+CQ)],
Bi=21¢1SSy,
¥r=47[ 7C11(CECE—S4S0) +12CoCi(1—-27Cy) ],
¥%i=47S;S((C1—C2)(1-27Cy),
with

Cy=cogk), S=sin(k),

Note that the instability conditio8) is specific to the dis-
cretized CGLE as the analogous condition for a continuous
system is never satisfied. Conditio{® and(10) depend on
the parameters; and c,, but the characteristic features
mostly depend on the sign af,. If ¢;,>0, conditions(9)

and (10) are equivalent to the so-called Eckhaus instability
condition. If ¢;,<0, they are associated with the so-called
Benjamin-Feir instability and here, only negative values of
cq, are considered. Moreover, for an illustrative purpose, we
shall mostly use the values;=3 andc,=—1 which are
typical for the coupled wake array%9] used below for com-
parison. The results remain qualitatively unchanged for other
values ofc,; andc, as long asc,, is negative.

IIl. RESULTS

Figure 1 shows the different stability zones in ttke1(#)
plane. The domaits above the solid line in the upper right
corner corresponds to a region where nonlinear plane waves
are stable with respect to modulation of any wave nungper
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FIG. 4. Contour plot of the modulation wave numlsgy,, as-

FIG. 2. Relationship between the wave numbers of the basigociated with the maximum growth rage,,., (see Fig. 3 In the
state(k) and of the destabilizing modulatiofe) at the instability  stability domain(upper right areg nonzero wave numbers are all
threshold. damped while the wave numbgr= 0 is marginal. This explains the

discontinuity of the contour levels across the transition cusee
Everywhere else above the existence curve there exists aso Fig. 3.
wave numbeig which destabilizes the nonlinear plane wave
considered. In particular, note that there is an interval ipn 1/ a given basic statat any 1/ and not only on the marginal
(here, 4<1/%7<6.5) in which no nonlinear wave is stable curve. Figure 3 shows the contour plot of the maximum
whatever its wave numbés Figure 1 also shows that there growth rates, .« in the (k,1/7) plane. The region of stability
exists a region of the parameters where the nonlinear wavdgegion S in Fig. 1) is recovered in the top-right corner. In
are stable with respect to the wave numbgrs 0 andq Fig. 4, contour levels of the most unstable wave nunther,
=7 but unstable with respect to an intermediate wave numare given in theK,1/») plane. Figure 5 displays cuts of both
ber (between the dotted domain and the solid curvighis ~ previous contour plots for different values of the wave num-
region of instability, located abolt=37/4, was overlooked berk. These figures show interesting features of the instabil-
by Willaime et al.[9] who focused on destabilization by the ity. First, they demonstrate that the largest growth rates are
wave numberg]—0 andq= 7 only. The destabilization by reached close to the existence curve and in general for a
intermediate wave numbers is emphasized in Fig. 2 whergodulation wave number different from—0 and q= .
the critical wave numbeq,,4 Of the destabilizing modula- Again, this clearly indicates the limitation of any stability
tion on the marginal curve is plotted as a functiorkoDne  analysis based on these two limits only. They also show that,
sees that the change of stability through the wave numbefor large 1k, all the basic states witk<w/2 are preferen-
g—0 andqg=m occurs in fact only ifk<5#/8 or k=7. tially destabilized by the wave numbgr= 7. Moreover, the
Information on the maximum growth rate and the corre-
sponding modulation wave numbgrare displayed in Figs.
3, 4, and 5. They are obtained from a numerical investigation 1
of Eg. (6) with continuous parameteig and k. They com-

plete Fig. 2 by providing the most dangerous perturbation for
]

c1=3 02=—1
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FIG. 5. Variations 0F; s (top) andq sy (bottom as a function
of 1/n for different basic state wave numbets<0: —, k= 7/4:

FIG. 3. Contour plot of the maximum growth ragg, ., in the ——,k=m/2: .-, k=37w/4: —-—, andk=: —). Top and bot-
(k,1/7) plane. Nonlinear plane waves do not exist in the hatchedom figures correspond to vertical cuts in Figs. 3 and 4, respec-
region. tively.
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growth rate associated with this instability is relatively smallis increased in an intermediate rangeere 1<1/7<8),

and almost independent &f more nonlinear waves are available and each of them be-
comes unstable with respect to several modulation wave
IV. DISCUSSION numbers. In this regime, a strongly disordered spatiotempo-

ral evolution is then highly probable. For large

nonlinear wavek implies the generation of another plane Un(1/5>8), all nonlinear plane waves are.possmle but

wave of wave numbek+g. The nonlinear competition be- small wave number states are unstable while large wave
pumber(close torr) states are stable. A small wave number

tween this emerging wave and the underlying nonlinea .
wave is a difficult issue which is not addressed here HOW_state is then expected to evolve to a larger wave number state

ever, the knowledge of the stability properties of the nonlin—ggr:;‘eu?;%\gr'z% ?rfe”LStaglr“:?/ m?geiso :r:llalé;[/erzetﬁghbe; dali?ltS?rlle
ear plane wave for any #/is useful to infer the dynamical 9 pperng 9

evolution of the system as #/is progressively increased. In Erg'e?\)l)e\[{IVItIZraeV;lave 27”:’;; Iartgzr J:z?; éieNi?]t_e ﬁ;ssz tkr)]:;ic
particular, for small 1) one expects the system to be pref- tate k=0 9 h ]J?d(' 7 d.)t’ | e t '? ble oh
erentially in phase, because plane waves with small wav ate k=0) should immediately evolve to a stable phase-

number are the only existing states. This in-phase behavidiPPosItion statel(= ) as the most unstable wave number is

should be even more pronounced as the numbef oscil- 9= 7 N such a case.

lators is smaller. _Indeed, th_e threshold nd+ 2[_1 V. CONCLUSION

—cos(27/n)] below which the nonlinear plane wake=0 is

the only existing wave, increases mslecreases. Moreover, These predictions were successfully checked by direct nu-
as soon as this state is established, Fignditom) shows that merical simulations of the discretized CGLE. We observed
it is first destabilized by the smallest nonzero wave numbeindeed that the system of oscillators evolves from an in-
that isq=2m/n. An explicit expression for the critical pa- phase state to a phase-opposition state with an intermediate
rameter 14, at which the destabilization occurs can be ob-disordered state when 7/is progressively increased, i.e.,
tained from the instability conditiofEqgs. (8)—(10)]. After ~ when the coupling between the oscillators is progressively
simplification, it reads weakened. They are also in agreement with experimental re-
sults on the regimes of the flow behind rows of cylinders
[12,18,19. In that case, the wake behind each cylinder, that
is the Baard—von Karman vortex street, represents a single
oscillator which is strongly coupled to its neighbors if the
where the parameters;; andc,,<<O have been defined in cylinders are close to each other and weakly coupled if they
Eq. (7). For the values of; andc, taken aboveci;/c;,  are far apart. For the two situatioristrong coupling and
=—5, thus 1h.=31/5,. Expression(11) shows that the weak coupling, the wakes were found in phase and in op-
domain of stability of the solution with the wave number position of phase, respectively, as predicted by our analysis.
=0 grows whem decreases. Note, however, that the size ofStrongly disordered states with nucleation of defects were
this domain depends oo, and c,: the closerc,, is from  also observed in the experiment for intermediate coupling
zero, the larger the domain of stability. WhenpX/1/5.,  [19]. Note that the wave number=0 is neutral whatevek,

the wave numbek=2m/n is expected to appear. It may so one has to consider the lingjt—0 to analyze the stability
become dominant and therefore be itself destabilized by aref a nonlinear plane wave with respect to long-wavelength
other modulation along a similar process, and so on. As 1/ modulations.

As explained above the growth of the modulatgpan the

1 Ci1
—=——[1-cog27/n)], (11
e Ci2
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