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This paper is concerned with the propagation of linear plane waves in incompressible, 
two-dimensional weakly nonparallel shear flows for large Reynolds numbers. Waves are analyzed 
for arbitrary complex frequency o and local wave number k when nonparallel effects are assumed 
to be due to weak viscous diffusion. The inviscid approximation is shown to correctly describe, at 
leading order, the cross-stream variations of local plane waves at all stations where they are locally 
amplified in a frame of reference moving at the local phase speed %eo/?J%ek, i.e., at stations where 
the temporal growth rate o-=$nw-$mk %eo/%ek remains positive. This result also holds as long 
as the local phase speed lies outside the range of values reached by the basic velocity profile. By 
contrast, the inviscid approximation fails to represent cross-stream variations in the critical layers 
when waves are locally neutral ((T=O), and in large viscous regions when they become damped 
(cr<O). Uniformly valid WKBJ approximations are derived in these regions and the results are 
applied to the description of forced spatial waves and self-excited global modes. 8 199-5 American 
Institute of Physics. 

I. INTRODUCTION 

Most incompressible, two-dimensional unbounded shear 
flows are known to exhibit under certain conditions coherent 
large-scale structures. The goal of this study is to describe 
such structures in terms of local plane waves evolving on a 
weakly nonparallel basic flow when the Reynolds number is 
large. Sufficient conditions are obtained for the validity of 
linearized inviscid theory pertaining to arbitrary complex 
values of frequency and local wave number. Spatial domains 
in physical space where the inviscid approximation breaks 
down are clearly identified. Finally, uniformly valid asymp- 
totic approximations are obtained in these regions, which are 
governed by viscous diffusion. 

Convectively unstable flows, for instance mixing layers 
and jets, are known to be very sensitive to noise excitation 
and numerous experiments (see Ho and l%uerre’ for a review) 
have been conducted to analyze the vertical structures that 
appear in response to a time-periodic excitation. Such vorti- 
ces have been found to be well-described by linear spatially 
growing instability waves at their early stages of evolution. 
Bouthier2 appears to have been first in applying the WKBJ 
approximation to account for weak nonparallel effects in 
boundary layers. Crighton and Gaste? and Gaster et aL4 sub- 
sequently developed a similar formalism in the case of jets 
and mixing layers, respectively, and obtained reasonably 
good agreement with experiments. Hultgren’ has shown that 
viscous and nonparallel effects come at the same order in the 
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high-Reynolds-number limit, so that Bouthierts approach, 
which treats the spreading rate independently of the Rey- 
nolds number, is not strictly correct. 

Locally parallel linear theory indicates that, for a given 
forcing frequency within the unstable range, the local spatial 
growth rate ultimately decreases with downstream distance, 
becomes zero at some locally neutral streamwise station and 
negative further downstream. Thus, at leading order in the 
linearized WKBJ approximation, the wave amplitude in- 
creases, reaches a maximum at the locally neutral point and 
decays thereafter. The critical point singularity (see 
Maslowe6 for a review) where the inviscid Rayleigh equation 
breaks down happens to be located in the cross-stream direc- 
tion precisely at the locally neutral station where the phase 
velocity is by definition real. Several effects may then be 
invoked to smooth the singularity: If the maximum ampli- 
tude is sufficiently large, the critical layer surrounding the 
critical point is necessarily dominated by nonlinearities, as 
demonstrated by Goldstein and Leib.7 By contrast, if it is 
sufficiently small, viscous diffusion dominates the critical 
layer structure, as in the classical hydrodynamic stability 
theory of parallel flows (Lin,* Drazin and ‘Reid9). In the 
present study, we are only concerned with the linear evolu- 
tion of spatial waves in the viscous critical layer r&&me. In 
other words, local plane waves grow exponentially, reach 
neutral, and spatially decay as they propagate downstream, 
according to locally parallel linearized stability theory. 

It is important to note that viscous effects are not ex- 
pected to be solely confined to the critical layer in the limit 
of large Reynolds numbers: From strictly parallel stability 
theory, it is known that large O(1) viscous regions appear on 
the real cross-stream axis as soon as waves become tempo- 
rally damped (Lir?). We therefore anticipate inviscid WKE3J 
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approximations derived in the context of weakly diverging 
flows to become invalid in large cross-stream intervals 
downstream of the locally neutral station. One of the objec- 
tives of this study is to obtain viscous WKBJ approximations 
in such subdomains. 

Local plane waves are also essential ingredients of the 
global mode problem. Several shear flows, such as wakes 
(Karniadakis and Triantafyllou”), hot jets (Monkewitz 
et al.“), and counterflow mixing layers (Strykowski and 
Niccum”) exhibit self-excited oscillations. In such situa- 
tions, the observed coherent structures are not created by 
external forcing but appear through a destabilization of the 
entire flow. Typically, these are represented in terms of glo- 
bal modes, i.e., linear time-harmonic perturbations of the ba- 
sic Bow satisfying homogeneous boundary conditions in all 
spatial directions. The complex global frequencies are then 
the result of an eigenvalue problem. If the basic flow is 
weakly nonparallel, global modes can be studied by the 
WIcB;r method (Huerre and Monkewitz13). In this frame- 
work; a global mode theory has been developed in the con- 
text of the Ginzburg-Landau equation (Chomaz et aZ.,14 Le 
Dizes et aLi5) and recently applied to shear flows by Monke- 
witz et aLI6 and Pesenson and Monkewitz.t7 In particular, 
each global mode has been demonstrated from a purely in- 
viscid point of view to be a local plane wave of complex 
global frequency and spatially varying wave number as in 
the forcing problem studied, for instance, by Crighton and 
Gastec3 The same questions therefore arise as to the validity 
of the linearized inviscid approximation: 

l For a given complex frequency and local wave number, 
what is the cross-stream scale of the associated eigen- 
function, or equivalently, in which cross-stream inter- 
vals does the inviscid analysis apply? 

l What is the local plane wave approximation in regions 
where the inviscid approximation breaks down? 

This paper is organized as follows. The basic equations 
are stated in Sec. II: The determination of the characteristic 
cross-stream scale, viscous or inviscid, is shown to be locally 
specified by to the associated parallel flow problem. Classi- 
cal results from temporal theory (k real), concerning the va- 
lidity of the inviscid approach for parallel flows, are ex- 
tended to arbitrary complex wave numbers in Sec. III. They 
are applied to slowly varying flows in Sec. IV. In Sec. V, a 
uniformly valid approximation for local plane waves is con- 
structed in the viscous regions and matched with the inviscid 
approximation. Application of the results to the signaling and 
global mode problems is briefly discussed in a concluding 
paragraph. 

II. BASIC FORMULATION 

Consider a two-dimensional, incompressible, spatially 
developing shear flow governed by the vorticity equation 

i 
d?PT a aTIf\Ir, a f+----- 
ay ax ax ay 1 

pq4- vq72lp 
Re Tt 0) 

for a total streamfunction !l?r. The streamwise and cross- 
stream coordinates x and y are normalized with respect to a 
typical instability wavelength X or a characteristic vorticity 

thickness. Time t and all velocities are scaled by X/o and 0, 
respectively, where 0 is a characteristic basic streamwise 
velocity. 

The basic flow defined as the time-independent part Yrco) 
of !l?r satisfies: 

CW’O’ a a*(O) a 1 ----- 
ay ax ax ay 

v2q$0’=- vq72?pIp’w 
Re (2) 

The weakly nonparallel assumption is equivalent to assum- 
in 

$ 
that for Re%l, the leading-order approximation VP) of 

Q ‘) varies on the slow viscous scale xlRe. The small param- 
eter E defined by X/L, where L is the characteristic scale of 
the streamwise basic flow variations is another measure of 
the degree of nonparallelism. It is directly linked to the Rey- 
nolds number through 

Re= %; R=O( 1). (3) 

Variations of ‘96’) thus occur on the slow scale X= EX and 
Eq. (2), written to O(2), becomes a bounda’ry-layer equation 
for @j’): 

(p#) a”g$’ $pp (93lpp 1 a4W0) 0 
ay axay' 

-- 
ax dy3=ii7* (4) 

If the vorticity equation is linearized around the time- 
independent solution T (O), the perturbation of the basic flow 
q=qT-T’o’ satisfies 

( 
a a 1 

+ E vov2 ay- voyy ay- R -VT 
i 1 

iO(2) w=o, 

i-9 
where the functions 
= [ aw6OVay, - E( mlp’lax)] 

[~o(Ybo~vo(Ym1 
are the leading-order stream- 

wise and cross-stream basic flow velocities, and 
V2=a2fa2+a2/ay2. 

We only consider local plane wave solutions of (5) and 
assume !l! to be a time-harmonic function of frequency o 
and local wave number k defined by 

i d* 
k=---. 

9 ax (6) 

At leading order in e, the wave number k depends continu- 
ously on space variables only through the slow scale X and 
without ambiguity it will thereafter be denoted by k(w;X). 
Furthermore, the perturbation streamfunction p is subject to 
exponential decay boundary conditions at y = 2~. 

Upon integrating (6), plane waves of frequency w and 
wave number k(w;jr) take the form 

qf= q)‘(x,y; e)eilc I~mk(w:rwre -iot, 0) 
where @ satisfies the conditions 
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1 d@ 
vi;@1 for all X and y 03) 

a2 
[ - io + ik( o;X) Uo(y ;X)] g- k2( w;X) 

-iU,,,(y;X)k(o;X)- & $k’(w;X) <p=O. and 

lim IcPI=O. (9 
p-b+- 

The reference point X,* in the integral is chosen by imposing 
a local normalization condition. 

Solution (7) constitutes the starting point in the WKBJ 
analysis. All solutions are considered as a superposition of 
local plane waves of the form (7) at any streamwise station 
X.-The frequency o is either given real as in the forced case, 
where the response to an oscillating source is sought, or an 
unknown complex quantity in the global mode problem, to 
be determined by imposing suitable boundary conditions in 
the streamwise direction. To cover both instances, o is con- 
sidered to be arbitrary and complex. 

The equation for @(x,y;e) is immediately obtained by 
inserting (7) into (5). The resulting leading-order equation 
depends on the characteristic cross-stream scale of the wave. 
If this scale is the typical wavelength X, @ is found to satisfy 
the Rayleigh equation 

1 
[-iw+ik(w;X)Uo(y;X)] $k?(o;Xi 

(. i 

-iUf-),,(y;X)k(o;X) Q,=o, 
I 

(10) 

and it is, therefore, a solution of the inviscid instability prob- 
lem on the locally parallel basic flow U,(y;X). As stated by 
Crighton and Gaster,3 the reduction to the inviscid equation 
(10) is indeed justified in the signaling problem (w real) in 

’ regions where the local plane wave is spatially amplified. 
However, when it is spatially damped or when the frequency 
is complex, such a reduction is not guaranteed. There is a 
priori no reason to assume that the characteristic scale is 
everywhere inviscid. 

If variations in the cross-stream direction are shorter, the 
viscous term may become dominant. By balancing viscous 
and inviscid effects in (S), the viscous cross-stream scale is 
found to be y,= yJ&> and the leading-order equation takes 
the form 

(11) 

to be compared with (10). One can easily show that for 
scales other than y and y, , the leading-order equation for CD 
can always be obtained from either (10) or (11): if Q, varies 
faster than the inviscid O(1) scale, the governing equation 
can be deduced from (11); if variations are slower, they can 
be deduced from the Rayleigh equation (10). 

One notes that (10) and (11) are also the only two pos- 
sible leading-order expressions as Re-+a, that can be de- 
duced from the parallel Orr-Sommerfeld (OS) equation 

(12) 
This implies that, for any fixed X and Re-im, the cross- 
stream variations of @ are governed by Eq. (12). As a con- 
sequence, one immediately deduces that the problem of find- 
ing the leading-order equation satisfied by Q can indeed be 
resolved in the context of parallel-flow analysis and be for- 
mulated as follows: For a given complex pair (r) ‘and 
k=k( o;X) and a given streamwise velocity profile 
Ue(y;X), what are the regions of the y plane where the 
eigenfunction Cp of the OS equation (12) satisfies, at leading 
order, the Rayleigh equation (10) when Re-+a? This issue is 
examined in the next section, by extending classical results 
pertaining to the large-Reynolds-number’ asymptotids of the 
OS equation. 

Ill. LARGE-REYNOLDS-NUMBER ASYMPTOTICS OF 
THE ORR-SOMMERFELD EQUATION . 

The justification of the inviscid approximation essen- 
tially relies on a careful study of the singular behavior of 
eigenfunctions in the vicinity of so-called critical points y, 
defined in the complex y plane by. 

-iw+ikUo(y,)=O. (13 

Major results have been obtained during the 1940’s and 
1950’s in the temporal.framework where k is assumed real. 
An extension is given here for arbitrary complex o and k. 
Let c and 8 be defined by 

u=q- z ki, kr (14a) 

where the subscripts r and i denote the real and imaginary 
part, respectively. The parameter (T represents the temporal 
growth rate in a frame of reference moving at the phase 
speed wJk, while 8 characterizes the value of the phase 
speed relative to the range of basic flow velocities: 6 is nega- 
tive (resp. positive) when there exists (resp. does not exist) a 
location on the real y axis, where .V,(y *)= or/k,. 

The following statements are now proven: 
(i) If s>O or ~00, CD satisfies the Rayleigh equation 

(10) at leading order for all real y; the inviscid eigenfunction 
is the asymptotic limit of the OS eigenfunction as Re--tw. 

(ii) If KO and o=O, points y.+ on the real y axis such 
that U,(y .+) = or/k, are critical points y, in the sense of Eq. 
(13) around which the Rayleigh equation (10) is not valid at 
leading order. 

(iii) If 6~0 and o<O, there may exist large O(1) viscous 
intervals on the y axis where the OS eigenfundti& does not 
reduce to a solution of the Rayleigh equation (10) when 
Re--+a. 
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Note that when k is real, each statement corresponds to a 
classical result of temporal theory, as discussed in Lin* and 
Drazin and .Reid.g 

Statement (a) is proven using the following standard re- 
sult: there exist four formal independent solutions $j, 
j=1,2,3,4 of the OS equation that admit the following ex- 

qbpl-cgO’+ -L Re r#‘+.- ) 

c$2-+:o’+ J- Re qp+- , 

43-e $y,&ikCJg-iiw)dy &O)+ 

[ 
-&$!l)+... , 

I 

44-e 
1 

Wa) 

(15b) 

(154 

The two functions +r and & are commonly called the “in- 
viscid” solutions of the OS equation. Their leading-order ap- 
proximations 4\“’ and &,*) satisfy the Rayleigh equation (10) 
and viscous effects only appear as O(l/Re) correction terms. 
The two other functions & and k are purely “viscous” 
solutions. Their leading-order approximations satisfy Eq. 
(11). According to Wasow’* and Lin,* the four formal func- 
tions (15a)-(15d) indeed represent uniformly valid asymp- 
totic solutions of the OS equation as Re--+m, in any domain 
D where any two points can be connected bv a curve along 
which Ple[J 

; : 
Re(zkUo-io)] varies monotonically. 

Under assumption (a), the square root dRe(ikUo-iw) 
can be chosen so that its real part remains strictly positive on 
the entire real y axis. The quantity %e[JYJRe(ikUo-iw)] is 
then a strictly increasing function on the entire real y axis 
and the above theorem holds. Application of the boundary 
conditions to a continuous solution of the form 

cp=al~lfa2~2+a3~3+a4~4 (16) 

implies that a3=a4=0, since +3 and +4 are exponentially 
large at +m and --rx), respectively. Thus the leading-order 
approximation for 4 reduces to a linear’ combination 
a14i”)+a2+l ‘) of inviscid solutions governed by Rayleigh 
equation (10). This proves statement (a). (Note that no as- 
sumptions have to be made regarding the number of critical 
points. In a certain sense, this statement also generalizes the 
results of temporal theory found in textbooks which usually 
treat problems involving only one or two critical points.) 

Note that when Eq. (10) is asymptotically valid on the 
entire real axis and k is real, Howard’s semicircle theorem 
guarantees that o,lk, is always in the range of Uo, i.e., &SO. 
No such theorem can be derived when k is complex; there- 
fore, configurations for which w,lk, is outside the range of 
lJo, and o is positive, may f priori exist. 

The proof of statements (b) and (c) is similar to their 
equivalent in temporal theory. It is based on the analysis of 
OS solutions near critical points yc in the limit Re--+a. Some 
of the OS solutions are known to have no uniform decom- 
position into formal solutions (15+(15d) in a full complex 
neighborhood of critical points. The vicinity of yc is in fact 
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partitioned into Stokes sectors delimited by Stokes lines de- 
fined by 9Te[J$CdRe(ikUo-io)] = 0. Close to a first-order 
critical point yc where U,,,(y,) #0, the orientation of Stokes 
lines is given by 

arg(y -yJ = n/6 - 3- 
arg(k) argCUo,(y,)l +2/*,3 

3 3 

1=0,1,2, (17) 

which means that three Stokes sectors of equal angle 2~13 
emanate from yc. An important result, first proven by 
Wasowr* is the following: If in one sector a solution is ap- 
proximated by an “inviscid” solution, say &, that becomes 
singular at y, , then it is necessarily asymptotic to a dominant 
viscous solution & or $4 in at least one of the two remaining 
Stokes sectors. [At least one of the two independent “invis- 
cid” solutions has a singular expansion at y,. If 
Uouy(y,) #O, a logarithmic singularity appears at leading or- 
der in the expansion in powers of l/Re.] It follows that, if the 
real axis crosses all three sectors, a region of the physical 
domain may be viscous. 

This is indeed what happens when (+ evolves from posi- 
tive to slightly negative values with w,/k, in the range of U, 
I&O). In such a case, at least one critical point yc crosses 
the real axis through a point y + such that Uo(y *) = Or/k,. 
[Strict crossing takes place if U&*) #O. When 
Uoy(y .+.) =0 for u=O, y * is a double critical point: two criti- 
cal points converging from opposite sides of the real axis 
then collide to give the configuration illustrated in Fig. 4(a).] 
The evolution of the Stokes line network in the neighbor- 
hood of such a critical point is illustrated in Figs. l(a)-l(c). 
When &-0 [Fig. l(a)], the real axis cuts only one Stokes 
line: Both Stokes sectors containing the real axis are inviscid 
at leading order and the OS eigenfunction can be expanded 
into a,4r+ a2& as established above. If one excludes the 
exceptional case where the coefficient a2 of the singular “in- 
viscid” solution & is zero, the OS eigenfunction becomes 
viscous in the third pale grey sector of Fig. l(a) and in the 
shaded neighborhood of the critical point yc. When u 
evolves continuously towards negative values [Figs. l(b) and 
l(c)], the Stokes. sectors as well as the asymptotic behavior 
of the OS eigenfunction are expected to vary in a continuous 
manner. The decomposition of @ into a,& +a,+, should 
still be possible in the two Stokes sectors which contained 
the real axis when (T was positive. Provided the coefficient of 
the singular solution & is not identically zero during the 
process, the OS eigenfunction Cp is viscous in the third pale 
grey sector and in the shaded critical layer, as illustrated in 
Figs. l(b) and l(c). In Fig. l(b), the real axis cuts through the 
critical Iayer and the viscous region is localized in a neigh- 
borhood of the critical point. In Fig; l(c), the real axis 
crosses the viscous Stokes sector and a large interval of the 
real axis is dominated by viscous diffusion. Statements (b) 
and (c) have therefore. been established. 

In Fig. l(b) the Stokes line network pertaining to a real 
critical point of temporal theory (k real) is shown in dashed 
lines (see figure 8.2 of Lin* for instance). Note that in more 
general situations the Stokes lines bounding the viscous sec- 
tor do not necessarily correspond to the angles +lr/6 and 
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WY) 

- 

MY) 

(c) 

FIG. 1. Viscous and inviscid behavior of Orr-Sommerfeld eigenfunctions in 
the complex y plane in the neighborhood of a first-order critical point yr ; 
(a): u>O, (b): u=O, (c): u<O. 

+5rr/6 but are subject to an additional rotation of angle 
arg(k)/3 as specified by Eq. (17). If arg(k) = rt rr/2, .one of 
the Stokes lines delimiting the viscous region is asymptotic 
to the real axis near yc . In this case, the viscous region is not 
confined to the critical layer but spreads along the real axis 
as far as the Stokes line is within a distance of order E from 
the real axis. 

We  have shown that the existence of viscous regions on 
the real axis is guaranteed if damped modes (a<O) can be 
obtained from amplified modes (o>O) by a continuous pro- 
cess with w,/k, remaining within the range of UO. As illus- 
trated in Fig. 1, the viscous regions are then determined by 

following the evolution of complex critical points and Stokes 
lines in the complex y plane as a function of cr. If such a 
continuous process cannot be identified, viscous regions do 
not necessarily exist for modes satisfying assumptions (c). 

IV. VISCOUS REGIONS IN WEAKLY NONPARALLEL 
FLOWS 

We  now apply the preceding ideas to weakly nonparallel 
flow situations. By analogy with (14a) and (14b), the follow- 
ing quantities are then defined: 

dxjswi- k,(@;X) I -%- k.( o;X), 

From the conclusions of Sec. II and statement (a) of the 
last section, we know that at any point X where o(X)>0 or 
s(X)>O, the characteristic cross-stream scale of local plane 
waves is everywhere inviscid and the approach of Crighton 
and Gaster3 is justified. By contrast, if there is no such X 
station, nothing can be said regarding the characteristic scale 
of local plane waves at any point in the flow. (Except perhaps 
near y = +m where local plane waves are inviscid in order to 
satisfy exponential decay boundary conditions.) Further- 
more, if there is no region where a(X) evolves from positive 
to negative values with &X)<O, nothing can be said con- 
cerning the viscous regions since the analysis of Sec. III 
cannot be applied. We  therefore exclude these situations and 
assume that there exists a  point XP in the jlow where s(x) is 
negat ive and  a(x) changes sign. The analysis of Sec. III used 
to prove statements (b) and (c) can then be directly applied. 
It follows that there exists a critical point y,(X) satisfying 

-io+ik(w;X)U,[y,(X);X]=O, (19) 
that crosses the real y axis for X=XP provided that 
U,,[y,(X,);X,] #O. Figures l(a)-l(c) then correctly de- 
scribe the evolution with respect to X of the critical point and 
the viscous Stokes sector, Fig. l(b) representing the situation 
prevailing at XP . Different domains can then be distin- 
guished in the real X-y plane, as sketched in Fig. 2. On the 
locally amplified side [a(X) >O], the characteristic cross- 
stream scale is inviscid as argued above. As X increases 
through XP , viscous effects first appear in a critical layer 
surrounding [X, ,y,(X,)]. Finally, on the side where a(X) 
<O, a large viscous region develops in a sector originating 
from the real critical point [X, ,y,(X,)]. 

The angle of the viscous sector and its position with 
respect to the X and y axes near [X, ,y,(X,)] can directly be 
obtained from Eq. (17) and definition (19) for y,(X). Note 
that when arg[k(o;X*)] =+rr/2, one of the boundary lines 
of the viscous sector leaves the critical point [X,, ,y,(X,)] in 
a direction parallel to the y axis. 

The particular case of spatial waves with real frequency 
(oi=O) is now addressed. Any maximum of the wave ampli- 
tude [PI then occurs at a  point (X, ,y,) satisfying 
ki( w;X,J =0 and the spatial growth rate -ki changes sign as 
X goes through X,n. At X,n, the wave is therefore locally 
neutral and a classical result of temporal theory” applies: 
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ReCO 

!?IG. 2 Viscous structure of local plane waves near a first-order critical 
point [X, ,y,(X,)] in the real (X,y) plane. The viscous region corresponds 
to locations such that u(X) ~0. 

o/k( w;X,) is within the range of U,(y;X,,,). According to 
definition (18a), o(X) changes sign at X, and the previous 
analysis can readily be applied: the X-y plane exhibits the 
same configuration as in Fig. 2 with X,=X, . 

in closing, we emphasize the fact that the continuity of 
the local wave number k(X) is fundamental to the present 
analysis. If this assumption is violated (one could think of a 
flow with a step change in stability properties induced by 
heat addition, for instance), the evolution of critical points 
and Stokes lines cannot be “followed,” and the appearance 
of viscous regions cannot be predicted. However, the local 
wave number does not have to be differentiable and the re- 
sults remain valid at branch points of the dispersion relation 
where k( w;Xj exhibits square-root-type singularities. The 
reader is however reminded that the local plane-wave ap- 
proximation is generally different at such points (Monkewitz 
et az.y 

V. SPATIAL STRUCTURE OF PLANE WAVES IN 
WEAKLY NONPARALLEL FLOWS 

In this section, the leading-order approximation for the 
evolution of local plane waves is given in the different re- 
gions of the X-y plane displayed in Fig. 2. At each X station 
the matching procedure between inviscid and viscous ap- 
proximations is carried out in the complex y plane through 
the critical layer around y,(X). We restrict the study to 
streamwise locations that are not branch points of the disper- 
sion relation, thereby allowing us to generate uniform ap- 
proximations for all X. The implications of this assumption 
are discussed in Sec. VI. 

A. Outer inviscid region 

The characteristic cross-stream scale of plane waves is 
then the inviscid scale y . The function Q(x,y ; e) defined in 
(7) satisfies, at leading order, Eq. (10) and may be written as 

~(x,y;~)-~(y;X)A(x;~), (20) 
where &y;Xj is a suitably normalized solution of Eq. (10) 
and A (x; e) is an arbitrary amplitude. In order to match with 

\ 
Inviscid Region 

\ 

FIG. 3. Sketch of contour C avoiding viscous regions in the complex y  
plane. 

the viscous solution, it is convenient to impose for all X the 
following normalization condition at the complex critical 
point y,(Xj: 

~[Y,mxl=l. (21) 
The characteristic scale for the variations of 4(x; E) is at this 
stage unknown but it is slower than x, as required by condi- 
tion (8). 

If there exists in the complex y plane a path C going 
from --CQ to +m that remains in inviscid regions, the ampli- 
tude A (x; E) can be obtained at higher order through a solv- 
ability condition involving only inviscid approximations. As 
shown by Crighton and Gaster,3 this yields, at a station X 
which is not a branch point of the local dispersion relation, 
an amplitude equation of the form 

b(X) %+p(X)A=O. 
In such a case, the amplitude A is only dependent on X and 
is written as A(X). The first-order correction to approxima- 
tion (20) is easily evaluated as being O(E), and the inviscid 
approximation to the perturbation field Y? therefore reduces 
to 

‘j+[ +(y;X)A(X)+O( ~~~~~~~~~~~~~~~~~~~~~~~~~~ 03 
The path C coincides with the real y axis at streamwise 
locations where o(X) >O. At X stations where o(X) G-0, it is 
necessarily a complex contour that avoids the viscous re- 
gions, as shown in Fig. 3. It should be emphasized that a 
solvability condition exclusively involving the inviscid ap- 
proximation is possible only if such a path can be found. As 
soon as u(X) becomes zero, a situation may arise when two 
critical points [Fig. 4(b)] or a double critical points [Fig. 
4(a)] lie on the real y axis; it will then be impossible to find 
a path C completely avoiding the viscous domains. The vis- 
cous approximation then intervenes explicitly in the solvabil- 
ity condition leading to the amplitude equation governing 
A(x; ej. The existence of a path C that stays in inviscid 
regions is however guaranteed for locations close to XP in 
Fig. 2, if the real critical point is simple at XP to avoid the 
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ImQ 
t 

FIG. 4. Particular situations at u=O in which no contour C avoiding viscous 
regions exists; (a) two critical points merge at a real location; (b) two Stokes 
lines limiting viscous sectors associated to two distinct critical points coin- 
cide. 

situation of Fig. 4(a), and if arg[k(w;,Y,)] # f~~/2 to avoid 
the situation displayed in Fig. 4(b). In the following, these 
conditions are assumed to be satisfied. 

B. Complex critical layer 

The study of this region in the complex plane is neces- 
sary in order to match viscous and inviscid approximations. 
The use of WKBJ expression (7) leads to a uniform approxi- 
mation with respect to X in the X-dependent complex critical 
layer, as shown below. 

At any station X, the inviscid approximation (20) be- 
comes singular at the complex critical point y,(X). Its ex- 
pansion near y,(X) is commonly obtained by representing 
the Rayleigh eigenfunction &y;X) in terms of Frobenius 
series. Using the normalization condition (21) for #.y;X), 
one obtains 

~(Y;X)=1+{~~(X)-~~(X)~CY-Yc(X)l}CY-Y,(X)l 

+arY-Yc(m21~ (24) 

where a+(X) is defined by 

(25) 

If a@(X) is zero at the station under consideration, i.e., if the 
critical point is regular, the singularity appears at higher or- 
der but it does not fundamentally alter the ensuing analysis. 

Following Lin8 and Drazin and Reid,g one introduces the 
cross-stream scale 

+ Y -rcW) 
P3 * 

In view of Eq. (24), the inviscid approximation (20) ex- 
pressed in terms of the inner variable 9, reads 

@(x,y;E)={l+E 1’3 ln(.G3),~(X)~+ ~r’~[b,+(X) 

-cY~(X)~~~]~+O(E~‘~)}A(X). (26) 

Accordingly, a critical layer expansion is sought in the form 

&--[&o+ cl/3 ln(&3)&1+ I&~&,+ **a]. (27) 

The trivia1 solutions 6,, and 4 r can directly be deduced from 
expression (26) as 

i 
$di;X) =AW), 
@l(;;X)=A(X)cr4(X)j. GW 

The third-order term in (26) is singular and is not dire@y a 
solution of the critical layer equation. The function Cp, is 
obtained by solving 

x(x)$--ij-$ &,,=iq(X)A(X), 

where 

1 
X(X)= k( wxw uocY c(X) ;a ’ 

with the matching condition hm[~~w 
- c~+(X)ln y*$ as ljl ++a in the inviscid sector. This equa- 
tion can be integrated in terms of generalized Airy functions 
as 

d'&X)=A(X)(b+(X)y'+a+(X) 

X[X(X)/i]1’3Bj,{[i/X(X)]1’3~,2,1}). (30) 

The function Bj(z,2, 1) for any j=1,2,3 has been defined by 
Reidz’ and in the appendix of Drazin and Reid’ as the solu- 
tion of 

(,-g&-z -g)f=L I 

which is balanced in the sector Si of the complex z plane 
(Fig. 5). As demonstrated by Reid:’ the balanced functions 
Bj(Z,P,q) appear systematically in the critical layer to rep- 
resent solutions which are “inviscid” in two Stokes sectors 
and admit a logarithmic singularity at the critical point [func- 
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FIG. 5. Sectors Sj and Tj , j = 1,2,3, pertaining to generalized Airy functions, in the complex z plane. 

tion q$ delined by (15b)]. More explicitly, the approximation 
in the critical layer obtained in terms of the function Bj can 
be matched to the singular “inviscid” solution +z of the OS 
equation in the outer continuation of both sectors Tk where 
k=1,2,3 and kf j. (One easily shows that the boundaries of 
the sector T, are given by the critical layer expression of the 
Stokes lines defined in Sec. III.) By contrast, in the third 
sector Tj , the function Bi is dominant, i.e., it is exponentially 
large when [z]+m and can only be matched to a dominant 
outer viscous solution. It is through this kind of reasoning 
that the existence of viscous regions can in fact be proven. A 
more comprehensive account for strictly parallel flows can 
be found in Drazin and Reid.’ 

In expression (30), je is chosen such that the sector 
TjO, after a rotation of angle arg{[ilx(X)] 1’3}, corresponds to 
the inner expression of the viscous sector drawn in Figs. 
l(a)-l(c). 

Using (7), (27), (28), and (30), the approximation in the 
complex critical layer is finally found to be 

~=A(X)e(‘l’)~~~k(o;‘)dre-i~‘{l+(yg(X)~E1/3 In @3 

+ E”3(b~(x)j+ a~(x)[x(x)li]1’3 

X Bj,{[i/h(X)]1’3~,2, l})+ 0( 2’“)). (31) 

In order to obtain the approximation pertinent to the real 
critical layer in the X-y plane sketched in Fig. 2, expression 
(31) has to be expanded near X, with respect to the inner 
streamwise variable 

- x-xp 
x=E1/3* 

This task presents no difficulty and is left to the reader. 

C. Outer viscous region 

In this section the outer viscous approximation is ob- 
tained in the pale grey region of Fig. 2. In view of relation 
(3) between the Reynolds number Re and E> the cross-stream 
characteristic variable is then viscous, and given by y, = yf 
6. 
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The leading-order equation governing the amplitude 
a(‘) in the outer viscous region is given by (11). It admits 
four independent solutions which correspond to the leading- 
order approximations of (15a)-(15d). The solution is domi- 
nated by viscous diffusion and can be written, after applica- 
tion of the normalization condition (21), as 

@u)= p(x,y; ,),(l/~)I~c(~~(-‘O+‘kUo)R dY 7 (32) 

where the square root is defined so that 
%e[J:ccx,J( -iw+ikLJ~)R dy] > 0 for any y in the vis- 
cous sector. The characteristic scales for the variations of the 
function #“) in the x and y directions are a priori unknown 
but from condition (8) and the integration of (11) one imme- 
diately obtains the restrictions O(E)qlI~(U)) 
x(&$(‘~/&)<l and o(l)s(l/~(“))(a~c”)/ay)91/J;. 

The equation for #“) can be derived by inserting expres- 
sions (7) and (32) into Eq. (5), thereby leading to 

RUo d@‘) d$fJ”) 
--2J(-io+ikUO)R ~ 

-Jr ax JY 

-5dY[J(-iw+ikU0)R]f$(Dj 

+RV,J( -iw+ikUO)R&j 

+RU,, ~9, 1 c#&~)=O. (33) 

Since matching between the complex critical layer and the 
inviscid region has already been accomplished in Sec. V B, it 
is convenient to match through the complex critical layer. 

Considering the following expansion of Bio(z,2,1) 
(Drazin and Reid’) 

Bjn(Z,2, 1)-irr I/2z-5/4e(2/3)z3'2 3 

ZETjo and IzI--+w, (34) 

the behavio: in the outer viscous region of the critical-layer 
amplitude @ given by (27)~(30) is easily obtained as 

I 
Cp- i E3’4A (X) CY~(X) 7r”2[X(X)/i]3’4[y-yc(X)]-5’4 

Xe2/(3Si)[ilX(X)11'2[Y-Yc(,)lj'2[1 +&&3)]* (35) 
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Since 

&mf; (& (-io+ikUo)R dy 
c 

-e(2/3~r~/~(X)i”2rY~Y~~~~3’2 When y4y,(xj 7 

matching between expressions (32) and (35) implies that 

qb(“)- e314iA (X) a+(X) T1’2[ X(X)li]3’4 

X[y-y,(X>]-5’4 as y-+yC(X). (36) 

The function c$‘“) must therefore be sought in the form: 

cp)(x,y ; E) = .a4.$(y;X). (37) 

I 

By inserting this “ansatz” in Eq. (33), one immediately finds 
that the first term in (33) is negligible. Hence the leading- 
order equation for ay;X) reads 

1 a4 5 dJ \I( -iw+ikU,)R] RVo 
--=-- +- 
6 ay 2 d(-io+ikU,)R 2 

+ RUo 

2d(-iw+ikUJR 

xax [I yycmd(-iw+ikUo)R . 
c I 

Its solution is 

(38) 

~--B(X)[-iw+ik(X)UB(X,y)]-5/4e(R/2jf~c~~)rvO+(~OIJ(-~~+~k~O)R~~~f~~(~j~(-~~~~~~O)~}1d~, (39) 

with B(X) determined from condition (36) and expression (37) as 
B(X)=id’2A(X)a+(X)[X(X)/i]1’3. (40) 

By collecting the results (32), (37), (39), (40), the leading-order approximation of the local plane wave amplitude CP(‘) in the 
viscous region is finally obtained as 

(41) 

The term VI. DISCUSSION 

in the above expression is the WKBJ approximation of the 
viscous solution in parallel flows as obtained by Tatsumi and 
Gotoh.“r The additional terms are due to nonparallel effects: 
The exponential factor e(R’2)~~C~~V0 dy is an amplitude cor- 
rection induced by the Oi,/t) correction of the leading-order 
operator. The second exponential factor 

Approximations for linear local plane waves in two- 
dimensional weakly nonparallel shear flows have been ob- 
tained. The characteristic cross-stream scale has been deter- 
mined for arbitrary complex frequency o and local wave 
number k( o;X) by extending classical parallel-flow results 
for real k. The inviscid approximation at a given station X is 

fpqc(x) [(V,/ (-io+ikU,)R)3,&y y,cn(d(-i”+ikuo)R)}ldy 

is due to the X de endence of the local cross-stream wave 
number I = F ( - to + rkUo)R. It is important to notice here 
that this dependence has induced an U(de) correction to the 
streamwise wave number which is not present in the outer 
inviscid domain. 

Upon inspection of (7) and (41) at a given station X, one 
immediately sees that the amplitude’ in the viscous region 
exhibits fast oscillations and is exponentially larger than its 
counterpart in the inviscid region (Fig. 6). One notes how- 
ever that, in the limit e-+0, the strength of the damping fac- 
tor eCil’%kCo;r)dr in the streamwise direction remains much 
more important than the amplifying viscous factor in the 
cross-stream direction. The point of maximum amplitude 
therefore remains at the streamwise station where 
.z?/‘$,,~(~;~)~~ displays a maximum and the wave is locally 
spatially neutral. 

ViSCOUS Region 
0(X-XP ) 

FIG. 6. Cross-stream variations of local plane waves in the viscous sector at 
a streamwise station where a<O. 
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asymptotically valid for any y if the local plane wave is 
amplified in a frame of reference moving at the local phase 
speed o,./k,, i.e., if LT=Wi-ki(w;lY)o,/k,(w;X>>O, or if 
the phase speed is not within the range of the streamwise 
velocity Ue(y&. As soon as the wave is locally damped 
(a<O) with w,lk, in the range of U,(y;X), the existence of 
viscous regions has been demonstrated. 

The development of the viscous region in the neighbor- 
hood of a critical point [X, ,y,(X,)] satisfying 

-io+ik(W;Xp)UO[yc(Xp);Xp]=O (42) 

has been analyzed and proven to generically display the 
structure sketched in Fig. 2. In the process, leading-order 
approximations of local plane waves have been’ calculated 
everywhere. 

These results are readily applicable to both the signaling 
and global mode problems. In the signaling case, local plane 
waves represent the flow response to an oscillating source at 
a given real frequency. As outlined in Huerre and 
Monkewitz,i3 for instance, this approach is physically rel- 
evant only in convectively unstable’ systems. In free shear 
flows the signaling problem has so far o’irly been studied in 
regions where the wave is spatially amplified, i.e., for o>O, 
thereby allowing the use of an inviscid approach. Asshown 
by Crighton and Gaster3 for jets and by Gaster et ~1.~ for 
mixing layers, the outer inviscid expression (20) for the per- 
turbation streamfunction is adequate to explain the observed 
variations of individual physical quantities, such as local 
growth rate and wavelength. A consistent description of local 
plane wave evolution has now been obtained around and 
beyond the point of maximum amplitude. 

It must be said that, to our knowledge, no linear viscous 
waves have so far been detected experimentally or numeri- 
cally in free shear flows because, in most cases, nonlinear 
effects become important well before the wave reaches its 
maximum amplitude. In fact, one has to ‘keep in mind that 
theoretically the condition /q],,+~l is not sufficient to ne- 
glect nonlinear effects. As soon 
0(1/ReU3)=0(EU3), 

as IT,,] is 
nonlinear terms come into play in the 

neighborhood-of the critical point at the streamwise location 
of maximum amplitude arid one has to proceed to a 
nonlinear-critical-layer analysis (Goldstein and Leib7). 

The present results are also applicable to the description 
of linear global modes [Huerre andkonkewitz,13 Monkewitz 
et uZ.‘~]. In the limit of slowly evolving basic flows, global 
modes’ can be decomposed locally into plane waves oscillat- 
ing at the global frequency og, and the analysis of Sets. IV 
and V directly applies. 

The real issue is in fact to determine which local plane 
waves constitute a valid approximation of global modes at a 
given streamwise station. By ignoring the cross-stream struo 
ture and using a Ginzburg-Landau evolution model with two 
turning points in the streamwise direction, Chomaz et al.14 
and Le Dizis et al. l5 have succeeded in identifying two types 
of global modes: those with distant turning points (type 1) 
are approximated by a single local plane wave everywhere 
except in the neighborhood of the Stokes line connecting 
both turning points; global modes with a double turning 

point (type 2) are approximated everywhere by a single local 
plane wave. 

Double-turning-point global modes have also been ana- 
lyzed in shear flows in the context of an inviscid approach 
(Monkewitz et a1.r6). The global frequency is determined ‘in 
that case by matching two subdominant WKBJ waves at the 
double turning point X, . Inviscid approximations to the glo- 
bal modes in both the outer and double-turning-point regions 
have been calculated. The results obtained in the present ar- 
ticle guarantee that at any location where o-(X) is positive or 
ug,r/kr( og ;X) is not in the range of U,(y ;X), such approxi- 
mations are asymptotically valid for all y. We have also 
proven that they break down in the neighborhood of any 
critical point [X, ,y,(X,)] satisfying (42) and in the viscous 
sector displayed on Fig. 2. In such regions, the critical layer 
and viscous approximations of Sec. V are then applicable, 
provided that they do not contain the double turning point 
x,. 
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