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Short-wavelength instability of a vortex in a multipolar strain field
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The extension of the elliptical instability to a rotational flow withrafiold symmetry is considered

in this Brief Communication. Based on the geometrical optics approach, the short-wavelength
stability analysis of the multipolar strained vortex described by the streamfun(tiopolar
coordinates W ,=r?/2— (p/n)r" cosfé) is carried out fon=3,4,5 ando=0. Both the growth rate

and the wavevector properties of the most unstable wave are computed as a function of the real
parameters,,=p(2nC/(n—2))"~22 which characterizes the geometry of the streamhig

=C. For almost circular flows, i.e., in the smal}, limit, exact estimates are also obtained by
perturbation methods. @999 American Institute of Physids$$1070-663(99)00602-9

Due to the presence of boundaries or other vortices, twovortex center as it corresponds to the first terms in the Taylor
dimensional nonviscous vortices are generically ellipticalexpansion of the streamfunction with respect to the distance
near their center. This characteristic makes them unstable bp the vortex axis. This is also the case for largeif one
the so-called elliptical instability? By contrast, if the exter- assumes that the vorticity is sufficiently uniform in the vor-
nal field exhibits particular symmetries, the vortex is not nectex core. In particular, for alh, (1) is the streamfunction of
essarily elliptical in its core and it may have affold sym-  the core of a stationary vortex pat@region of uniform vor-
metry with n>2. In these cases, the elliptical instability is ticity) in ann-fold symmetrical strain field. In the following,
not present. It is then natural to address the stability of suckve focus on local perturbations which grow within the basic
vortices, and, in particular, to determine whether a destabiflow described by(1). The external strain field generated by
lizing mechanism similar to the elliptical instability exists. boundaries or distant vortices is not considered in the analy-

The elliptical instability could explain the three- sis.
dimensional (3D) transition of several flow$, such as The shape of the streamlink,(r,8;p) =C is character-
wakes? shear layers, or other vortex flow$. Bayly? and ized by a single parameter,

Waleffe’ gave a description of the instability mechanism in

the context of a pure elliptical flow. Lifschitz and Ham&iri

proposed an interesting Lagrangian approach, based on a €n=P
geometrical optics method, to extend their stability analysis

to more general configurations but restricted to small waveyhich measures its asymmetry. In Fig. 1, the streamlines are

lengths. Their main idea was to construct 3D perturbation%ismayed for four values of, in the interval[0,1] and n
which are sufficiently localized such that their evolution is _3 4 5 Forn=2. the basic flow is the uniform elliptical

governed by an ordinary differential equation along theqq. studied by Bayly

streamline. Both elliptical and hyperbolic instabilifi€have  |iias are ellipses having the same eccentrieity- p. For n

been recovered by this approdtH.it has also permitted = 3 6 hasic flow is not uniform as, varies with the label

new achievements for other nonuniform and time-varyinge o the streamline. For smadl.. . the streamlinel..=C is

11 ; : ns n

flows (see Baylyet al.” and references thergin _almost circular. It becomes more and more angulaeas
In_this Brief Communication, the geometrical OpticS jcreases up ta,=1 for which the streamline exhibits

theory’ is used to analyze the stability properties of the 2Dsingular points(corners. These singular points are, in fact,

basic flow described by the streamfunctiom polar coordi- 1,y nernolic stationary points that play an important role in the

: 2

2nC (n—2)/2
n—2>

Waleffe and others: all the stream-

nates stability properties, as we shall see below. kg1, the
r2 pn streamlines are no longer closed, so the analysis will be re-
V. (r,0;p)= 5P cognéb), (1)  stricted to the range€e,<1.

In the geometrical optics stability theofy! perturba-

wheren is an integer larger than 1 arul a real positive 1ONS are sought in the form

parameter. This flow is the superposition of a rotational field )

of uniform vorticity (first term and of a multipolar potential _ '_

strain field(second termcharacterized by its order and its u(x.t a(x,t)exp( € d)(x,t)) ' ®
strengthp. It describes the core of a 2D nonviscous vortex in

equilibrium with an external strain field which exhibits an where the characteristic wavelengtlis the small parameter
n-fold symmetry. Fon=2 andn=3, (1) is generic near the used for the asymptotic analysis. Substituting expres&@pn
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and the velocity gradient tens&U,, in (4b) and (4c) to
> © B
VUn(6;e)=[1 0 O]+(n—1)e,rN"%(6;ep)

0O 0 O
FIG. 1. Streamlines fon=3,4,5 (from left to righy. The outer streamline is sinf(n—2) 6] cog(n—2)6] 0
obtained fore,,=1.
x| cog(n—2)0] —siN(n—2)6] O
0 0 0

in the linearized Euler equations and equating terms of the
same order lead to a set of equations which is written in (6)

Lagrangian form as follows: Equation(5) can be solved without loss of generality

dXx with the initial condition6(0)=0 but this choice governs the
ot Un(X,1), (48 initial condition for the wavevectok. Indeed, if k(0)
-U,(X(0),0)#0, it is possible to shotf that the wavevector

dk iecti ine i -
oKk__ T projection onto the streamline is stretched by a constant fac
dt (VUn) (X, 0Kk, (4b) tor at each revolution: the wavevector is then unbounded
da | 2kkT which gives a perturbation amplitude damped by viscosity

- Z)VUn(X t)a (4c)  forlarge time. For this reason, it is important to only con-
dt sider initial conditions that satisfig(0)- U,(X(0),0)=0, i.e.,
whereT is the identity matrix,U,(x,t) is the velocity field K(0)-&=0 in order to obtain per|od|<:2 wavevectors. More-
associated with(1) and k=V® is the (local) wavevector ~OVer, Ed.(4c) being independent ofk|*, one may choose
along the Lagrangian trajectorx=X(t). In addition, K(0)=(sinx,0,cosx) where x is the initial angle of the
(X,k,a) satisfies an initial conditionXy,kq,3,) compatible Wa_vevector with respect to _trmz_iX|s(vort|C|ty aX|_s). Substi-

with the incompressibility conditiorky.a,=0. The main uting the wavevector solution ifc) leads to a linear equa-
point of the theor§ is that the existence of an unbounded tion with perlod|p coefflc_lents which can be analyzed by Flo-
amplitudea(t) provides a sufficient condition of instability duet theory. This classical theory has already been used by
for nonviscous flows. Viscous effects can easily be aded Bayly” in the elliptical case. It only requires the integration
and the same result holds as long as the characteristic wavef (4) in the interval[0,T, ], whereT,=Ty(ey) is the tum-
lengthe is larger thanyv/s wherev is the kinematic viscos- OVer time along the streamline, with the identity matrix as an
ity and s the maximum growth rate af. Here, » is assumed initial condition. The maximum mean growth rate of the am-
sufficiently small such that the nonviscous sysdm-9 can ~ Plitude a is then given bys(sy , x) =max{In(|u()/T,] where

be used for any boundekl Our purpose is to analyze the i [=1,2,3 are the Floquet exponents, i.e., the eigenvalues

behavior of the amplituda along the streamlinal,=C.  Of the final matrix at=T,. Moreover, as soon &>0, the
More precisely, we are going to compute the maximumgigenmode associated with the maximum growth rate re-

mean growth rate o& during a turnover period along the mains orthogonal to the wavevector for @althe incompress-
streamline. ibility condition is therefore automatically fulfilled for all

First, the streamline equation is solved numerically to€XPonentially growing perturbatiorts.

obtain the trajectory as=\2nC/(n—2)r,(6;¢,). This re- The integration' is carried out for<Qy=m/2, O0<g,
sult is then used to reduce E@d) to <1 andn=3,4,5. Figures @—(c) show the(mear) growth
rate level curve of the amplitude in the (¢,,x) plane for

K[>

%:E o’?‘lfn(r 0)=1—¢ rn72(9_8 )cogno) ) each value ofn. On these figures is also represented the
dt r o nn en ' wavevector anglemay at which the maximum growth rate is
n/2 n/2 w2
@ ®) ©

FIG. 2. The growth rate level curve in the{,x) plane forn=3 (a), n=4 (b) andn=5 (c). The solid curve is the critical curves£ 0). The step between
two level curveg(dashed curvess 0.4. The dash—dotted curve (@ gives the angley,. at which the growth is maximized. In figuréb) and(c), xmax
=0.
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1 ' ' ' This equation selects resonant angles onlg+f2,3,4. The
value forn=2 has been given in Bayf/For n=3 andn
=4, the resonant angles are in perfect agreement, for small
A e,, with the computational results shown in Figsa)2b).
7 For n=5, there is no possible resonance at the first order.
This is also in agreement with Figs(c2 and 3 which show
- I that the basic flow fon=5 is stable foreg<eg.~0.25.
= The leading order growth rate of the instability can be

s 1 calculated using a multiple scale analysis. After a long but

e straightforward calculation, we obtain a growth rate of the
. ' form s=one,+ O(e2) where

o,=9/16,

s/s

0 € 1

FIG. 3. Normalized maximum growth rat&s, versuse, for n=3 (solid
line), n=4 (dashed linpandn=5 (dot—dashed line 03=49/(32/3)~0.884, (8

For n=2, Waleffe’s resuft for a weakly elliptical flow is
recovered. Fom=3 and n=4, this first order expression
provides a very good estimate of the growth rate #qr
=<0.5.

attained for a fixe&,,. In Fig. 3 is displayed the normalized
maximum growth rates/s, versuse, for each value oh.
The largest values,, of the growth rate is reached far,
=1. For this particular value of,,, the turnover timerT,,
becomes infinite and the Lagrangian trajectory stops at the
first hyperbolic stagnation point it encounters on the stream-, ) ) ) 3
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