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Short-wavelength instability of a vortex in a multipolar strain field
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The extension of the elliptical instability to a rotational flow with ann-fold symmetry is considered
in this Brief Communication. Based on the geometrical optics approach, the short-wavelength
stability analysis of the multipolar strained vortex described by the streamfunction~in polar
coordinates! Cn5r 2/22(p/n)r n cos(nu) is carried out forn53,4,5 andp>0. Both the growth rate
and the wavevector properties of the most unstable wave are computed as a function of the real
parameter«n5p(2nC/(n22))(n22)/2 which characterizes the geometry of the streamlineCn

5C. For almost circular flows, i.e., in the small«n limit, exact estimates are also obtained by
perturbation methods. ©1999 American Institute of Physics.@S1070-6631~99!00602-9#
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Due to the presence of boundaries or other vortices, t
dimensional nonviscous vortices are generically ellipti
near their center. This characteristic makes them unstabl
the so-called elliptical instability.1,2 By contrast, if the exter-
nal field exhibits particular symmetries, the vortex is not n
essarily elliptical in its core and it may have ann-fold sym-
metry with n.2. In these cases, the elliptical instability
not present. It is then natural to address the stability of s
vortices, and, in particular, to determine whether a dest
lizing mechanism similar to the elliptical instability exists.

The elliptical instability could explain the three
dimensional ~3D! transition of several flows,3 such as
wakes,4 shear layers,5 or other vortex flows.6 Bayly2 and
Waleffe7 gave a description of the instability mechanism
the context of a pure elliptical flow. Lifschitz and Hameir8

proposed an interesting Lagrangian approach, based
geometrical optics method, to extend their stability analy
to more general configurations but restricted to small wa
lengths. Their main idea was to construct 3D perturbati
which are sufficiently localized such that their evolution
governed by an ordinary differential equation along t
streamline. Both elliptical and hyperbolic instabilities2,9 have
been recovered by this approach.8,10 It has also permitted
new achievements for other nonuniform and time-vary
flows ~see Baylyet al.11 and references therein!.

In this Brief Communication, the geometrical optic
theory8 is used to analyze the stability properties of the
basic flow described by the streamfunction~in polar coordi-
nates!

Cn~r ,u;p!5
r 2

2
2p

r n

n
cos~nu!, ~1!

where n is an integer larger than 1 andp a real positive
parameter. This flow is the superposition of a rotational fi
of uniform vorticity ~first term! and of a multipolar potentia
strain field~second term! characterized by its ordern and its
strengthp. It describes the core of a 2D nonviscous vortex
equilibrium with an external strain field which exhibits a
n-fold symmetry. Forn52 andn53, ~1! is generic near the
5001070-6631/99/11(2)/500/3/$15.00
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vortex center as it corresponds to the first terms in the Ta
expansion of the streamfunction with respect to the dista
to the vortex axis. This is also the case for largern if one
assumes that the vorticity is sufficiently uniform in the vo
tex core. In particular, for alln, ~1! is the streamfunction of
the core of a stationary vortex patch~region of uniform vor-
ticity! in ann-fold symmetrical strain field. In the following
we focus on local perturbations which grow within the ba
flow described by~1!. The external strain field generated b
boundaries or distant vortices is not considered in the an
sis.

The shape of the streamlineCn(r ,u;p)5C is character-
ized by a single parameter,

«n[pS 2nC

n22D ~n22!/2

, ~2!

which measures its asymmetry. In Fig. 1, the streamlines
displayed for four values of«n in the interval@0,1# and n
53,4,5. Forn52, the basic flow is the uniform elliptica
flow studied by Bayly, Waleffe and others: all the strea
lines are ellipses having the same eccentricity«25p. For n
>3, the basic flow is not uniform as«n varies with the label
C of the streamline. For small«n , the streamlineCn5C is
almost circular. It becomes more and more angular as«n

increases up to«n51 for which the streamline exhibitsn
singular points~corners!. These singular points are, in fac
hyperbolic stationary points that play an important role in t
stability properties, as we shall see below. For«n.1, the
streamlines are no longer closed, so the analysis will be
stricted to the range 0<«n<1.

In the geometrical optics stability theory,8,11 perturba-
tions are sought in the form

u~x,t !5a~x,t !expS i

«
F~x,t ! D , ~3!

where the characteristic wavelength« is the small paramete
used for the asymptotic analysis. Substituting expression~3!
© 1999 American Institute of Physics
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in the linearized Euler equations and equating terms of
same order lead to a set of equations which is written
Lagrangian form as follows:8

dX

dt
5Un~X,t !, ~4a!

dk

dt
52~“Un!T~X,t !k, ~4b!

da

dt
5S 2kkT

uku2
2ID“Un~X,t !a, ~4c!

whereI is the identity matrix,Un(x,t) is the velocity field
associated with~1! and k5“F is the ~local! wavevector
along the Lagrangian trajectoryx5X(t). In addition,
(X,k,a) satisfies an initial condition (X0 ,k0 ,a0) compatible
with the incompressibility conditionk0 .a050. The main
point of the theory8 is that the existence of an unbound
amplitudea(t) provides a sufficient condition of instabilit
for nonviscous flows. Viscous effects can easily be adde5,8

and the same result holds as long as the characteristic w
length« is larger thanAn/s wheren is the kinematic viscos-
ity ands the maximum growth rate ofa. Here,n is assumed
sufficiently small such that the nonviscous system~4a–c! can
be used for any boundedk. Our purpose is to analyze th
behavior of the amplitudea along the streamlineCn5C.
More precisely, we are going to compute the maximu
mean growth rate ofa during a turnover period along th
streamline.

First, the streamline equation is solved numerically
obtain the trajectory asr 5A2nC/(n22)r n(u;«n). This re-
sult is then used to reduce Eq.~4a! to

du

dt
5

1

r

]Cn

]r
~r ,u!512«nr n

n22~u;«n!cos~nu!, ~5!

FIG. 1. Streamlines forn53,4,5 ~from left to right!. The outer streamline is
obtained for«n51.
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and the velocity gradient tensor“Un in ~4b! and ~4c! to

“Un~u;«n!5S 0 21 0

1 0 0

0 0 0
D 1~n21!«nr n

n22~u;«n!

3S sin@~n22!u# cos@~n22!u# 0

cos@~n22!u# 2sin@~n22!u# 0

0 0 0
D .

~6!

Equation ~5! can be solved without loss of generali
with the initial conditionu(0)50 but this choice governs th
initial condition for the wavevectork. Indeed, if k(0)
•Un(X(0),0)Þ0, it is possible to show12 that the wavevector
projection onto the streamline is stretched by a constant
tor at each revolution: the wavevector is then unbound
which gives a perturbation amplitude damped by viscos
for large time. For this reason, it is important to only co
sider initial conditions that satisfyk(0)•Un(X(0),0)50, i.e.,
k(0)•ey50 in order to obtain periodic wavevectors. Mor
over, Eq.~4c! being independent ofuku2, one may choose
k(0)5(sinx,0,cosx) where x is the initial angle of the
wavevector with respect to thez axis ~vorticity axis!. Substi-
tuting the wavevector solution in~4c! leads to a linear equa
tion with periodic coefficients which can be analyzed by F
quet theory. This classical theory has already been use
Bayly2 in the elliptical case. It only requires the integratio
of ~4c! in the interval@0,Tn#, whereTn5Tn(«n) is the turn-
over time along the streamline, with the identity matrix as
initial condition. The maximum mean growth rate of the am
plitude a is then given bys(«n ,x)5maxl@ln(umlu)/Tn# where
m l , l 51,2,3 are the Floquet exponents, i.e., the eigenva
of the final matrix att5Tn . Moreover, as soon ass.0, the
eigenmode associated with the maximum growth rate
mains orthogonal to the wavevector for allt: the incompress-
ibility condition is therefore automatically fulfilled for al
exponentially growing perturbations.2

The integration is carried out for 0<x<p/2, 0<«n

<1 andn53,4,5. Figures 2~a!–~c! show the~mean! growth
rate level curve of the amplitudea in the («n ,x) plane for
each value ofn. On these figures is also represented
wavevector anglexmax at which the maximum growth rate i
FIG. 2. The growth rate level curve in the («n ,x) plane forn53 ~a!, n54 ~b! andn55 ~c!. The solid curve is the critical curve (s50). The step between
two level curves~dashed curves! is 0.4. The dash–dotted curve in~a! gives the anglexmax at which the growth is maximized. In figures~b! and ~c!, xmax

50.
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attained for a fixed«n . In Fig. 3 is displayed the normalize
maximum growth rates/sn versus«n for each value ofn.
The largest valuesn of the growth rate is reached for«n

51. For this particular value of«n , the turnover timeTn

becomes infinite and the Lagrangian trajectory stops at
first hyperbolic stagnation point it encounters on the strea
line. For large time, the stability properties for«n51 are
thus given by those of the hyperbolic stagnation points
the streamline. Using the results8,9,13 for hyperbolic stagna-
tion points, the maximum growth rate is then obtained
sn5A]x

2Cn]y
2Cn2(]x]yCn)25An(n22), where the partial

derivatives are calculated at one of the stagnation points
Expressions for small«n are obtained by perturbatio

methods. For«n50, the trajectory is circular and the La
grangian evolution is the one of a solid-body rotation with
angular velocityV5ez . The short-wavelength perturbation
~3! are in this case~local! inertial waves. Their characteris
tics are well known:7 their wavevector rotates periodicall
with respect to thez-axis with the same frequency as th
basic flow and with a constant inclination anglex; their am-
plitude is also periodic with a frequencyv052k•V/uku
52 cosx. The instability mechanism for small«n can be
understood as a simple phenomenon of resonance of th
ertial waves with the multipolar strain field.7,14 Indeed, at the
next order in«n , the interaction of the inertial wave with th
strain field generates waves of frequencyun6v0u which
resonate with the inertial wave if their frequency equalsv0 .
This yields a condition of resonance which is written as

n54 cosxn . ~7!

FIG. 3. Normalized maximum growth rates/sn versus«n for n53 ~solid
line!, n54 ~dashed line! andn55 ~dot–dashed line!.
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This equation selects resonant angles only ifn52,3,4. The
value for n52 has been given in Bayly.2 For n53 andn
54, the resonant angles are in perfect agreement, for s
«n , with the computational results shown in Figs. 2~a!,~b!.
For n>5, there is no possible resonance at the first ord
This is also in agreement with Figs. 2~c! and 3 which show
that the basic flow forn55 is stable for«5<«5c'0.25.

The leading order growth rate of the instability can
calculated using a multiple scale analysis. After a long
straightforward calculation, we obtain a growth rate of t
form s5sn«n1O(«n

2) where

s259/16,

s3549/~32) !'0.884, ~8!

s453/2.

For n52, Waleffe’s result7 for a weakly elliptical flow is
recovered. Forn53 and n54, this first order expression
provides a very good estimate of the growth rate for«n

<0.5.
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