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It is known that two-dimensional vortices are subject to generic three-dimensional instabilities. This
phenomenon is located near the core of vortices and depends on the eccentricity of their streamlines.
In this paper we are concerned with the modification of this instability when stretching is applied to
such vortices. We describe this instability by linearizing the Navier—Stokes equations around a basic
state, which is an exact time-dependent solution. The complete system for the perturbations is
reduced to a single equation for the perturbed velocity along the vortex span. In the limit of weak
stretching, a perturbation theory can be performed and leads to a WKBJ approximation for the
solution. This procedure demonstrates that a small amount of stretching is able to prevent the
appearance of three-dimensional instabilities for vortices with a low enough eccentricity. Since most
vortices are slightly elliptical in turbulent flows, the above computations are expected to cover a
wide range of experimental cases. In particular, it is tentatively argued that this mechanism may
explain recent experimental observatigRéys. Fluids7, 630(1995]. © 1996 American Institute

of Physics[S1070-663096)00208-5

I. INTRODUCTION this instability is the production of small scales directly from
a smooth basic state.

The presence of organized structures in turbulent flows  Taking into account these two separate standpoints, it is
has been recently emphasized by physical experimhemi$  natural to ask how the elliptical instability behaves when a
numerical simulation$-* In particular, vorticity is mainly velocity component is added along the span of the previously
concentrated in localized tube-like regions: the so-calledwo-dimensional vortex. This is not a purely academic ques-
“worms” ® or “sinews.” ° If one agrees that such local tion since vortices present in turbulent flows are not purely
structures are important for the global turbulent field, it istwo dimensional but experience taree-dimensionaktrain
certainly worth studying their elementary dynamics. In thisarising from the mean field. In this work, we specifically
spirit, Moffatt, Kida, and Ohkitarlistudied the effect of an consider the stability of the core of a three-dimensional el-
asymmetric strain on a Burgers vortex to understand the intiptical vortex subjected to an axial strain. An analogous
fluence of the average flow field on high vorticity regions. study was performed in Craik and Alléhwhere the influ-
They showed, in particular, that vortices become slightly el-ence on the elliptical instability of a periodic strain was con-
liptically shaped when subjected to an asymmetric strairsidered. Note that stratification and Coriolis effects may also
field. alter this three-dimensional instabilitg.1*

The elliptical character of vortices has also been the fo-  When stretching is present, no steady solution such as
cus of much work during the last decade. Indeed, a universahe two-dimensional elliptic vortex is known for the purely
three-dimensional inviscid short-wave instabflityonnects inviscid case. Two cases are possible: the vortex is time-
two features of inhomogeneous turbulent flows: the presencgependent, the stretching effect increasing the vorticity level
of two-dimensional vortices and three-dimensional smallwith time or viscous effects are strong enough to counterbal-
scales. This purely inviscid phenomenon is due to the ellipance this process. This latter possibility actually means that
tical nature of the two-dimensional vortex streamlines, assortices are long-lived enough to be structurally dependent
explained by the linear perturbation approaches of Bayly,on viscosity. An example is the vortex studied in Moffatt
Waleffe® and Landman and SaffmdrTheir analysis which et al® In this paper we disregard that case which will be
is locally valid near the center of the vortex, has been genaddressed in future work and consider only the time-
eralized by Lifschitz and Hameitf, who perform a WKBJ dependent vortex for which vorticity is enhanced by stretch-
analysis along any vortex streamline. A generic feature ofng. For this case, an exact solution of the Navier—Stokes

equations can be found, that represents the vortex core. The

dpPermanent address: DAMTP, University of Cambridge, Silver Street,lm"?ar _Stab”ity_Of such a state is performed in _this paper,
Cambridge CB3 9EW, England. which is organized as follows. In Sec. Il, the basic stretched
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vortex solution is provided. Thereafter the equations for thecovered. Note that this solution is more general than it ap-
velocity perturbations are established and reduced to a singfgears since it may represent the local approximation of a
equation, which is unfortunately nonseparable in space angeneric evolving vortex near its core. In the subsequent
time variables. However, it is possible to find an equivalentanalysis, expressiofB) is considered as the basic flow.

of the usual Fourier modes decomposition. This is done in  The dynamics of pressure and velocity perturbations
Sec. Il by searching perturbations in the form of “inertial (p,u) around this basic state is described by the following
waves.” Time-dependent equations for both amplitude andystem:

wave number are thus obtained. Finally, Sec. IV provides a

heuristic description of the dynamicsyof these Fe)quations, D+ (u-V)Uo+(u-V)u=—Vp+v Ve, (43
which is put on firmer grounds in Sec. V using WKBJ ap- V-u=0, (4b)

proximations. ) . o )
where the convective time derivati@,= d;+U,-V explic-

itly depends on spatial variables through the basic state.
Suppose one can neglect the nonlinear téonV)u in
Consider a three-dimensional vortex subjected to stretchi4a); a straightforward algebraic manipulation ¢fa) and

ing along its span, which is produced by the mean flow of(4b) then leads to the following equations:

surrounding vortices. This strain field is supposed to take the _, _ _ _

local form U = (ax,8Y,yz), where a+B+vy=0 to comply VIp=2u(d0 = dyu) —2e(dw+oyu) =3y 7w, (53

II. BASIC FORMULATION

with the incompressibility condition. Moreover, we focus on (Dy— y—vV?) (90 — IyU) =24 3,W, (5b)
the case of an axial strain for which coefficients positive )
while @ and 8 are both negative. In such a case, the vortex  (Di—y=vV9)(dyv +dyu)=2€ 9,W—204 d,p, (50

tube aligns with the axis, the stretching direction. The total

: D+ y—vV2)w=—4,p.
velocity then reads as (Dt y=rVHwW=—7.p (5

It is possible to reduce the above system to a single equation

\Ljo ax+‘9y$ for the perturbation velocityv along thez axis. First, one
Up=| Vo |=| BY=V ], (D differentiates(5a) with respect tod,(D,— y— »V2). Noting

Wo ¥z that this latter operator is equal t®(— »V?)4,, and using
whereW(x,y,t) stands for the induction incoming from the (5b)—(5d), one gets
vortex tube itself. When viscous diffusion controls the struc- 2702 2 2 2\ 2

. . D;—vVe]VD+ y—vVIw+4(u— €°)dzw

ture of the solution, there exists a steady vortex the core o[f T VVIVAD Ay vV (W"= e,
which scales withyv/y. This solution is nothing but the —4€ 9yd,[ D+ y— vV2w—39[D,— vV?]52w
Burgers vortex for axisymmetric strain or the vortex ana-
lyzed by Moffattet al5 for the more general nonaxisymmet- = — 2 9ttt 92(Ixv = dyu). (6)
rc case. Furthermore, a second relationship between and

By contrast, for larger vortices, no steady solution existswxv_(gyu) is obtained using Eqs(5b) and (5d) and the
since viscosity is then unable to balance the stretching effecpontinuity equatior(4b),

which tends to concentrate vorticity. However, it is possible A )
to construct an exact time-dependent solution of the NavierY  V(D¢+y— vV )w
Stokes equations that appropriately describes this evolution. _ 2 2 2 B

Suppose thaW (x,y,t)= —[w(t)/2](x?>+y?). In that case, [26Vi=26(0x= 91000 = ayu)

the basic flow given by1) is the superposition of the uni- —[4ededyd?—3y 5V, (7)
form strain and a time-dependent uniform vorticity field 5 2 o . ]
(0,0,2). As shown by Craik? this expression is an exact with VT =4d;+ ;. Finally, if one accounts for relation®)
solution of the Navier—Stokes equations, provided that th&nd(7), one gets

vorticity evolves according to the law [ZMVE —25(&5— 05)]{[Dt— VW2]VZ[D,+ y— »V2]w
t) = uoe™. 2

8= Hol™ | | @) 4P~ €)dPW—4de a,0,[Di+ y— VW

If a 7/4 rotation of the coordinates with respect to the 9t 2
axis is performed, this basic flow, takes the following —3y[Di—vV7]o;w}
compact form: =2y,u{VfV2(Dt+y— V2w

—vi2 muhre 04 [y +[4edydyd2—3y 32V2Iw}. ®
Up=| u()+e =2 0| y], 3 _ . . :
0 0 y 7 Note that Eq(8) is nonhomogeneous in space and time vari-

ables. This implies that the standard Fourier analysis is of no
wheree=(a—B)/2 is a measure of the strain asymmetry anduse and one must resort to a new method to solve the prob-
is related to the streamlines eccentricifin order for the lem. Fortunately enough, one is guided by the specific case
streamlines to be elliptic, one assumes tpgt-e.) When  y=¢=0, which corresponds to a solid body rotation. It is
stretching y vanishes, the two-dimensional elliptical flow known that this flow supports neutral waves called inertial
studied by Pierrehumbé&rand Bayly! among others, is re- waves for which analytical expressions are available. In the
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following section, our purpose is to construct the equivalenfTi(t),7(t),W(t),p(t)]
of these solutions for the general cage0 ande#0.

:[G(t),'\"/(t),\TV(t),'ﬁ(t)]exp( - vJ:|k(s)|2 ds), (14)

IIl. INERTIAL WAVE PERTURBATIONS whereU andP are independent of viscosity. Using E¢$0)

] ) ] and (14), one easily determines the following time-
As in the case of solid body rotation, we look for per- dependent equation fol:

turbations in the form of plane waves with time-dependent ) - ) ) g
wave vectorgsometimes called Kelvin waves Ie([KIPW) +[4u2k; — 4€%|K|?— dep(ky— ki) W

(u,p)=[T(1),2(1),W(t),p(t)]e®. (9) |k, |20,(|K|2W) + 4 ek, k, | K| 2W

CE Tk P22 KD)

(15)
If the time evolution of the wave vect&(t) is appropriately
chosen, the nonhomogeneous terms in E4@.and(4b) are  Note that 2u|k, [*+2e(kj—kZ) cannot vanish since. is
removed. Similar to what happens when the usual Fourieflways larger thane and [k, |*=kZ+kj. Together with
expansion is applied, Eq8) then reduces to an ordinary (11a8—(110), this second-order equation describes the evolu-
differential equation. It is readily found that this term can- tion of the generalized inertial waves),(14).

cellation occurs if the wave VeCt(kI(t) satisfies It is worth mentioning that the Continuity equation guar-
_ antees that such plane waves are transversd)ile=0. As
Dy(e'kV¥)=0, (100 a byproduct, these linear solutions actually satisfy the full

. . o _nonlinear Navier—Stokes equations siflaeV)u=i(u-k)u is
This equation, which is interpreted as a phase conservathaentica”y zero for each of them.

for plane wave solutions, also reads as a system of three Although the above equations were obtained for any

scalar equations: stretching parametey, we shall now restrict our investiga-
tion to the casey<yu,. Indeed, when the stretching is weak,
athzg k— (o™ + e)ky, (113  the axial vorticity 2«(t) grows slowly and the basic stat®)
is physically relevant for a sufficiently long time to allow a
temporal stability analysis. Whep=0(w,), such a stability
6’tky=(,uoeyt—6)kx+ % Ky, (11  analysis is irrelevant since, in contrast with the basic flow
given by(3), the core of the vortex will be altered by viscous
P (110 effects on the reference time scale.d/
When vy is nonzero, Eq(110 shows that the wave number
k,=kbe "' tends to zero. Moreover, Eqél1g and (11  IV. HEURISTIC APPROACH
can be analytically solved for two specific instances. The
first one corresponds tp=0. In that casek, is a constant
and the wave vector periodically precesses arouna #ods
following an ellipse®

Equations(119—(11c are nondimensionalized using as
reference length scale kly and reference time scale iy,
where 2, is the initial vorticity. This introduces the dimen-
sionless quantities* =y/ug, € =€l ugy. In the sequel, dimen-

K sionless equations and quantities are always considered and
kx=—0 cod VuZ— X+ &, (129  asterisks are dropped.
JE When vy is small, the wave vector equations can be inte-
_ grated by the WKBJ methot®,which leads to the following
y==kg VE sinl Vu?— e+ £, (12b  approximations:
whereE is the ellipticityE = \/(u— €)/(+ €). When eccen- _— e'? 5(1 fTQ( Jdst & | 40 2)
LT : . = cosg — s)as+ég| t €,7°),
tricity e=0, a general solution can be found as well: X~ 10 E(T) y Jo 0 Y&y
k=5 €2 cog €™+ &), (132 (163
(1T
k,= ks "2 sinf oe”'+ &1, (13b) ky=ko VE(T)e™? sm(; JO Q(s)ds+ &y | +0(ye,y?),
(16b

which shows that the wave vector amplitude and its angle
with the z axis increase while it rotates more and more rap-  k,=e ', (160
idly around the same axis. In the next section, we provide an o

approximation for the general solution @13 and (110, where the ellipticityE(T) and the frequenc{2(T) evolve on

which shares the properties of the above cases. the slow-time scald’=yt, according to

Let us now write the ordinary differential equation for 1—ee™ T
the wave amplitude. Note first that viscosity always appears E(T)=\ 777" (17a
in the system(5a—(5d) through the operator[It—vvz).
Therefore, viscous diffusion acts on the plane wéleas QT)=Ju?(T)— = e?T— €. (17b
2086 Phys. Fluids, Vol. 8, No. 8, August 1996 Le Dizes, Rossi, and Moffatt
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Inserting expressiond6a—(16¢) in (15), one obtains an
explicit equation for the wave amplitude:

( , CdT)+4a(T)cog(2/y)f5(s)ds+ 2]
T T I a Mcod (27 [ 10 (s)dst 26]
XQZ(T))W— v W+ O(ve,y?)=0, (18
with
W=W|k|2, (193
T)= (ko)e 7 190
D= e e (9o
=3T [1_ 2,—2T
C(T)=4 ° L-ee (190

(kp)Pre Ti-e 7T

We present in this section a naive approach to solve 1B).
Suppose we only consider the leading orde(1i8), i.e. the
last term proportional tey is disregarded. Equatiofl8) can
then be transformed into a Hill equation with slowly evolv-
ing coefficients,

[1+ ae(T)cos(2§)]5§W+ [cdT)+4a.(T)cog2£)W=0,
(20)

where the fast time variable,
1 (T
§=—f Q(s)ds+ &o, (21
Y Jo

is employed. Wheny is zero,a, andc, are constants. One

solutions of Eq(20). Based on Waleffe's results, the ellipti-
cal instability is only active whea_ andc, evolve inside the
shaded area. If an initial perturbation is such tkgtis suf-
ficiently small, the pointd,,c,) always crosses the unstable
region(see Fig. 1during a finite period of time that scales as
O(€ly). In that area, its amplitud®V/ grows with anO(e)
rate. Therefore an exponential factor of the foeltf”” can

be expected for the global amplification. The basic flow is
hence stable i<y and unstable ify<é’. In the subsequent
section, a more precise analysis of the solutions is performed
and an expression for the global amplification factor is pro-
vided.

V. PERTURBATION THEORY

If one agrees with the above analysis, the effects of ec-
centricity and stretching are captured at the same order when
y scales withé®. In order to study the stability changes, it is
therefore natural to consider the following scaling:

¥0=0(1).

In the limit e<1, the coefficienta, given by (19b) re-
mains small and the elliptical instability only occurs when
is near 1(see Fig. 1 This happens whefh is in the neigh-
borhood of the critical timé, such that

y=Yo€% (22

C(To)=1. (23

Note that condition(23) express the fact that elliptical reso-
nance occurs when the angle betwéeand thek, axis is
near /3. A leading-order approximation fof; is immedi-
ately obtained from{190):

2 (1/3
=1In

T.= 3 E . (29

Using the scaling22), the expansion with respect tmf
Eq. (18) yields
[1+ eay cOg2£)]02W— €2yy dW

+[co+ €?co+4eay c0g26)]QO°W+0(€%) =0, (25

where(), W, £ have been defined ifl7b), (193, (21), and

then recovers the evolution of three-dimensional perturba-

tions superimposed on the two-dimensional elliptical flow

obtained by Waleffé. Figure 1 reproduced from Waleffe

shows the behavior of such solutions for various values of

the parametera, andc,. In the shaded area, perturbations

grow exponentially and they are neutral everywhere else.
In the present study, the coefficierds and c, are not
constant but slowly evolve according to expressi¢b@b)

e*3T
C0=4w, (26@
4—cy
TR (26D
Co(4—Cop)
Co=— W (26(:)

If one searches for a local approximation of solutions of

and(19¢ on a continuous curve sketched in Fig. 1. Becausd25), it is necessary to discriminate between two possibili-

of the slow variation ofa, andc,, it is possible to use a

ties: the nonresonant case+ T, and the resonant case

quasistatic approximation to understand the behavior of th&=T.. Let us first consider the nonresonant case.
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A. Nonresonant regions T# T, sions provide uniformly valid approximations foY, away
from the resonance. As a consequence, any real solution of

If T plays the role of a parameter, E®5) is a linear . g
play P @5 i ! Eq. (25) is written, for all T<T,, as

ODE with periodic coefficients of period/(). For such an
equation, Floquet's theory shows that there exist solutions of
the forme®'f(t), where thecharacteristic exponentg, are
complex numbers andl periodic functions with the period
of the coefficients. If the characteristic exponents are ex
panded in power series i one obtains, at leading order,
two independent solution®/; ,W, associated with two dif-

W=W"=A"W;+c.c,, forT<T,, (3D

whereA™ is a complex constant. In the postresonant regime
T>T,, this solution takes the form

— +__ +
ferent value®; ~ iQ\/cq, 6, ~ —iQ\/c,. Since Eq(25) is W=W"=(A"W,+c.c). (32
invariant under complex conjugatioWy, can actually be . ) )
identified with W . The complex constart ™ is determined by matching expres-

When the coefficients are slowly varying as in E25), sions(31) and(32) through the resonant region &f .
the solutions may be expected to remain similar. As a con-
sequence, a WKBJ uniform approximation is sought in theB. Resonant region T~ T,

form In the neighborhood of ., the characteristic local scale

i . can be deduced from the analysis(2¥) and (283. Indeed,
leexp(—z f Q(r)m(jr> as soon a$T—T.|=0(e), the third term in(27) is of the
Yo€ Jo same order or larger than the first term and both terms oscil-
o T late at the same frequenc®.=Q(T,.). Since (289 and
A11+ B, exp( -— f Q(r)dr) (28b) and (29) were obtained assuming both order and fre-
Yo€ Jo guency separations, these expressions are no longer justified
2 (T as soon a$T— T, =0(e): we therefore look for a different
+Cy exp(—2 j Q(r)dr . (27)  evolution on the local scal€=(T—T,)/e.
Yo€ Jo As can be guessed from the behavio#t asT— T,
[see expressiofAla) given in the Appendik the local ap-
Once expressiol27) is inserted in Eq(25), the identifica-  proximation reads as
tion of oscillating terms at frequencf (T)(\/co(T) = 2)

X

A10+ €

+0(€?)

yields, at ordere, the following relations: W:WEA(T)ech1+ c.c+0(e), (33
B,(T)— [4—co(T)]? (T, (283  WhereQ;~ 3/31(k$)2. The amplitudeA satisfies
320(T)[1=Veo(T] ° _
A iQe— 9 — .
[4—co(T)]? —=— —CTA+—— A*el®%T 77, (34)
C.(T)= A (T). 28b aT 8 16
D S0 Ve o oot

This equation has been obtained from Ezp) by expanding

At order ¢, another equation foh;  is obtained by identi- 4/ the coefficients of25) in powers ofe:

fying terms oscillating at the frequendy(T)co(T). Using

expression$28a and(28b), it yields Co=1- %eﬂ 0O(€?), (353
Ay (T)=Ky(T) Q=Q[1+€T]+0(e?), (35h)
T [A-co(n® £= Qe (t—t)+(T)35]+O(e), (350
Xexp — f 2 dr|,
Yo ) 47Q(r)[1—co(r)]Veo(r) and identifying allO(e) terms.
(29 Equation(34) is transformed by the change of function,
with A(T)=A(T)e 12T 12, (36)
Ke(T) e'’? into a parabolic cylinder equation,
(T)=———
Qo] Y2 ~
(0ol 7A 996)% ( 9 )2+ 90|~ a7
i T _ — N =Y,
exd — - f VCo(r)[4—Co(r)] drl. 20 IT2 870 16y, 870
Yo Jo 16Q(r)

the general solution of which can be expressed in terms of
The integral(29) is defined in an interval that belongs either parabolic cylinder functionsD, (see Abramowitz and
to the sefT<T, or to T>T,, wherecy(T)#1. Such expres- Stegun®) as
2088 Phys. Fluids, Vol. 8, No. 8, August 1996 Le Dizes, Rossi, and Moffatt
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A(T)=\D,(Be% ™T)+ yD_,_,( B3 ™T), (38)  to compute than for the 2-D case. This requires an evaluation
of the maximum amplification gaiG,,(k) for the set of

with perturbations associated with a given wave nuntbeBuch
9i perturbations are only amplified due to inviscid processes in
a= e (398  the resonant region during a time interval [ T,] for which
Yoite the coefficient (92./8y,)>T2—(9/16y,)? in Eq. (37) is posi-
3 /o, tive. The smallest viscous correction to the inviscid g@in
B= > 7_0' (39b can then be approximately evaluated by computing

exp(— v[Yk(s)|? ds) during the period of timeT,—T;.
Through the matching of the local approximati¢88)  This yields
with expressiong31) and(32), one obtains the constants
n, and A™. The details of the matching procedure and the Gtot(k)~69“2’<6490”e* vkzd(ﬂc«/)’
complete expressions are given in the Appendix.
Finally, the above computation yields the gain of ampli-ang a cutoff wave numbek,,~ \Ome/(64v) for which
tude across the region of resonar@e |A"/A™|: Gi=1.
Our stability analysis is pertinent for any experimental
(AT)* 40  Vortex thatis not viscous dominated. Indeed in that case, the
A | @0 ore sizel is much larger than the viscous scale/y,
which guarantees that> 1/k.,, when the inviscid instability
condition >4, is satisfied. A continuum of wave vectors
If(Qe,70)| = V1— e 97CXcv0), (41)  corresponding to all the scales betweek.j/andL is then
always destabilized in the instability process.
It is argued that the present study might explain recent
VI. DISCUSSION experimental observations of vortex structures in turbulent
flows. In real flow configurations, the vorticity field is sub-
The above study generalizes the elliptical instability ofjected to fluctuating stretching and asymmetric strain. As de-
two-dimensional vortices in the case where such vortices argécribed by our basic flow solution, stretching tends to con-
subjected to an axial stretching. Its main result implies thatentrate the vorticity and generate localized vortical
the elliptical instability can be suppressed when the stretchstructures. If during this process, the vorticity fields is also
ing v reaches a high enough value compared to the magnpubjected to a strong asymmetric strain, or if during a certain
tude € of the asymmetry due to the average strain field. Thigperiod of time the asymmetry is simply too large compared
is clearly seen on the inviscid amplitude g&@ncomputed in  to the stretching, the structure in formation is destroyed by
Eq. (40). Indeed the parameter H§Q.) = €%/(yQ).) appears the elliptical instability. This could perhaps explain the rapid
in G in an exponential factor. |nyC<52, the perturbation disappearance of vortex filaments observed by Catlat?
amplitude can then be made as large as wanted on a tinfgnally, if the vortical structure is not destabilized, the vor-
scale t=0O[1/(y€.)]. This inviscid instability process is ticity concentration process is ultimately stopped by viscos-
nothing but the usual elliptical instability phenomenon gen-ity when the core size becomeX \/v/y). The vortex is then
eralized in the presence of small stretching. On the otheexpected to relax to a stationary solution controlled by vis-
hand, when the stretching becomes important compared tosity (see, e.g., Moffatet al®). An extension of this work
the destabilizing effect of eccentricity i.€).y>¢€, there is  would consist in studying the stability of such a resulting
no gain of amplitude sinc& tends to 1. As a result, the vortex.
vortex structure is not affected by the elliptical instability.
Actually perturbations are “amplified” during a period of
time that is too short for them to reach a large amplitude. ACKNOWLEDGMENTS
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the perturbations. The dependence of this factor on the wave

number_ k implies that the maximum amplification gain APPENDIX: MATCHING

Gioi(K) is obtained for wave numbeks—0 and that a cutoff

wave numbek, is present for which perturbations of wave In this section, pre- and post-resonance amplitu8és
numberk=k., are damped by viscous effects. One thenand(32) are matched to the local approximati88) valid in

qualitatively recovers the restilthat viscosity does not a O(e) neighborhood of,.

modify the evolution of large structures. The exact cutoff ~ The asymptotic behavior oV~ asT—T. andW" as
wave number for which viscous damping stabilizes any perT— T can be obtained fror27)—(32). In terms of the local
turbation of wave numbet=k_, is, however, more difficult variableT=(T—T.)/e, it reads

G: e97r/(649c70) 1+ fe(QC ’ 70)

where
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; ‘0. T2 ; o ‘0. T2 (A_)*[K(ﬂ* ‘S T _o ‘0. T2
W~ elftgifeT 7270 A~KCeiRe| €T |91(6%2c70)g 91T #1670 4 —L oISy T [ 9/64270) 90T %160) | 4 ¢,
T*}TC_ c
(Ala)
R p— = (AT*[KS* o — I
W~ el QctgiQcT 72y A*Kie'R°|eT |9|/(64O.Cy0)e79|QCT /(16y0) 4 1 e*'SC|eT |79|/(64O,cy0)e9|QCT 116v0) | 4 c.c.,
S 40T
c
(Alb)
|
where The above expressions are compatible and yield
1 T Q.T + _ p 97640 vo) A~ —\*
R.=— fcﬂ(r)w/co(r)dr— Ay (A2a) AT=e TOLAT +1(Q6,v0) (A7), (A5)
€ %Y Jo €% .
with
1 Te QT
= — + c 2, 1-9i/(640¢yg)
e A N o et et
e( C!’)’O) € Kc 90)
1 c
=K (Ty). (A2¢)
1
. ) 3\/%67977/(12&1570)
In order to find the constanisand » in (38), we need to X _ ) (AB)
compute the asymptotic behavior of the local approximation 8VQcyol(1+9i/(640v0))
(36) asT——c and T—+. One can deduce this from the hat th aul Q imol d
expansions of the parabolic cylinder functibr(z) asz—» Note that the modululf ({¢,70)| simply reads as
(see pp. 131-132 in Ref. 15 1F.(Q0,70)| = \/m, (A7)

K(T_) - eiwa/4()\|ﬂ-|—_|aei(,BT)2/4
e
. —7a7 o2
+e'7/477|,3T| 1gi(BT)?14)

V2m

T(a+1)

(A3a)

AT) ~

T+

ne—iﬂ'al4

e d m/4) | IBT_|aei ( ,BT_)2/4,

o-imlat1)a V27

* T(—a)

N

T nef3i7r(a+ 1)/4) |,3T_|*“*1ei('3?)2/4. (A3Db)

Matching the outer solutionAla) and (Alb) with the
inner solution(33), (36) and (A3a) and (A3b), we finally
obtain
iai

K{eRee™ mi/A ", (Ada)

-
B

nzefiwm\/zi [K‘l’]*e’isce’”“i"‘[A’]*, (A4b)

E‘—iai
B
N

i

Taild 3maild_ E CaiRcp— majldp +
ne TG +1) Ae B Kiece AT,
(Adc)
)\ewai/ll 2m _ ie377ai/4
F(—iai)
. € ! .
e E‘ [KS]*e ST, (Add)
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since (see formula 6.1.31 in Ref. 16 [[(1+iy)|?
=mylsinhy.

0. Cadot, S. Douady, and Y. Couder, “Characterization of the low pres-
sure filaments in three-dimensional turbulent shear flow,” Phys. Fltids
630(1995.

2A. Vincent and M. Meneguzzi, “The spatial structure and statistical prop-
erties of homogeneous turbulence,” J. Fluid Me2B5 1 (1991).

3S. Kida, “Tube-like structures in turbulence,” Lecture Notes Num. Appl.
Anal. 12, 137(1993.

4K. Yamamoto and |. Hosokawa, “A decaying isotropic turbulence pursued
by the spectral method,” J. Phys. Soc. Jpi, 1532(1988.

SH. K. Moffatt, S. Kida, and K. Ohkitani, “Stretched vortices—the sinews
of turbulence; large-Reynolds-number asymptotics,” J. Fluid M&&9,

241 (1994.

R. T. Pierrehumbert, “Universal short-wave instability of two-dimensional
eddies in an inviscid fluid,” Phys. Rev. Le®7, 2157(1986.

B. Bayly, “Three-dimensional Instability of Elliptical Flow,” Phys. Rev.
Lett. 57, 2160(1986.

8F. Waleffe, “On the three-dimensional instability of strained vortices,”
Phys. Fluids A2, 76 (1990.

%M. J. Landman and P. G. Saffman, “The three-dimensional instability of
strained vortices in a viscous fluid,” Phys. Flui@§, 2339(1987.

1A, Lifschitz and E. Hameiri, “Local stability conditions in fluid dynam-
ics,” Phys. Fluids A3, 2644(1987).

A, D. D. Craik and H. R. Allen, “The stability of three-dimensional time-
periodic flows with spatially uniform strain rates,” J. Fluid Mec234,
613(1992.

2A. D. D. Craik, “The stability of unbounded two- and three-dimensional
flows subject to body forces: Some exact solutions,” J. Fluid M&&,

275 (1989.

13T, Miyazaki and Y. Fukumoto, “Three-dimensional instability of strained
vortices in stably stratified fluid,” Phys. Fluids A 2515(1992.

14T, Miyazaki, “Elliptical instability in a stably stratified rotating fluid,”
Phys. Fluids A5, 2702(1993.

15C. M. Bender and S. A. Orszadydvanced Mathematical Methods for
Scientists and EngineefdcGraw-Hill, New York, 1978.

16M. Abramowitz and I. A. SteguntHandbook of Mathematical Functions
(Dover, New York, 196k

Le Dizes, Rossi, and Moffatt

Downloaded-11-Jan-2006-t0-147.94.56.67.=Redistribution-subject-to-AlP-license-or-copyright,~see=http://pof.aip.org/pof/copyright.jsp



