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Stability analysis of plane wave solutions of the discrete Ginzburg-Landau equation

J. F. Ravoux,* S. Le Dizès, and P. Le Gal
Institut de Recherche sur les Phe´nomènes Hors-Equilibre, CNRS UM 6594, Universite´ d’Aix-Marseille I and II,

12 Avenue Ge´néral Leclerc, 13003 Marseille, France
~Received 14 April 1999!

The discrete Ginzburg-Landau model for a family of oscillators linearly coupled with their first neighbors is
studied. The full linear stability analysis of the nonlinear plane wave solutions is performed by considering
both the wave number~k! of the basic states and the wave number~q! of the perturbations as free parameters.
In particular, it is shown that nonlinear plane waves can be destabilized not only by long (q→0) or short
(q5p) wave perturbations, but also by intermediate wave numbers (0,q,p). Finite size effects are also
considered and discussed in connection with experiments on coupled oscillating wakes.

PACS number~s!: 47.20.Lz, 47.52.1j, 05.45.xt
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I. INTRODUCTION

The interest in the dynamics of discrete systems com
from the diversity of their numerous applications in physic
and biological sciences. The structure of such systems
plies that their dynamics is the result of an interaction
tween individual dynamical entities. Molecular chains a
arrays of wave guides in optics@1#, Josephson junctions@2#
are examples referred to as coupled oscillators@3#. Also,
models for life sciences can be investigated by conside
the behavior of coupled cells~cardiac muscle defibrillation
@4#, legged locomotion@5#, fireflies synchrony@6#, neural
networks @7#!. We focus in this paper on the comple
Ginzburg-Landau equation~CGLE! in one space dimension
Very often used in fluid mechanics as a phenomenolog
equation, the CGLE and its different forms were analytica
derived in various applications~see Ref.@8#, for instance!
where it appears as an amplitude equation for a rapidly
cillating wave propagating in a nonlinear medium. The d
cretized form of the CGLE has been used for describ
vortex line dynamics@9# and in the study of coupled wake
@10#. In these two examples, the oscillation of each isola
cell ~each vortex or each wake! obeys a Landau equatio
which is the normal form of the Hopf bifurcation that give
birth to each oscillator. The global behavior of the vortex
wake arrays can consequently be described by the dyna
of coupled Hopf oscillators. Various mathematical shapes
coupling can be considered, such as linear or nonlinear, l
or global@11#. Motivated by the observation of a short-ran
interaction between wakes@12#, we restrict our analysis to a
first neighbors linear coupling as it was also the case in
studies of Willaimeet al. @9# and Le Gal@10#. Since Eckhaus
@13#, most stability analysis have been carried out for
continuous version of the Ginzburg-Landau equation. T
instability arises from a resonance mechanism between w
trains, and is called the Benjamin-Feir instability@14# ~or the
sideband instability!. Newell’s criterion provides a condition
for the destabilization of plane waves by long wavelen
modulations@15#. More recently, Matkowsky and Volper
@16# considered perturbations of arbitrary wave numbe
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They showed that destabilization can occur due to fin
wave number perturbations which implies more complex
namical behaviors as those usually analyzed. Direct num
cal simulations of the continuous version of the CGLE a
demonstrated the richness of the coupled oscillator sys
for which spatiotemporal chaos was in particular observ
@17#. Here, it is our purpose to fully describe the stability
the nonlinear plane wave solutions of the discretized co
plex Ginzburg-Landau equation.

For a discrete system, the possible wave numbers of
nonlinear plane wave are related to the number of oscillat
the boundary conditions, and the nature of the coupling te
between the oscillators. These wave numbers range betw
k50 where the oscillators are in phase andk5p where two
consecutive oscillators are in phase opposition. As far as
know, the stability analysis of a nonlinear plane wave w
performed for the modulation wave numbersq→0 and q
5p only @9#. In this paper, we extend this study to accou
for any modulation wave number.

II. THEORY

The complex Ginzburg-Landau equation takes the form

dAj

dt
5Aj2~11 ic2!uAj u2Aj1h~11 ic1!

3~Aj 111Aj 2122Aj !, ~1!

where the oscillatorsAj , j P$1, . . . ,n% also satisfy the peri-
odicity conditions:A05An andAn115A1. The real numbers
c1 andc2 measure the influence of the coupling on the ph
and its nonlinear correction, respectively. The real numbeh
characterizes the strength of the linear coupling. This ad
tional parameter is specific to discrete systems as for c
tinuous systems it can be scaled out by a change of sp
variables.

The nonlinear plane wave solutions are defined by

Aj5Aei (k j2vt), ~2!

with i 2521. The amplitudeA, the wave numberk, and the
frequencyv satisfy the nonlinear dispersion relation

uAu25122h@12cos~k!#>0, ~3a!
y,
390 ©2000 The American Physical Society



at
c-

d
e

lts
g

t
cu
is
ic

tu
e

f
i-

-

i
er

ion

-

ta-

ous

s

lity
ed
of
we

her

t
ves
r

ve
e
er.
n of

ane

PRE 61 391STABILITY ANALYSIS OF PLANE WAVE SOLUTIONS . . .
v54h~c12c2!sin2S k

2D1c2 . ~3b!

For a given couple of parametersc1 and c2, amplitude and
frequency depend on the two parametersk and 1/h. The first
relation defines the domain of existence of the basic st
Here it is implicitly assumed that the coupling is ‘‘attra
tive’’ such that the homogeneous plane wave (k50) is the
only possible solution near threshold for small 1/h. If the
coupling was ‘‘repulsive,’’ the instability threshold woul
occur near 1/h54, and the mode selection would yield th
phase opposition nonlinear plane wave (k5p) @9#. Hereaf-
ter, we focus on cases with ‘‘attractive’’ coupling. Resu
for ‘‘repulsive’’ coupling are deduced by the followin
transformations:k→p2k and 1/h→421/h. The wave
numbersk are quantified by the periodicity conditionAn11
5A1 which implieskl52p l /n wherel is an integer between
0 and the integer part ofn/2. In the following, the analysis is
done for continuous wave numbers which is equivalent
assuming that the number of oscillators is infinite. Parti
larities associated with a finite number of oscillators are d
cussed at the end of the paper in connection with numer
and experimental results.

The stability analysis is done by superimposing a per
bation aj (t) to the amplitude of the nonlinear wave at th
location j:

A→A1aj~ t !. ~4!

The amplitude modulation is searched in a normal form:

aj~ t !5aesteiq j , ~5!

wherea is the complex constant amplitude,q the real wave
number, ands5sr1 isi the complex growth rate. In view o
Eqs.~2! and~4!, this amplitude modulation is in fact assoc
ated with a plane wave perturbation of wave numberk1q. It
follows that if sr.0 in Eq. ~5!, the underlying nonlinear
plane wave of wave numberk is then destabilized by a per
turbation of wave numberk1q. Below, q is used as an in-
dependent parameter for convenience, but we keep in m
that k1q is the wave number of the structure that is gen
ated by instability. Substituting expressions~2!, ~4!, and~5!
into Eq.~1! leads to a linearized equation for the perturbat
and to a relation for the growth rates which reads

s212bs1g50. ~6!

The real and imaginary parts ofb andg are given, respec
tively, by

b r5112h@211Ck~11CQ!#,

b i52hc1SkSq ,

g r54h@hc11~CQ
2 Ck

22Sq
2Sk

2!1c12CQCk~122hCK!#,

g i54hSqSk~c12c2!~122hCK!,

with

Ck5cos~k!, Sk5sin~k!,
e.

o
-
-
al

r-

nd
-

CQ512Cq , c11511c1
2 , ~7!

Cq5cos~q!, Sq5sin~q!,

CK512Ck , c12511c1c2 .

After some algebraic manipulations, the condition for ins
bility ( sr.0) reduces to

b r,0 ~8!

or

g i
224b r

2g r24b rb ig i.0 ~9!

or

b r
21b i

21g r,0. ~10!

Note that the instability condition~8! is specific to the dis-
cretized CGLE as the analogous condition for a continu
system is never satisfied. Conditions~9! and~10! depend on
the parametersc1 and c2, but the characteristic feature
mostly depend on the sign ofc12. If c12.0, conditions~9!
and ~10! are equivalent to the so-called Eckhaus instabi
condition. If c12,0, they are associated with the so-call
Benjamin-Feir instability and here, only negative values
c12 are considered. Moreover, for an illustrative purpose,
shall mostly use the valuesc153 and c2521 which are
typical for the coupled wake arrays@19# used below for com-
parison. The results remain qualitatively unchanged for ot
values ofc1 andc2 as long asc12 is negative.

III. RESULTS

Figure 1 shows the different stability zones in the (k,1/h)
plane. The domainS above the solid line in the upper righ
corner corresponds to a region where nonlinear plane wa
are stable with respect to modulation of any wave numbeq.

FIG. 1. Stability character of the nonlinear plane wave of wa
numberk versus 1/h. The regionSabove the upper bold line is th
domain of stability with respect to any modulation wave numb
The dotted areas correspond to destabilization by a modulatio
wave numberq→0 or q5p ~see Ref.@9#!. The lower bold line is
the boundary of the domain of existence of the nonlinear pl
waves given by condition~3a!.
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Everywhere else above the existence curve there exis
wave numberq which destabilizes the nonlinear plane wa
considered. In particular, note that there is an interval in 1h
~here, 4,1/h,6.5) in which no nonlinear wave is stab
whatever its wave numberk. Figure 1 also shows that ther
exists a region of the parameters where the nonlinear wa
are stable with respect to the wave numbersq→0 and q
5p but unstable with respect to an intermediate wave nu
ber ~between the dotted domain and the solid curve!. This
region of instability, located aboutk53p/4, was overlooked
by Willaime et al. @9# who focused on destabilization by th
wave numbersq→0 andq5p only. The destabilization by
intermediate wave numbers is emphasized in Fig. 2 wh
the critical wave numberqmarg of the destabilizing modula
tion on the marginal curve is plotted as a function ofk. One
sees that the change of stability through the wave num
q→0 and q5p occurs in fact only ifk<5p/8 or k5p.
Information on the maximum growth rate and the cor
sponding modulation wave numberq are displayed in Figs
3, 4, and 5. They are obtained from a numerical investiga
of Eq. ~6! with continuous parametersq and k. They com-
plete Fig. 2 by providing the most dangerous perturbation

FIG. 2. Relationship between the wave numbers of the b
state~k! and of the destabilizing modulation~q! at the instability
threshold.

FIG. 3. Contour plot of the maximum growth ratesrmax in the
(k,1/h) plane. Nonlinear plane waves do not exist in the hatch
region.
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a given basic stateat any1/h and not only on the margina
curve. Figure 3 shows the contour plot of the maximu
growth ratesrmax in the (k,1/h) plane. The region of stability
~region S in Fig. 1! is recovered in the top-right corner. I
Fig. 4, contour levels of the most unstable wave numberqmax
are given in the (k,1/h) plane. Figure 5 displays cuts of bot
previous contour plots for different values of the wave nu
berk. These figures show interesting features of the insta
ity. First, they demonstrate that the largest growth rates
reached close to the existence curve and in general fo
modulation wave number different fromq→0 and q5p.
Again, this clearly indicates the limitation of any stabilit
analysis based on these two limits only. They also show t
for large 1/h, all the basic states withk,p/2 are preferen-
tially destabilized by the wave numberq5p. Moreover, the

ic

d

FIG. 4. Contour plot of the modulation wave numberqmax as-
sociated with the maximum growth ratesrmax ~see Fig. 3!. In the
stability domain~upper right area!, nonzero wave numbers are a
damped while the wave numberq50 is marginal. This explains the
discontinuity of the contour levels across the transition curve~see
also Fig. 5!.

FIG. 5. Variations ofsrmax ~top! andqmax ~bottom! as a function
of 1/h for different basic state wave numbers (k50: —, k5p/4:
22, k5p/2: •••, k53p/4: 2•2, andk5p: 2). Top and bot-
tom figures correspond to vertical cuts in Figs. 3 and 4, resp
tively.
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growth rate associated with this instability is relatively sm
and almost independent ofk.

IV. DISCUSSION

As explained above the growth of the modulationq on the
nonlinear wavek implies the generation of another plan
wave of wave numberk1q. The nonlinear competition be
tween this emerging wave and the underlying nonlin
wave is a difficult issue which is not addressed here. Ho
ever, the knowledge of the stability properties of the nonl
ear plane wave for any 1/h is useful to infer the dynamica
evolution of the system as 1/h is progressively increased. I
particular, for small 1/h one expects the system to be pre
erentially in phase, because plane waves with small w
number are the only existing states. This in-phase beha
should be even more pronounced as the numbern of oscil-
lators is smaller. Indeed, the threshold 1/ho52@1
2cos(2p/n)# below which the nonlinear plane wavek50 is
the only existing wave, increases asn decreases. Moreove
as soon as this state is established, Fig. 5~bottom! shows that
it is first destabilized by the smallest nonzero wave num
that is q52p/n. An explicit expression for the critical pa
rameter 1/hc at which the destabilization occurs can be o
tained from the instability condition@Eqs. ~8!–~10!#. After
simplification, it reads

1

hc
52

c11

c12
@12cos~2p/n!#, ~11!

where the parametersc11 and c12,0 have been defined in
Eq. ~7!. For the values ofc1 and c2 taken above,c11/c12
525, thus 1/hc5 5

2 1/ho . Expression~11! shows that the
domain of stability of the solution with the wave numberk
50 grows whenn decreases. Note, however, that the size
this domain depends onc1 and c2: the closerc12 is from
zero, the larger the domain of stability. When 1/h.1/hc ,
the wave numberk52p/n is expected to appear. It ma
become dominant and therefore be itself destabilized by
other modulation along a similar process, and so on. Ash
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is increased in an intermediate range~here 1,1/h,8),
more nonlinear waves are available and each of them
comes unstable with respect to several modulation w
numbers. In this regime, a strongly disordered spatiotem
ral evolution is then highly probable. For larg
1/h(1/h.8), all nonlinear plane waves are possible b
small wave number states are unstable while large w
number~close top) states are stable. A small wave numb
state is then expected to evolve to a larger wave number s
by the growing of instability modes until it reaches a stab
configuration~in the upper right region above the bold line
Fig. 3! with a wave number larger thanp/2. Note also that
for even larger 1/h (1/h.22), the unstable in-phase bas
state (k50) should immediately evolve to a stable phas
opposition state (k5p) as the most unstable wave number
q5p in such a case.

V. CONCLUSION

These predictions were successfully checked by direct
merical simulations of the discretized CGLE. We observ
indeed that the system of oscillators evolves from an
phase state to a phase-opposition state with an interme
disordered state when 1/h is progressively increased, i.e
when the coupling between the oscillators is progressiv
weakened. They are also in agreement with experimenta
sults on the regimes of the flow behind rows of cylinde
@12,18,19#. In that case, the wake behind each cylinder, t
is the Bénard–von Karman vortex street, represents a sin
oscillator which is strongly coupled to its neighbors if th
cylinders are close to each other and weakly coupled if t
are far apart. For the two situations~strong coupling and
weak coupling!, the wakes were found in phase and in o
position of phase, respectively, as predicted by our analy
Strongly disordered states with nucleation of defects w
also observed in the experiment for intermediate coupl
@19#. Note that the wave numberq50 is neutral whateverk,
so one has to consider the limitq→0 to analyze the stability
of a nonlinear plane wave with respect to long-wavelen
modulations.
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