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CNRS, 12 Avenue Ge´néral Leclerc, F-13003 Marseille, France

M. Rossi
Laboratoire de Modelisation en Me´canique, Universite´ de Paris VI, 4 Place Jussieu, F-75252 Paris cedex
05, France

H. K. Moffatta)
Laboratoire d’Hydrodynamique (LadHyX), Ecole Polytechnique, F-91128 Palaiseau cedex, France

~Received 17 January 1996; accepted 10 April 1996!

It is known that two-dimensional vortices are subject to generic three-dimensional instabilities. This
phenomenon is located near the core of vortices and depends on the eccentricity of their streamlines.
In this paper we are concerned with the modification of this instability when stretching is applied to
such vortices. We describe this instability by linearizing the Navier–Stokes equations around a basic
state, which is an exact time-dependent solution. The complete system for the perturbations is
reduced to a single equation for the perturbed velocity along the vortex span. In the limit of weak
stretching, a perturbation theory can be performed and leads to a WKBJ approximation for the
solution. This procedure demonstrates that a small amount of stretching is able to prevent the
appearance of three-dimensional instabilities for vortices with a low enough eccentricity. Since most
vortices are slightly elliptical in turbulent flows, the above computations are expected to cover a
wide range of experimental cases. In particular, it is tentatively argued that this mechanism may
explain recent experimental observations@Phys. Fluids7, 630~1995!#. © 1996 American Institute
of Physics.@S1070-6631~96!00208-5#

I. INTRODUCTION

The presence of organized structures in turbulent flows
has been recently emphasized by physical experiments1 and
numerical simulations.2–4 In particular, vorticity is mainly
concentrated in localized tube-like regions: the so-called
‘‘worms’’ 3 or ‘‘sinews.’’ 5 If one agrees that such local
structures are important for the global turbulent field, it is
certainly worth studying their elementary dynamics. In this
spirit, Moffatt, Kida, and Ohkitani5 studied the effect of an
asymmetric strain on a Burgers vortex to understand the in-
fluence of the average flow field on high vorticity regions.
They showed, in particular, that vortices become slightly el-
liptically shaped when subjected to an asymmetric strain
field.

The elliptical character of vortices has also been the fo-
cus of much work during the last decade. Indeed, a universal
three-dimensional inviscid short-wave instability6 connects
two features of inhomogeneous turbulent flows: the presence
of two-dimensional vortices and three-dimensional small
scales. This purely inviscid phenomenon is due to the ellip-
tical nature of the two-dimensional vortex streamlines, as
explained by the linear perturbation approaches of Bayly,7

Waleffe,8 and Landman and Saffman.9 Their analysis which
is locally valid near the center of the vortex, has been gen-
eralized by Lifschitz and Hameiri,10 who perform a WKBJ
analysis along any vortex streamline. A generic feature of

this instability is the production of small scales directly from
a smooth basic state.

Taking into account these two separate standpoints, it is
natural to ask how the elliptical instability behaves when a
velocity component is added along the span of the previously
two-dimensional vortex. This is not a purely academic ques-
tion since vortices present in turbulent flows are not purely
two dimensional but experience athree-dimensionalstrain
arising from the mean field. In this work, we specifically
consider the stability of the core of a three-dimensional el-
liptical vortex subjected to an axial strain. An analogous
study was performed in Craik and Allen,11 where the influ-
ence on the elliptical instability of a periodic strain was con-
sidered. Note that stratification and Coriolis effects may also
alter this three-dimensional instability.12–14

When stretching is present, no steady solution such as
the two-dimensional elliptic vortex is known for the purely
inviscid case. Two cases are possible: the vortex is time-
dependent, the stretching effect increasing the vorticity level
with time or viscous effects are strong enough to counterbal-
ance this process. This latter possibility actually means that
vortices are long-lived enough to be structurally dependent
on viscosity. An example is the vortex studied in Moffatt
et al.5 In this paper we disregard that case which will be
addressed in future work and consider only the time-
dependent vortex for which vorticity is enhanced by stretch-
ing. For this case, an exact solution of the Navier–Stokes
equations can be found, that represents the vortex core. The
linear stability of such a state is performed in this paper,
which is organized as follows. In Sec. II, the basic stretched
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vortex solution is provided. Thereafter the equations for the
velocity perturbations are established and reduced to a single
equation, which is unfortunately nonseparable in space and
time variables. However, it is possible to find an equivalent
of the usual Fourier modes decomposition. This is done in
Sec. III by searching perturbations in the form of ‘‘inertial
waves.’’ Time-dependent equations for both amplitude and
wave number are thus obtained. Finally, Sec. IV provides a
heuristic description of the dynamics of these equations,
which is put on firmer grounds in Sec. V using WKBJ ap-
proximations.

II. BASIC FORMULATION

Consider a three-dimensional vortex subjected to stretch-
ing along its span, which is produced by the mean flow of
surrounding vortices. This strain field is supposed to take the
local form Us5(ax,by,gz), wherea1b1g50 to comply
with the incompressibility condition. Moreover, we focus on
the case of an axial strain for which coefficientg is positive
while a andb are both negative. In such a case, the vortex
tube aligns with thez axis, the stretching direction. The total
velocity then reads as

U05S U0

V0

W0

D 5S ax1]yC
by2]xC

gz
D , ~1!

whereC(x,y,t) stands for the induction incoming from the
vortex tube itself. When viscous diffusion controls the struc-
ture of the solution, there exists a steady vortex the core of
which scales withAn/g. This solution is nothing but the
Burgers vortex for axisymmetric strain or the vortex ana-
lyzed by Moffattet al.5 for the more general nonaxisymmet-
ric case.

By contrast, for larger vortices, no steady solution exists
since viscosity is then unable to balance the stretching effect,
which tends to concentrate vorticity. However, it is possible
to construct an exact time-dependent solution of the Navier–
Stokes equations that appropriately describes this evolution.
Suppose thatC(x,y,t)52[m(t)/2](x21y2). In that case,
the basic flow given by~1! is the superposition of the uni-
form strain and a time-dependent uniform vorticity field
~0,0,2m!. As shown by Craik,12 this expression is an exact
solution of the Navier–Stokes equations, provided that the
vorticity evolves according to the law

m~ t !5m0e
gt. ~2!

If a p/4 rotation of the coordinates with respect to thez
axis is performed, this basic flowU0 takes the following
compact form:

U05S 2g/2 2m~ t !1e 0

m~ t !1e 2g/2 0

0 0 g
D S x

y
z
D , ~3!

wheree[~a2b!/2 is a measure of the strain asymmetry and
is related to the streamlines eccentricity.~In order for the
streamlines to be elliptic, one assumes thatm0.e.! When
stretchingg vanishes, the two-dimensional elliptical flow
studied by Pierrehumbert6 and Bayly,7 among others, is re-

covered. Note that this solution is more general than it ap-
pears since it may represent the local approximation of a
generic evolving vortex near its core. In the subsequent
analysis, expression~3! is considered as the basic flow.

The dynamics of pressure and velocity perturbations
~p,u! around this basic state is described by the following
system:

Dtu1~u–“ !U01~u–“ !u52“p1n ¹2u, ~4a!

“–u50, ~4b!

where the convective time derivativeDt5] t1U0–“ explic-
itly depends on spatial variables through the basic state.

Suppose one can neglect the nonlinear term~u–“!u in
~4a!; a straightforward algebraic manipulation of~4a! and
~4b! then leads to the following equations:

¹2p52m~]xv2]yu!22e~]xv1]yu!23g ]zw, ~5a!

~Dt2g2n¹2!~]xv2]yu!52m ]zw, ~5b!

~Dt2g2n¹2!~]xv1]yu!52e ]zw22]x ]yp, ~5c!

~Dt1g2n¹2!w52]zp. ~5d!

It is possible to reduce the above system to a single equation
for the perturbation velocityw along thez axis. First, one
differentiates~5a! with respect to]z(Dt2g2n¹2). Noting
that this latter operator is equal to (Dt2n¹2)]z , and using
~5b!–~5d!, one gets

@Dt2n¹2#¹2@Dt1g2n¹2#w14~m22e2!]z
2w

24e ]x]y@Dt1g2n¹2#w23g@Dt2n¹2#]z
2w

522 ] tm ]z~]xv2]yu!. ~6!

Furthermore, a second relationship betweenw and
(]xv2]yu) is obtained using Eqs.~5b! and ~5d! and the
continuity equation~4b!,

¹'
2¹2~Dt1g2n¹2!w

52@2m¹'
222e~]x

22]y
2!#]z~]xv2]yu!

2@4e]x]y]e
223g ]z

2¹'
2 #w, ~7!

with ¹'
25]x

21]y
2. Finally, if one accounts for relations~6!

and ~7!, one gets

@2m¹'
222e~]x

22]y
2!#$@Dt2n¹2#¹2@Dt1g2n¹2#w

14~m22e2!]z
2w24e ]x]y@Dt1g2n¹2#w

23g@Dt2n¹2#]z
2w%

52gm$¹'
2¹2~Dt1g2n¹2!w

1@4e]x]y]z
223g ]z

2¹'
2 #w%. ~8!

Note that Eq.~8! is nonhomogeneous in space and time vari-
ables. This implies that the standard Fourier analysis is of no
use and one must resort to a new method to solve the prob-
lem. Fortunately enough, one is guided by the specific case
g5e50, which corresponds to a solid body rotation. It is
known that this flow supports neutral waves called inertial
waves for which analytical expressions are available. In the
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following section, our purpose is to construct the equivalent
of these solutions for the general casegÞ0 andeÞ0.

III. INERTIAL WAVE PERTURBATIONS

As in the case of solid body rotation, we look for per-
turbations in the form of plane waves with time-dependent
wave vectors~sometimes called Kelvin waves!:

~u,p!5@ ũ~ t !,ṽ~ t !,w̃~ t !,p̃~ t !#eik~ t !–x. ~9!

If the time evolution of the wave vectork(t) is appropriately
chosen, the nonhomogeneous terms in Eqs.~4a! and~4b! are
removed. Similar to what happens when the usual Fourier
expansion is applied, Eq.~8! then reduces to an ordinary
differential equation. It is readily found that this term can-
cellation occurs if the wave vectork(t) satisfies

Dt~e
ik~ t !–x!50, ~10!

This equation, which is interpreted as a phase conservation
for plane wave solutions, also reads as a system of three
scalar equations:

] tkx5
g

2
kx2~m0e

gt1e!ky , ~11a!

] tky5~m0e
gt2e!kx1

g

2
ky , ~11b!

] tkz52gkz . ~11c!

Wheng is nonzero, Eq.~11c! shows that the wave number
kz5k0

i e2gt tends to zero. Moreover, Eqs.~11a! and ~11b!
can be analytically solved for two specific instances. The
first one corresponds tog50. In that case,kz is a constant
and the wave vector periodically precesses around thez axis
following an ellipse:8

kx5
k0

'

AE
cos@Am22e2t1j0#, ~12a!

ky55k0
'AE sin@Am22e2t1j0#, ~12b!

whereE is the ellipticityE [ A(m2e)/(m1e). When eccen-
tricity e50, a general solution can be found as well:

kx5k0
'egt/2 cos@m0e

gt1j0#, ~13a!

ky5k0
'egt/2 sin@m0e

gt1j0#, ~13b!

which shows that the wave vector amplitude and its angle
with the z axis increase while it rotates more and more rap-
idly around the same axis. In the next section, we provide an
approximation for the general solution to~11a! and ~11c!,
which shares the properties of the above cases.

Let us now write the ordinary differential equation for
the wave amplitude. Note first that viscosity always appears
in the system~5a!–~5d! through the operator (Dt2n¹2).
Therefore, viscous diffusion acts on the plane wave~9! as

@ ũ~ t !,ṽ~ t !,w̃~ t !,p̃~ t !#

5@Ũ~ t !,Ṽ~ t !,W̃~ t !,P̃~ t !#expS 2nE
0

t

uk~s!u2 dsD , ~14!

whereŨ andP̃ are independent of viscosity. Using Eqs.~10!
and ~14!, one easily determines the following time-
dependent equation forW̃:

] t
2~ uku2W̃!1@4m2kz

224e2uku224em~ky
22kx

2!#W̃

52gm
uk'u2] t~ uku2W̃!14ekxkyuku2W̃

2muk'u212e~ky
22kx

2!
. ~15!

Note that 2muk'u212e(ky
22kx

2) cannot vanish sincem is
always larger thane and uk'u25kx

21ky
2. Together with

~11a!–~11c!, this second-order equation describes the evolu-
tion of the generalized inertial waves~9!,~14!.

It is worth mentioning that the continuity equation guar-
antees that such plane waves are transverse, i.e.U–k50. As
a byproduct, these linear solutions actually satisfy the full
nonlinear Navier–Stokes equations since~u–¹!u5i ~u–k!u is
identically zero for each of them.

Although the above equations were obtained for any
stretching parameterg, we shall now restrict our investiga-
tion to the caseg!m0. Indeed, when the stretching is weak,
the axial vorticity 2m(t) grows slowly and the basic state~3!
is physically relevant for a sufficiently long time to allow a
temporal stability analysis. Wheng5O~m0!, such a stability
analysis is irrelevant since, in contrast with the basic flow
given by~3!, the core of the vortex will be altered by viscous
effects on the reference time scale 1/m0.

IV. HEURISTIC APPROACH

Equations~11a!–~11c! are nondimensionalized using as
reference length scale 1/k0

i and reference time scale 1/m0,
where 2m0 is the initial vorticity. This introduces the dimen-
sionless quantitiesg*5g/m0, e*5e/m0. In the sequel, dimen-
sionless equations and quantities are always considered and
asterisks are dropped.

Wheng is small, the wave vector equations can be inte-
grated by the WKBJ method,15 which leads to the following
approximations:

kx5k0
'

eT/2

AE~T!
cosS 1g E

0

T

V~s!ds1j0D 1O~ge,g2!,

~16a!

ky5k0
'AE~T!eT/2 sinS 1g E

0

T

V~s!ds1j0D 1O~ge,g2!,

~16b!

kz5e2T, ~16c!

where the ellipticityE(T) and the frequencyV(T) evolve on
the slow-time scaleT[gt, according to

E~T![A12ee2T

11ee2T , ~17a!

V~T!5Am2~T!2e25Ae2T2e2. ~17b!
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Inserting expressions~16a!–~16c! in ~15!, one obtains an
explicit equation for the wave amplitude:

S ] t
21

ce~T!14ae~T!cos@~2/g!*0
TV~s!ds12j0#

11ae~T!cos@~2/g!*0
TV~s!ds12j0#

3V2~T! DW2g ] tW1O~ge,g2!50, ~18!

with

W5W̃uku2, ~19a!

ae~T!5e
~k0

'!2e2T

~k0
'!21e23TA12e2e22T

, ~19b!

ce~T!54
e23TA12e2e22T

~k0
'!21e23TA12e2e22T

. ~19c!

We present in this section a naive approach to solve Eq.~18!.
Suppose we only consider the leading order in~18!, i.e. the
last term proportional tog is disregarded. Equation~18! can
then be transformed into a Hill equation with slowly evolv-
ing coefficients,

@11ae~T!cos~2j!#]j
2W1@ce~T!14ae~T!cos~2j!#W50,

~20!

where the fast time variable,

j5
1

g E
0

T

V~s!ds1j0 , ~21!

is employed. Wheng is zero,ae and ce are constants. One
then recovers the evolution of three-dimensional perturba-
tions superimposed on the two-dimensional elliptical flow
obtained by Waleffe.8 Figure 1 reproduced from Waleffe7

shows the behavior of such solutions for various values of
the parametersae and ce . In the shaded area, perturbations
grow exponentially and they are neutral everywhere else.

In the present study, the coefficientsae and ce are not
constant but slowly evolve according to expressions~19b!
and~19c! on a continuous curve sketched in Fig. 1. Because
of the slow variation of ae and ce , it is possible to use a
quasistatic approximation to understand the behavior of the

solutions of Eq.~20!. Based on Waleffe’s results, the ellipti-
cal instability is only active whenae andce evolve inside the
shaded area. If an initial perturbation is such thatk0

' is suf-
ficiently small, the point (ae ,ce) always crosses the unstable
region~see Fig. 1! during a finite period of time that scales as
O~e/g!. In that area, its amplitudeW grows with anO~e!

rate. Therefore an exponential factor of the formeKe2/g can
be expected for the global amplification. The basic flow is
hence stable ife2!g and unstable ifg!e2. In the subsequent
section, a more precise analysis of the solutions is performed
and an expression for the global amplification factor is pro-
vided.

V. PERTURBATION THEORY

If one agrees with the above analysis, the effects of ec-
centricity and stretching are captured at the same order when
g scales withe2. In order to study the stability changes, it is
therefore natural to consider the following scaling:

g5g0e
2; g05O~1!. ~22!

In the limit e!1, the coefficientae given by ~19b! re-
mains small and the elliptical instability only occurs whence

is near 1~see Fig. 1!. This happens whenT is in the neigh-
borhood of the critical timeTc such that

ce~Tc!51. ~23!

Note that condition~23! express the fact that elliptical reso-
nance occurs when the angle betweenk and thekz axis is
nearp/3. A leading-order approximation forTc is immedi-
ately obtained from~19c!:

Tc5
2

3
lnS)k0' D . ~24!

Using the scaling~22!, the expansion with respect toe of
Eq. ~18! yields

@11ea0 cos~2j!#] t
2W2e2g0 ] tW

1@c01e2c214ea0 cos~2j!#V2W1O~e3!50, ~25!

whereV, W, j have been defined in~17b!, ~19a!, ~21!, and

c054
e23T

~k0
'!21e23T , ~26a!

a05
42c0
4V

, ~26b!

c252
c0~42c0!

8V2 . ~26c!

If one searches for a local approximation of solutions of
~25!, it is necessary to discriminate between two possibili-
ties: the nonresonant caseTÞTc and the resonant case
T5Tc . Let us first consider the nonresonant case.

FIG. 1.
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A. Nonresonant regions TÞTc

If T plays the role of a parameter, Eq.~25! is a linear
ODE with periodic coefficients of periodp/V. For such an
equation, Floquet’s theory shows that there exist solutions of
the formeu l t f l(t), where thecharacteristic exponentsul are
complex numbers andf l periodic functions with the period
of the coefficients. If the characteristic exponents are ex-
panded in power series ine, one obtains, at leading order,
two independent solutionsW1 ,W2 associated with two dif-
ferent valuesu1 ; iVAc0, u2 ; 2 iVAc0. Since Eq.~25! is
invariant under complex conjugation,W2 can actually be
identified withW1* .

When the coefficients are slowly varying as in Eq.~25!,
the solutions may be expected to remain similar. As a con-
sequence, a WKBJ uniform approximation is sought in the
form

W15expS i

g0e
2 E

0

T

V~r !Ac0~r !dr D
3FA10

1eSA11
1B1 expS 2

2i

g0e
2 E

0

T

V~r !dr D
1C1 expS 2i

g0e
2 E

0

T

V~r !dr D D 1O~e2!G . ~27!

Once expression~27! is inserted in Eq.~25!, the identifica-
tion of oscillating terms at frequencyV(T)(Ac0(T) 6 2)
yields, at ordere, the following relations:

B1~T!5
@42c0~T!#2

32V~T!@12Ac0~T!#
A10

~T!, ~28a!

C1~T!5
@42c0~T!#2

32V~T!@11Ac0~T!#
A10

~T!. ~28b!

At order e2, another equation forA10
is obtained by identi-

fying terms oscillating at the frequencyV(T)Ac0(T). Using
expressions~28a! and ~28b!, it yields

A10
~T!5K1~T!

3expS i

g0
ET @42c0~r !#4

44V~r !@12c0~r !#Ac0~r !
dr D ,
~29!

with

K1~T!5
eT/2

@VAc0#1/2

3expS 2
i

g0
E
0

T Ac0~r !@42c0~r !#

16V~r !
dr D . ~30!

The integral~29! is defined in an interval that belongs either
to the setT,Tc or to T.Tc , wherec0(T)Þ1. Such expres-

sions provide uniformly valid approximations forW1 away
from the resonance. As a consequence, any real solution of
Eq. ~25! is written, for allT,Tc , as

W5W2[A2W11c.c., for T,Tc , ~31!

whereA2 is a complex constant. In the postresonant regime
T.Tc , this solution takes the form

W5W1[~A1W11c.c.!. ~32!

The complex constantA1 is determined by matching expres-
sions~31! and ~32! through the resonant region atTc .

B. Resonant region T'Tc

In the neighborhood ofTc , the characteristic local scale
can be deduced from the analysis of~27! and ~28a!. Indeed,
as soon asuT2Tcu5O(e), the third term in~27! is of the
same order or larger than the first term and both terms oscil-
late at the same frequencyVc[V(Tc). Since ~28a! and
~28b! and ~29! were obtained assuming both order and fre-
quency separations, these expressions are no longer justified
as soon asuT2Tcu5O(e): we therefore look for a different
evolution on the local scaleT̄[(T2Tc)/e.

As can be guessed from the behavior ofW2 asT→Tc
2

@see expression~A1a! given in the Appendix#, the local ap-
proximation reads as

W5W̄[Ā~ T̄!eiVct1c.c.1O~e!, ~33!

whereVc ; A3 3/(k0')2. The amplitudeĀ satisfies

]Ā

]T̄
52

iVc

8g0

T̄Ā1
9i

16g0

Ā* eiVcT̄
2/g0. ~34!

This equation has been obtained from Eq.~25! by expanding
all the coefficients of~25! in powers ofe :

c0512 9
4eT̄1O~e2!, ~35a!

V5Vc@11eT̄#1O~e2!, ~35b!

j5Vc@~ t2tc!1~ T̄!2/g0#1O~e!, ~35c!

and identifying allO~e! terms.
Equation~34! is transformed by the change of function,

Ā~ T̄!5Ã~ T̄!e2 iVcT̄
2/2g0, ~36!

into a parabolic cylinder equation,

]2Ã

]T̄2
1F S 9Vc

8g0
D 2T̄22S 9

16g0
D 21 9iVc

8g0
G Ã50, ~37!

the general solution of which can be expressed in terms of
parabolic cylinder functionsDa ~see Abramowitz and
Stegun16! as
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Ã~ T̄!5lDa~be5ip/4T̄!1hD2a21~be3ip/4T̄!, ~38!

with

a[
9i

64g0Vc
, ~39a!

b[
3

2
AVc

g0
. ~39b!

Through the matching of the local approximation~33!
with expressions~31! and ~32!, one obtains the constantsl,
h, andA1. The details of the matching procedure and the
complete expressions are given in the Appendix.

Finally, the above computation yields the gain of ampli-
tude across the region of resonanceG5uA1/A2u:

G5e9p/~64Vcg0!U11 f e~Vc ,g0!
~A2!*

A2 U, ~40!

where

u f e~Vc ,g0!u5A12e29p/~32Vcg0!. ~41!

VI. DISCUSSION

The above study generalizes the elliptical instability of
two-dimensional vortices in the case where such vortices are
subjected to an axial stretching. Its main result implies that
the elliptical instability can be suppressed when the stretch-
ing g reaches a high enough value compared to the magni-
tudee of the asymmetry due to the average strain field. This
is clearly seen on the inviscid amplitude gainG computed in
Eq. ~40!. Indeed the parameter 1/(g0Vc)5e2/(gVc) appears
in G in an exponential factor. IfgVc!e2, the perturbation
amplitude can then be made as large as wanted on a time
scale t5O[1/(gVc)]. This inviscid instability process is
nothing but the usual elliptical instability phenomenon gen-
eralized in the presence of small stretching. On the other
hand, when the stretching becomes important compared to
the destabilizing effect of eccentricity i.e.Vcg@e2, there is
no gain of amplitude sinceG tends to 1. As a result, the
vortex structure is not affected by the elliptical instability.
Actually perturbations are ‘‘amplified’’ during a period of
time that is too short for them to reach a large amplitude.

As for the two-dimensional case,8 the inviscid gainG
does not depend on the initial amplitude of the wave vector.
In the limit of small viscosity, small and large wave numbers
are destabilized in the same manner. The effects of viscosity
can be obtained by taking into account the exponential
damping factor exp(2n*0

t uk(s)u2 ds) in expression~14! for
the perturbations. The dependence of this factor on the wave
number k implies that the maximum amplification gain
Gtot(k) is obtained for wave numbersk→0 and that a cutoff
wave numberkcut is present for which perturbations of wave
number k>kcut are damped by viscous effects. One then
qualitatively recovers the result9 that viscosity does not
modify the evolution of large structures. The exact cutoff
wave number for which viscous damping stabilizes any per-
turbation of wave numberk>kcut is, however, more difficult

to compute than for the 2-D case. This requires an evaluation
of the maximum amplification gainGtot(k) for the set of
perturbations associated with a given wave numberk. Such
perturbations are only amplified due to inviscid processes in
the resonant region during a time interval [T̄1 ,T̄2] for which
the coefficient (9Vc/8g0)

2T̄22~9/16g0!
2 in Eq. ~37! is posi-

tive. The smallest viscous correction to the inviscid gainG
can then be approximately evaluated by computing
exp(2n* tuk(s)u2 ds) during the period of timeT̄22T̄1 .
This yields

Gtot~k!'e9pe2/~64Vcg!e2nk2e/~Vcg!,

and a cutoff wave numberkcut'A9pe/(64n) for which
Gtot51.

Our stability analysis is pertinent for any experimental
vortex that is not viscous dominated. Indeed in that case, the
core sizeL is much larger than the viscous scaleAn/g,
which guarantees thatL@1/kcut when the inviscid instability
conditione2@gVc is satisfied. A continuum of wave vectors
corresponding to all the scales between 1/kcut andL is then
always destabilized in the instability process.

It is argued that the present study might explain recent
experimental observations of vortex structures in turbulent
flows. In real flow configurations, the vorticity field is sub-
jected to fluctuating stretching and asymmetric strain. As de-
scribed by our basic flow solution, stretching tends to con-
centrate the vorticity and generate localized vortical
structures. If during this process, the vorticity fields is also
subjected to a strong asymmetric strain, or if during a certain
period of time the asymmetry is simply too large compared
to the stretching, the structure in formation is destroyed by
the elliptical instability. This could perhaps explain the rapid
disappearance of vortex filaments observed by Cadotet al.1

Finally, if the vortical structure is not destabilized, the vor-
ticity concentration process is ultimately stopped by viscos-
ity when the core size becomesO(An/g). The vortex is then
expected to relax to a stationary solution controlled by vis-
cosity ~see, e.g., Moffattet al.5!. An extension of this work
would consist in studying the stability of such a resulting
vortex.
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APPENDIX: MATCHING

In this section, pre- and post-resonance amplitudes~31!
and~32! are matched to the local approximation~33! valid in
aO~e! neighborhood ofTc .

The asymptotic behavior ofW2 asT→Tc
2 andW1 as

T→Tc
1 can be obtained from~27!–~32!. In terms of the local

variableT̄5(T2Tc)/e, it reads
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W2 ;
T→Tc

2

eiVcteiVcT̄
2/~2g0!S A2K1

ceiRcueT̄ u9i /~64Vcg0!e29iVcT̄
2/~16g0!1

~A2!* @K1
c#*

4VcT̄
e2iScueT̄ u29i/~64Vcg0!e9iVcT̄

2/~16g0!D 1c.c.,

~A1a!

W1 ;
T→Tc

1

eiVcteiVcT̄
2/~2g0!SA1K1

ceiRcueT̄ u9i/~64Vcg0!e29iVcT̄
2/~16g0!1

~A1!* @K1
c#*

4VcT̄
e2 iScueT̄ u29i /~64Vcg0!e9iVcT̄

2/~16g0!G1c.c.,

~A1b!

where

Rc[
1

e2g0
E
0

Tc
V~r !Ac0~r !dr2

VcTc
e2g0

, ~A2a!

Sc[
1

e2g0
E
0

Tc
V~r !@Ac0~r !22#dr1

VcTc
e2g0

, ~A2b!

K1
c[K1~Tc!. ~A2c!

In order to find the constantsl andh in ~38!, we need to
compute the asymptotic behavior of the local approximation
~36! as T̄→2` and T̄→1`. One can deduce this from the
expansions of the parabolic cylinder functionDa(z) asz→`
~see pp. 131–132 in Ref. 15!:

Ã~ T̄! ;
T̄→2`

eipa/4~lubT̄uaei ~b T̄ !2/4

1eip/4hubT̄u2a21ei ~b T̄ !2/4!, ~A3a!

Ã~ T̄! ;
T̄→1`

S he2 ipa/4
A2p

G~a11!

1le23ipa/4D ubT̄uaei ~b T̄ !2/4,

1S le2 ip~a11!/4
A2p

G~2a!

1he23ip~a11!/4D ubT̄u2a21ei ~b T̄ !2/4. ~A3b!

Matching the outer solutions~A1a! and ~A1b! with the
inner solution~33!, ~36! and ~A3a! and ~A3b!, we finally
obtain

l5U e

bU
ia i

K1
ceiRce2pa i /4A2, ~A4a!

h5e2 ip/4Aa iU e

bU
2 ia i

@K1
c#* e2 iSce2pa i /4@A2#* , ~A4b!

hepa i /4
A2p

G~ ia i11!
1le3pa i /45U e

bU
ia i

K1
ceiRce2pa i /4A1,

~A4c!

lepa i /4
A2p

G~2 ia i !
2h ie3pa i /4

5e2 ip/4Aa iU e

bU
2 ia i

@K1
c#* e2 iSc@A1#* . ~A4d!

The above expressions are compatible and yield

A15e9p/~64Vcg0!@A21 f e~Vc ,g0!~A
2!* #, ~A5!

with

f e~Vc ,g0!5e2 i ~Rc1Sc1p/4!
@K1

c#*

K1
c F4e2g0

9Vc
G29i /~64Vcg0!

3
3A2pe29p/~128Vcg0!

8AVcg0G~119i /~64Vcg0!!
. ~A6!

Note that the modulusu f e(Vc ,g0)u simply reads as

u f e~Vc ,g0!u5A12e29p/~32Vcg0!, ~A7!

since ~see formula 6.1.31 in Ref. 16! uG(11 iy)u2

5py/sinhpy.
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