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In this paper, the elliptic instability is generalized to account for Coriolis effects and higher order
symmetries. We consider, in a frame rotating at the angular frequ@naystationary vortex which

is described near its center=0 by the stream function written in polar coordinatiés= — (r2/2)
+p(r"/n)cosfid), where the integen is the order of the azimuthal symmetry, apds a small
positive parameter which measures the strength of the nonaxisymmetric field. Based on the Lifschitz
and Hameiri[Phys. Fluids A3, 2644—-2651(1991)] theory, the local stability analysis of the
streamlinel = — 1/2 is performed in the limit of smafl. As for the elliptic instabilityBayly, Phys.

Rev. Lett.57, 2160-21631986], the instability is shown to be due to a parametric resonance of
inertial waves when the inclination angéeof their wave vector with respect to the rotation axis
takes a particular value given by cgs=+4/(n(1+()). An explicit formula for the maximum
growth rate of the inertial wave is obtained for arbitrgryf), andn. As an immediate consequence,

it is shown that a vortex core of relative vorticityy, (assumed positiyeis locally unstable ifQ)
<—(1+n/4)W,/2 or Q>(—1+n/4—p(n—1)/2)W,/2. The predictive power of the local theory is
demonstrated on several vortex examples by comparing the local stability predictions with global
stability results. For both the Kirchhoff vortex and Moore and Saffman vortex, it is shown how
global stability results can be derived from the local stability analysis using the dispersion relation
of normal (Kelvin) modes. These results are compared to those obtained by global methods and a
surprisingly good agreement is demonstrated. The local results are also applied to rotating Stuart
vortices and compared to available numerical data. 2@0 American Institute of Physics.
[S1070-663(100)01410-G

I. INTRODUCTION showed that the inertial waves of the vortex could be para-
metrically excited by the underlying strain field via the vor-
The emergence of multipolar vortices in rotating fluids isticity stretching mechanisthAn early explanation was also
a well-known feature which has been evidenced both experigiven in terms of Kelvin modes resonance by Tsai and
mentally and numericallysee, for instance, Hopfinger and \wignall® and Moore and Saffmal?. The inertial wave de-
van Heijst and references thergirThese vortical structures scription was extended and formalized in a more general

are usually formed of a central vortex surrounded by Sever%’amework using Lagrangian methods by Lifschitz and

vortices of oppos'ite.sign.' They' are known to appear sF.)Omal:|ameiri.ll This has permitted to consider additional effects
neously by a 2D inviscid instability from monopolar vortices such as stratificatiol? rotation23-15  stretching®

which have not a monotonous vorticity profile. . . .
y P nonuniformity?’~?! and time-dependenéé-*

These vortices may be unstable with respect to the axi- . .

symmetric centrifugal instability. For axisymmetric vortices . Vortices with a fo[cissymme}ry larger thsan 2 were con-
in a fixed frame, Rayleigh showed that the nondecreasiné'der,ed only recentl&? Le D'_Zes_ and Eloy shoyved -that
behavior of the square of the circulation provides a conditior" @ fixed frame an instability similar to the “elliptical insta-
for stability. Analogue criteria have been obtained for non-Pility” exists in triangular and quadripolar vortices. This in-
axisymmetric vortices in a fixed frahend in a rotating Stability was analyzed by global techniques for a Rankine
frame3* Here, we shall not be concerned with the centrifu-vortex in Eloy and Le Dize*® The first experimental evi-
gal instability. We shall assume that the instability is generdence was given by Eloy, Le Gal, and Le DiZé*® Our
ated by another mechanism associated with the nonaxisyngoal is here to extend the local analysis of Le Biznd

metry of the vortex. Eloy*® by considering the additional effects of Coriolis
That the nonaxisymmetry could be a source of instabilityforces.
was first understood by PierrehumBewho studied the The paper is organized as follows. In Sec. Il the frame-

short-wavelength stability of an elliptic vortex. Ba§lgnd  work of the local stability theory is presented. The general
Waleffe’ gave a complete explanation of the instability system of equations for the perturbations obtained by Bayly
mechanism in the context of uniform elliptical flows. They et a12is extended to account for Coriolis forces. In Sec. Ill,
these equations are solved in a frame rotating at the angular
dElectronic mail: ledizes@marius.univ-mrs.fr frequency() for the basic flow given by the stream function
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2 "
¥=—_—-+p-—cognb),

5 +P-cosné)

where d/dt denotes Lagrangian derivatived/dt=d/dt
+U.V, | the identity matrix,£(t) =VU(X(t),t) and

where the integen is the order of the azimuthal symmetry, 0 -20 0
and p is a small positive parameter which measures the (—| 20 0 0 (5)
strength of the nonaxisymmetric field. The local stability 0 0 0

properties of the streamlin@ = —1/2 are obtained by an

asymptotic method in the limit of smafl. An explicit for-  Equation(4c) is the condition of incompressibility. That con-
mula for the leading order maximum growth rate is deriveddition is always fulfilled if Eqs(4a and(4b) are solved from

in terms ofn, £}, and the wave vector inclination angleThe  an initial condition ¥y,kq,8;) which satisfiesky.a,=0.
consequences of this formula are detailed in Sec. Il B. IrLifschitz and Hameiri proved that &(t) grows indefinitely,
Sec. IVA, the results are applied to a deformed Rankinghe nonviscous flow is unstable. This is also true in a viscous
vortex. It is shown how global results can be obtained byflow,33if the characteristic wavelengthis larger than/v/s
summing local perturbations to form norni&lelvin) modes.  wherew is the kinetic viscosity and the maximum inviscid
The results obtained by this approach are compared to avaifrowth rate ofa. On a closed streamline, stability is naturally
able global stability results for the Kirchhoff vortéx®and  analyzed by looking at the behavior ahfter one revolution.
the Moore—Saffman vorteX:?®3! In Sec. IVB, the local The initial position on the streamline is not important as it
growth rate formula is applied to Stuart vortices in a rotatingdoes not modify the growing character afFor this reason,
frame. For a fixed wave number perturbation, it is showna single initial position by streamline is in general taken.
how the maximum growth rate and the size of the interval ofNote also that Eg(4a) for k is decoupled and Eq4b) does
unstable rotation rates can be obtained from the value of theot depend onk| so one can choose without restriction
most dangerous rotation rate. The results are compared {@,|=|ag| = 1.

numerical data from Leblanc and CamBdand Potylitsin
and Peltier?

Il. GEOMETRICAL OPTICS STABILITY EQUATIONS IN
A ROTATING FRAME

Let U(x) be the velocity field of a 2D inviscid steady
flow in a frame rotating at the angular frequer@Qy In the
geometrical optics stability theofy?® one considers local-

Equations(3) and(4a) also imply thatk.U is conserved
along the streamlines. In order to avoid the stretching of the
wave vector, Sipp and Jacqéirshowed thak andU must
remain orthogonal, i.ek.U=0. Otherwise k| increases at
each revolution and the perturbation is damped by viscous
effects at large timé® Finally, if one assumeg,.U(Xo)
=0, the initial wave vectok, only depends on the angéeof
the wave vector with respect to the rotation axis of the frame.

In a fixed frameQ =0, Bayly, Holm, and Lifschit?

ized 3D short-wavelength perturbations. At leading ordershowed that Eq(4b) can be reduced to a system of two

with respect to a characteristic wavelengthhe perturbation
velocity is written in the geometrical optics, or WKB form

i
u(x,t)=a(x,t)ex;<gtb(x,t)), (1)
where the amplituda(x,t) and phaseb(x,t) are real func-
tions dependent on spase= (x,y,z) and timet. The local
(renormalizedl wave number is defined fromp by

k=V®. 2

equations for

Iy
m(ki'al)

K| '

m(klﬂaﬂ

(6)

where L denotes the projection in the plane perpendicular to
the rotation axis. Below the indexwill denote the compo-
nent along the rotation axis. A similar reduction can be car-

Substituting Eq.(1) in the linearized Euler equations and ried out in a rotating frame. It yields the system

equating terms of same order érlead to a system of equa-
tions fora andk. As shown by Lifschitz and Hameitt, this

system reduces to simple ordinary differential equations dt

along the streamlines of the basic flow which are defined by,

dx_U X

In a frame rotating at the angular frequer@ythe Lifschitz
and Hameiri equations re&d

)

di LTtk 4

S LTk, (42)

da 2kk T kT

a= W_I l:(t)‘F W_I Cla, (4b)
k.a=0, (40

dv
=NV, @
KLk k) 2k§(£ijki.ai)+20 k2
I K[k, |2 K%k, |2 k]2
_20-W kg(ﬁj_kj_'aj_) '
, Tz
K[k [*

whereW, is the (relative vorticity of the basic flow in the
rotating frame and

0 1
-1 0

"
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The goal of this paper is to resolve E@3), (4a), and(7) for N=Ny+pNy+---. (109
a family of 2D solutions which generically describe the flow

in the core of a nonaxisymmetric vortex. At leading order, the basic flow is a solid body rotation. The

solution of Eq.(3) is then justXy, =[cost+ 6y),sint+ 6y)]
where 6, is the initial azimuthal angle. The equation foy

lll. LOCAL STABILITY ANALYSIS OF A VORTEX reduces to
CORE 0 -1 0
dk
In a frame rotating at the rotation rafly consider the 2D d_to =—Llko with Lo=|1 0 O0]. (12)
basic flow described by the stream functi@m polar coordi- 0 0 O

nates . ] ) N

2 o This gives with the conditionsky(0)-Uy(0)=0 and

W(r,0:p)=— 5 +p--cogno), (9) [ko(0) =1
ko=[sin&ycoqt+ 6p),siné&ysin(t+ 6p),cosé&y], (12

wheren is an integer larger than 1 arpl a real positive _
parameter. This flow is the superposition of a rotational fieldVhere & is the angle between the wave vecigy and the
of uniform vorticity (first term) and of a multipolar irrota- otation axis. Due to the symmetries of E@) which is
tional strain field(second term characterized by its fold- nvariant by the changé& in —k andk; in —k;, we can
symmetrical orden and its strengtlp. As explained by Le ~@ssume without restriction that0§o<m/2.
Dizes and Eloy?® it describes the core of a 2D nonviscous ~ Substituting expressiofi.2) in the leading order equa-
vortex in equilibrium with an external strain field which ex- tion for V leads to
hibits _ann-fold symmetry. Fom=2 andn=3, Eq.(9) is the v, 0 2(Qo+1)co &
generic expression for the stream function of a stationary O V.
vortex (in a rotating framgnear its center as it corresponds —2(Qo+1) 0
to the first terms of its Taylor expansion with respect to theThe general solution of that equation is
distance to the vortex axis. This is also the case for langer
if one assumes that the vorticity is sufficiently uniform inthe ~ Vo=AaVa(t) +ApVi(1), (14)
vorte_x core. In par';icular, for alh, Eq. (9) is the stream  \yhere A, andA, are two real constants and
function of a Rankine vortex deformed by either a weak .
external rotatingn-fold symmetrical strain field or a small Va=[cosép sin(w(t+ 6p)),cogw(t+6p))],

(13

2D Kelvin mode of azimuthal wave number Accordingly, . (15
Q is either the rotation rate of the external field or the angu- Vp=[cosgo cogw(t+ b)), +sin(w(t+0p))],

lar frequency of the Kelvin mode. These two cases correwith

spond to generalized Moore—Saffman vortices and general-

ized Kirchoff vortices which will be analyzed in detail in w=2(Qo+1)cosé. (16)

Seg. IVA. In tlhe. following,. we focus on local perturbations The solution Vexp(ko(t)-X) is the well-knowninertial
which grow within the basic flow described by E§). The  wave solution of solid body rotating flow.Its wave vector
external strain field generated by boundaries or distant vorrotates periodically with respect to the-axis with the same

tices is not considered in the analysis. frequency as the basic flow and with a constant inclination
) ) angle &,; its amplitude is periodic with a frequency
A. Perturbation analysis =W, cos&,, WhereW, is the absolute vorticity of the flow.
In Le Dizes and Eloy? the local stability of Eq(9) was At the next order, the trajectory is slightly deformed: the

studied without the smalp restriction but in a fixed frame Streamline¥ =—1/2 is given by
(2=0). Here, we focus on the additional effects of rotation p
but limit the analysis to smalp. Our main objective is to r=1+—cognh)+0(p?), (179
obtain an explicit formula for the leading order growth rate n
in the limit of smallp that involvesn and (). de
For this purpose, we carry out an asymptotic analysis a=l—pcos{na)+0(p2), (A7b
with respect top— 0. Following the classical procedure of
perturbation analysi& all the quantities are expended in and the correction of the velocity tensor reads

power ofp: si(n—2)6] cog(n—2)6]
QO=00+pQ,+---, (10 Ly =(n— cod(n—2)8] —sin(n—2)6])" (18
X=XotpXyt--, (10D rps permits to write the equation fér; as follows:
k=ko+pks+---, (100 dk,
V=Vo+pVy+---, (100) do = FLorki=(Ly +codnd) Lo, ko, (19
L=Lo+pLy+--, (10  which yields
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sing ( (1—-2n)cog(n—1)0]+cog(n+1)6] such thak,- Uy# 0, the inhomogeneous solution would con-
k= ol (1-2n)sin(n—1)6]+sin(n+1)6] |, tain terms proportional t@; this would characterize a degen-
2n 0 eracy which would in the present case signify that the wave
vector amplitude should increase at each revolution with an
COS¢( COSH angular growth rate proportional  This situation has been
+&,| coségsing |, (20 excluded because it always leads to large wave vectors
—sing, damped by viscosity.
where 4(t) is obtained from Eq(17b and the condition The equation fol, can be written as
0(0)=6,. The second term is an homogeneous solutign dv,
which is such that the wave vectkg+ pky;, of the inertial — =NoV1+ M1V, (21)

wave satisfies|kg+ pkyp|=14+0(p?) and Ko+ pKip)-€, do
=cosE,+pé)+0O(p?). Note that if one had considerdqy  whereA is the operator in Eq13) and

(n—1)co &sin(nd)  acognb)+2Q;cos &—4(1+ Q) &, sinéy cosé,

1= —2(Qo+1)cognh)—2Q, —(n—1)cos &ysin(nd) ' @2

with Thus the orthogonality conditions leads to two linear homo-
B B _ geneous equations for the constahf® and A{®) which de-
a=2(n+Q)cos {o+4(n—1)(1+Qg)sin’ &. (23 pend on the parameter;. The condition of solvability of
The form of Egs.(15) and (22) guarantees that the forcing this system finally gives
termA;V, is a sum of terms oscillating at the frequendiels . (NVo [ VEWNLV VL)

and|n+ w|. The terms oscillating dtw| are proportional to 2 = —, (27)
&, or Q4. They are always resonant with the homogeneous (ValVa)(VelVp)

solutions of Eq(21). This degeneracy induces &1{(p) fre-  which surprisingly reduces to a simple expression:
guency correction of the inertial wave but it does not create 5 —

any instability. By contrast, when the terms oscillating at the _ V(n—1)%(n+4(1+0Q0))*—K 28)
frequency|n= w| resonate with the homogeneous solutions ! 64(1+Qg)? '

of Eqg. (21, i.e., when their frequency matches the inertial , .

wave frequency, the degeneracy in general yields an insta-

bility. There are two conditions of self-resonance which areK =32(1+Qq)(NQ;— (1+Qo)[16(1+Q0)2—n?]2,).
w=n—w andw=—n—w. They give (29)

4(Qg+1)COSEg= €gh, (24) As, at leading orderg=t+ 6, along the streamline trajecto-

ries, o, also corresponds to a temporal growth rate. Thus the

where ;= * 1. The instability growth rate associated with temporal growth rate in terms of the initial variablg®ndi-

each resonance is caI%JIated using the classical procedure mensionalized by the half of the relative vortigitig

multiple scales analysiS: An additional dependence on the _ 2

slow angular scal® = p# is introduced in the amplitudes, o=0o1p+O(pY). (30

andA;, of the inertial wave in such a way that the degeneracyrhis expression applies only if the condition of resonance

is suppressed. Here, a weak exponential growth is expectdel. (24) is satisfied, or equivalently if the leading order wave

so A, andA, can be searched in the form vector anglet, of the inertial wave satisfies
A,=e71PAY) A, =en9A, (25) . . €N
cosép=Kkg ez—4(1+QO). (31

where AL and A{?) are real constants and, the angular
growth rate. The slow-angular variation W, modifies Eq. In order to ploto, it is necessary to transcribe expres-
(21) which now contains an additional termo;V, on the ~ Sions(28)—(31) in terms of the initial variableg and(}. For
right-hand side. As explained in text booKshis additional ~ instance, this can be done by fixige= £, and by replacing
term permits to suppress the degeneracy by enforcing th&o by its expression in terms @f This leads to
orthogonality of the forcing terms with respect to the adjoint __ 1 72 F 7 — 2
modes of the homogeneous equation. For the scalar produgt_ #V(n= DL+ €0 cosé)*p”~4(n 460(1+Q)COS§()3’2)
(flg)=[2"tg* d6, the adjoint modes are

which is equivalent to Eq$28)—(30) with condition (31) if

Vi =[ &y SiN(N6/2),cosé, cogndr2)], (269 one expand$)=Qy+pQ, and &= &5+ pé;.
. . In the above formulaf) corresponds to 1/Ro where the
Vi, =[cogn6/2), — e cos&p sin(n6/2) ]. (26D Rossby number Ro is the ratio of the relative vorticity in the
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vortex center by twice the angular frequency of the rotating

frame. Here the relative vorticity i/, =2 and the absolute
vorticity is W,=2(1+Q)=2(1+ 1/Ro).
B. Local stability properties

Expression(32) shows that for a fixed, there is insta-
bility as soon ad) satisfies

(n—1)(1+cos¢)?
Q-7 cosé i< 8|cos¢] ’ (33
or
n (n—1)(1—cos¢)?
Q+ 4 cosé 1< 8|cosé]| (34)

Inversely, for a fixed(), one can similarly show that the
unstable wave vector anglésare given by

n | (n=1)(n+4(1+Q))?
st~y ~ 1egirap P 9
and
n | _(n=1)(n+4(1+Q))?
COSEt 21+ ) 1281+ 39

Conditions(35) and (36) were also given by Baylet al?®

for n=2. For a fixed anglé€, there are two local maximum
growth rateScr;f]aX(f) associated with each resonance, i.e.,
€,==*1. In each case, the maximum growth ratg,(é)
over all the possible rotation raté$ is obtained when the
resonance is perfect, that is for

ﬂrﬁax(é)=—1+4cgsg, (37)
or
U )=~ 1- oo (39

Expressions fowr, (&) and o,,.(£ obtained from Eq(32)
are particularly simple. They read

el £)=(COK£/2))"s, (39
and

Omad £)=(siN(£/2))s, (40)
wheres is the local strain rate on the streamline

s=(n—1)p. (41)

The graphs of),.(&) and o,,,(&)/s are displayed for & &
<m/2 in Fig. 1. From Fig. 1a), one clearly sees that the
resonance associated wigh=1 is more dangerous than the
other oneey= — 1 (except att= 7/2). The largest maximum
growth rate is thereforer,. (&) for 0<¢<m/2. Expression
(39) also shows that the largest maximum growth rate i

always smaller or equal than the local strain rate. This is ir’b

agreement with the interpretation of the instability by the
vortex stretching mechanisnisee Orszag and Patéta,
Waleffe/ Huerre and Rossf Eloy and Le Diz&®®). More-

Stéphane Le Dizes

08t

0.6}

/s
max

04}

0.2}

/2

FIG. 1. Normalized maximum growth rate;,,/s (8) and most dangerous
rotation rateQ) ., (b) as a function of. In (b), solid line:n=2, dashed line:
n=3, dotted line:n=4. On both figures, the thick lines correspond to the
most unstable resonancey,E1).

the good alignment of the perturbation vorticity with the di-
rection of stretching and the largeness of the growth rate. In
particular, for the resonant vertical wave vectos=(Q),
vorticity is oriented along a direction which makes an angle
— €on 6/2 with respect to the radial polar vectey( ) for all

0. For eg=1, this direction is exactly the same as the direc-
tion of stretching everywhere along the streamline. The
alignment of vorticity with the stretching direction is there-
fore maximized in that case, which justifies both the maxi-
mization of the instability and the equality of the growth rate
with the local strain raté® Inversely, for the other resonance
€o=—1, the angle between the vorticity direction and the
direction of stretching is equal 6 at the azimuthal posi-
tion @ on the streamline. This implies that, during a revolu-
tion on the streamline, vorticity is as much compressed as
stretched. Based on the vortex stretching mechanism, it is
therefore again not surprising that the growth rate cancels in
that case. For a fixef, the maximum growth rate™®{)
over all the possible anglescan also been obtained from
g. (32). However, contrary tar,.y, its value depends on
othn andp. Formula(32) leads to the following results.

e For Q<=—-1—n/4 and Q=—-1+n/4, ¢c"*{(Q) is up to
O(p?) terms given by expressiof89), where e, cos¢ is

over, one can check that there is a direct correlation betweenreplaced byn/4/(1+Q), i.e.,
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(N+4(1+Q))? )
UmaYQ)Zm(n—l)pﬂLo(p ). (42

In this interval of(), the most dangerous angf€®{(Q) in
(0,7/2) is given by

o4 ™(2)]= 7 +OP) @3

Note that there is a single resonance with §< 7/2. One o
therefore must takey=1 for = —1+n/4 bute=—1 for
Q=-1-—n/4. The other resonance which corresponds to a
value of ¢ in (w/2,m) is obtained by the transformation

EM¥ - &M Due to the symmetry mentioned above,

this second resonance shares exactly the same properties as
the first one and does not have to be considered.

max

e For —1+n/4—p(n—1)/2<Q<-1+n/4, the resonance
is imperfect. One hag™®{(Q)=0 and

") =(n—1)’p’—4(Q+1-n/d)%+0(p?). (44

e For —1-n/4<Q<-1+n/4—p(n—1)/2, there is no
resonance. Up t@(p?) terms, the flow is then locally
stable. 8

o

For n=2, expression(42) was first given by Miyazaki

et al*° 05}

The dependence of the stability propertiesroandp is
illustrated in Figs. 2 and 3, respectively. In Fig(aB

o) is plotted neaf) = —1+n/4 forn=2 and two posi-

tive values ofp. The corresponding most dangerous angle

EMis plotted in Fig. 8b). It is interesting to note that the

interval of ) where purely axial inertial waves£€0) are

the most unstable grows with In addition, it is clearly seen FIG. 2. Normalized maximum growth rate™/s (a) and wave vector angle
that the region of instability enlarges and the growth rate; . (nb): ‘éfrzgfgc;r}i:ﬁnlgt_ p—0 for variousn. Solid line:n=2; dashed

increases ap grows. This can also be observed in Fig. 4

where are shown contour plots afs in the (€,&) plane for

several values of andn. local stability properties of a Taylor—Green vortex of aspect
For smallp and whateven, the interval without reso- ratio 2. Althoughp= 0.6 in their case, their results compared
nance contains the valdé= —1 for which the absolute vor- syrprisingly well with our smallp analysis. In particular,
ticity of the vortex vanishes. It immediately follows that the they obtained, as we did far=2, that the local growth rate
core of a multipolar vortex of zero absolute vorticity is 3D js maximum and proportional to the local strain réeich
stable. This is in agreement with the results obtained fois 0.3 in their casefor Q= —1/2 and axial wave vectors
uniform elliptic vortices:*'* Note also that, for smalp, the  (£=0). They showed that axial wave vectors were the most
interval without resonance contains negative values)of instable for—0.8<{)<—0.33 which is very close to what
only if n=2,3,4. This means that all the cyclonic vortices we have obtainedsee Fig. 3. They also obtained a stabili-
with a fold-symmetry of order smaller than 5 are locally zation of the elliptical instability for anticyclonic rotation
unstable. For larger value of, the rotation rate must be between approximatively-1.33 and—0.8 which favorably
superior to (—4—2p(n—1))/4 todestabilize the vortex. It compares with our stabilization intervak: 1.5<Q < —0.8.
is worth mentioning that the instability is not suppressed byFor strong cyclonic and anticyclonic rotation, they observed
strong rotation. For both strong cyclonic and strong anticythat the growth rate tends to the quarter the local strain rate
clonic rotations, the stability properties become identical: theand that the perturbations becomes two-dimensional as pre-
maximum growth rater'™?{((2) tends tos/4 andé™®{)) goes  dicted here. Sipet al3” also performed a global stability
to m/2 as{)— £ . The main effect of strong rotation is then analysis and obtained the form of the eigenmodes associated
to force the instability to become two-dimensional. This iswith the elliptic instability. They confirmed the relevance of
reminiscent of the Taylor—Proudman theor&hiNote also  the local stability results by showing that the most unstable
that if the growth rate was normalized with the absolute vor-eigenmode is localized in the vortex core and that its growth
ticity, the vorticity would disappear in the limjf}| — + in rate is close to the local growth rate of the elliptic center with
agreement with the 2D stability of the flow. an accuracy increasing with the wave number. Other ex-
The asymptotic results obtained here are in agreemerggmples given in the next section will also demonstrate the
with recent computations by Sim al®” They computed the predictive power of the local stability results.

-4
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1 : = deformation. Kid4 extended both the Moore and Saffman
@ O I VN and Kirchhoff solutions by considering an elliptical vortex
osl 7 ! SO patch in a uniform rotating strain field.

/ ! S~ In this section, we analyze the stability of Moore—
06l // il ] Saffman vortex and Kirchhoff vortex and their higher order

) : symmetrical analogues in the limit of small nonaxisymmetric
deformations.

When the azimuthal deformation is small, Kirchhoff vor-
tex and its higher order symmetrical extension are at leading
order nothing but the Rankine vortex deformed by a 2D lin-
ear Kelvin mode of azimuthal wave number 2 or lar¢me,

, for instance, Saffmal). In particular, ifp is the amplitude
-038 -0.6 -04 -0.2 of the Kelvin mode, the deformed Rankine vortex has a
Q stream function of the forfi

Gmax/s

04 /

02f

15f ' | - -
(b) V="p5tpcodn(-wnt)], 0

where the angular frequency of the Kelvin mode dsg

= u(1—1/n). This solution is stationary in the frame rotat-
ing at the angular frequend@ = w,. In this rotating frame
the stream function is then exactly given by [E®). provided
that w=n, which givesQ=n-—1.

Similarly, a Rankine vortex subject to a weak stationary
multipolar strain field has a stream function in its core given
by Eqg. (9) with O=0. The casen=2 corresponds to the
expression for Moore—Saffman vortex in the limit of weak
strain.

Using the results of the previous section, the local sta-
FIG. 3. Normalized maximum growth rat€"®{s (a) and wave vector angle b|||ty properties of both types of vortices are |mmed|ate|y
£M versusQ) for_ n=2 and variousp. Solid line: p_—>0_; Dash-dptted Iin_e: obtained.
p=0.2; Dotted line:p=0.6. The symbol$ and* indicate the interval in
which e_zxial wave vectors are the most unstable ffler0.2 andp=0.6, « For the generalized Kirchhoff vortex: Both the most dan-
respectively. gerous wave vector anglé™® and the maximum growth
rate o™ are independent of the azimuthal symmetry of

the vortex. They are given by

gmax

05f

of *----o——lo-—4

-0.8 -0.6 -04 -0.2
Q

To close this section on local stability results, it is worth

mentioning that viscous effects on the perturbations can be cosémax=1 (47)
easily taken into accoutit®® by adding in expressio32) N
the viscous damping rate and

o= —v|kls?, @9 pmec (B2n-1)p=(%s (48)

wherew is the kinematic viscosity. This damping rate favors
the largest wave numbers and introduces a cutoff wave num-
ber proportional toys/v above which the instability disap-
pears.

wheres s the local strain rate on the streamline. Whatever
n, the generalized Kirchhoff vortex is therefore unstable
with respect to 3D short-wavelength perturbations and the
most unstable local perturbation is independent.of

IV. APPLICATIONS TO VORTEX EXAMPLES  For the generalized Moore—Saffman vortex: The general-
ized Moore—Saffman vortex is unstable onlyni&s4. The

A. Moore—Saffman vortex, Kirchhoff vortex, and -
most dangerous wave vector angl®® satisfies

higher order generalizations

n
Rankine vortex is a circular region of uniform vorticity cosgmaxzz, (49
surrounded by an irrotational flow. Nonaxisymmetric exten- ] ]
sions of this nonviscous solution have been considered in @nd the maximum growth rate is

numerous works. Kirchhoffsee Saffmai?) first considered aL(n+4)2 B (n+4)2

the case of an elliptic region of uniform vorticity in strain- 64 (n=1)p= 64 > 50
free environment. His solution was numerically extended by

Deem and ZabusK{ to vortices with a fold-symmetry of These local results provide the maximum possible

higher order. Moore and Saffm#ranalyzed the nonaxisym- growth rate but they are unable to predict the stability of the
metric deformation generated by a stationary external strainzortex for a given axial wave number nor the spatial struc-
They obtained an exact solution in closed form f@¢1) ture of the unstable modes. For this purpose it is necessary to
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FIG. 4. Contour plot of the growth
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the rotation rate and the wave vector
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main of instability[obtained from ex-
pression(33)]. The dashed lines are
expressiong37) and (38). (a) n=2,
p=0.05; (b) n=2, p=0.5; (c) n=3,
p=0.5; (d) n=4, p=0.5.
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build a global perturbation from the unstable inertial waves.
This was done by Waleffefor the elliptic instability in a

If one takesA(6,)=2e'™m% and sums expressiof51)
over the interval0,27), we get, in the fixed frame, the fol-

fixed frame. Here, we slightly extend his analysis to accountowing expression fov, (see Waleffé):

for the angular rotation of the frame and higher order azi-

muthal symmetries.

Let us consider the axial velocity, of the most unstable
inertial waves. This field is, at leading order, proportional to

the first component o¥. Using expressiongl4)—(16) and
equality (24), it reads in cylindrical coordinates (#,z)

v,=A(0)cogN(t+ Og)/2— p)elkr 010~ o= Vglkzzgat,

(51)
whereA(6y) is an arbitrary amplitude and
sin
LY
€
cosé
k,= pt
52)

o=3/(1+ €y cosé)?s?>— 4(n— 4|1+ Q|cosé)?,

(1+ €9 cosé)?s—2(n— 4|1+ Q|cosé)
(1+ ey c0sé)’s+2(n— 4|1+ Q|cosé)’

tang=

Here, in addition, it is implicitly assumed thdtis close to
the most resonant angdg in the interval(0,#/2) which sat-
isfies Eq.(24) and thateg(1+ () >0. Expressiort51) can be
used on any streamline of the vortex cddefined by— 1/2

<WV¥=<0) provided that one writes the local strain ratesas

=(n—1)r""?p.

v,= [Jn/2— m( krl' )ei(nlzf m)f}ficbei(mf(nlzfm)().)teikzz

+J,(n,2+m)(k,r)e_i(”/2+m)9+i¢

X ei(m+(n/2+m)Q)teikZZ]e¢rt, (53)

whereJ,, is the usual Bessel function.

This expression is well-defined only if it isri2periodic
with respect tod. This implies thatm—n/2 must be an inte-
ger. If one enforces this condition and writes=n/2—1,
with | an integer, the expression between the brackets in Eq.
(53) is nothing but the sum of two normal modes with the
following frequency, azimuthal and axial wave numbels: (
-n/l2+1Q,l,k) and (—n/2+(I-n)Q,l—n,k,). These
two modes have also by construction the same radial wave
number. They are possible perturbations of the underlying
Rankine vortex if they are so-called Kelvin modes, that is if
their characteristics satisfy the dispersion relation of the
Rankine vortex. To study that condition, it is more conve-
nient to express the frequency of the Kelvin modes in terms
of k., k, and| and to write the dispersion relation of the
Kelvin modes as D(l,k,,cos&)=0 with cost=k,/(Kk
+k2)Y2. The condition that the bracket in E(3) is the sum
of two Kelvin modes thus reduces at leading order to

D(l,k,,cos&)=D(l—n,k,,cos¢)=0, (54)
with
n
cos§~m. (55)
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For a givenl, two relations must be simultaneously satisfied 1
for a single parametek,. This condition is reminiscent of
the condition of resonance of Kelvin modes in the global
stability analysis:'®?®Indeed, Eloy and Le Diz=#® showed

for the generalized Moore—Saffman vortésee also Moore
and Saffmaftf for the elliptic casgthat the simple resonance

of two Kelvin modes with azimuthal wave numbdrand|

—n always implies instability. In their analysis, the fre-
guency of the modes, or similarly césvas not close to a
particular value and they computed the growth rate associ-
ated with all possible resonance. Here, we focus on the most
unstable configurations, which explains why there is the ad-
ditional condition Eq.(55).

It is important to point out that the local growth rade
appearing in Eq(53) varies with respect to the radial coor- 1
dinate via the local strain rats=(n—1)pr" 2. For n
=3,0™is then dependent on the radial coordinate: It mono- o8l
tonically increases from the center where it vanishes to the
vortex core boundary where it is the largest. Consequently,
the radial structure of the perturbation is also dependent on
time and evolves such that it becomes localize near the vor-
tex edge for large time. Far=3, expression(53) is there- 0.4f
fore not the expression of two resonant Kelvin modes con-
trary to what is assumed in the global stability analy8is. I AP~
This difference makes the comparison between both analyses
difficult. In fact, a comparison is possible onlykf and| are
large. Indeed, in that case, the time-dependence of the radial
structure disappears as the perturbation is initially already
localized near the vortex edge. The maximum growth ratéFIG. 5. Dispersion relation of the Rankine vortex in tle (cosé) plane.(a)

obtained from Eq.(53) is thus the maximum local grovvth Modes of azimuthal wave numben=1. (b) Modes of azimuthal wave
. . . umberam=0 (solid lineg andm=2 (dashed lines Resonant states for the
rate of the vortex Edge which is exaCtIy the result 0bta'ne({llloore—Saf'fman vortex and Kirchhoff vortex are indicated by circles at

by Eloy and Le Dize&™ for the Moore—Saffman vortex When cosg—1/2 and cog—1/4, respectively.
k, andl go to infinity.

The time-dependence of the radial s_tructurg also disapéachkz. In Figs. 62) and Gb) is shown the growth rate as a
pears whem=2 because the growth raeis then indepen- function of k, obtained by this procedure for the Moore—

dent ofr. For n=2, expressior(53) therefore represents a gatfman vortex and Kirchhoff vortex. Both the growth rate
globally amplified pertu_rbatllon of the vortex core. The' valid- associated with perfect resonant modesl,1) and quasi-
ity of such an expression is based on condit{gd) which resonant mode0,2) have been plotted.

can be analyzed by plotting the dispersion relation in the 14 gestapilization of Kirchhoff vortex by the resonant

(kz_,cosg) plane for two dis_tinct values$ andl+_2 of the modes (—1,1 has been comprehensively analyzed by
a_Z|muthaI wave numbe_r.+F|gure$a5_and ) d'SP'ay the Miyazaki et al° They, in particular, compared their numeri-
different branches fol==1 and1=0,2 respectively. A o/ requits with local stability predictions and with global

symmetry of the dispersion relation guarantees that th%tability results obtained by Vladimirov and Il5Afor aspect

branches fot =1 collapse with the branches for—1. For ratios close to 1. They confirmed the good agreement be-
the azimuthal wave number couple1,1), any wave nUm-  yyeen the three approaches in predicting the maximum

?heernS;Chotshs?kt)I(éoﬁa\l//e(zn' jr: &'r)i?;fn;;;g;)y Ic: Eirang(g)'s growth rate. Here, we go one step further by providing an
p P : 9. estimate for the size of the instability bands using only the

are circled the possible states for Kirchhoff vorte® (.5 stapility result and the dispersion relation of the Kelvin

=1,cos{,=1/4) and the Moore—Saffman _vorter( modes. The instability band in terms of cbss given by
=0,c0s8£,=1/2). For all the other couples of azimuthal wave expressior(35) which reduces to

number the branches do not collapse. However, as it is seen

cos &

06

cos &

on Fig. 5b) for the couple(0,2), some branches are very |cosé— 3|<sp for the Moore—Saffman vortex,
close such that one may consider that there is a quasi- (563
resonance. Again, these possible states are indicated by L s .

circles for the Kirchhoff vortex and Moore—Saffman vortex ~ |C0Sé— 2/ <z5p  for the Kirchhoff vortex.  (56b)

at cost=1/4 gnd cog=1/2, respectively. Near resonant ygsing the (dispersiop relation between casandk,, this
states or quasi-resonant states, one expects the growth rateig|ds an instability interval of the form

be given by formula Eq32). Its expression in terms &, is na e« ma
obtained from the dispersion relation which gives &der k= k3 1< ok(ky™)ky P, (57)
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1l ‘n l' ‘, ! “ 0.008} it h " ‘| FIG. 6. Growth rater versus the axial
0.01 1 I L I: : ! ) wave numbek, of the perturbation for
Iy by ' 0.006} N | : ! a vortex of aspect ratio equal to 1.
o 0.008f . " | ,l o :I 1 ! '| and k, are nondimensionalized with
0.006} - o ] ! I ' the relative vorticity and the mean ra-
. b | 0.004 |: L L dius, respectively. Solid _Ilne: Kelv_ln
0.004 1 (- | 1 | : : ! modes |==*1; dashed line: Kelvin
I Lo | 0.002} . - P! modes =0 and |=2. (a) Moore—
0.002} I : | | 1 I : I I I : Saffman vortex(b) Kirchhoff vortex.
0 L T 0 ! Hi L
0 2 4 kz 6 8 0 1 kz 2 3
wherek]™is a resonant or quasi-resonant wave nuntasr  unstable configuration, is unable to estimate the characteris-

sociated with a circle in Fig.)5 and sk(kJ™) a function tics of less unstable configurations. In particular, for the reso-
slightly dependent ok} for a given vortex. If one neglects nance(0,2), Eloy and Le Dizs obtained an unstable mode at
the variation of the radial wave number, i.e., assumesx,~1.24 andw~0.83 with a growth rate only 5% smaller
k,tan¢) as constant near each resonant poiil,is also than ™ For this value ofk,, the two Kelvin modesn

constant: =0 andm=2 satisfy cog~0.42 and co§~0.58, respec-
sk=3/4 for the Moore—Saffman vortex, (589 tively. In terms of inertial waves, .thIS unstable' configuration
thus corresponds to an interaction of two different waves
Sk=5/12 for the Kirchhoff vortex. (580 which differs from the self-interaction process considered in

It can be checked on Fig. 7 that this assumption is approxi—Sec' I1l. The possibility of resonance of two distinct inertial

matively justified. The results are displayed in Figa)for ~ Waves has never been explored in the elliptical instability
Kirchhoff vortex and Fig. #) for Moore and Saffman vor- Iltt_arature. It would be |r_1terest|ng to extend the analysis to
tex. The agreement between the local prediction and the gidhiS more general case in order to check whether all the un-
bal stability analysis is astonishing. Note, in particular, thaiStaPle global modes can be correctly recovered from the lo-
for the Moore—Saffman vortex the gap between the simplesg@l analysis. _

local prediction(which neglects the variation of the radial Quasi-resonance of modesi(n+2) are also predicted
wave numberand the global results is almost entirely filled bY the simple self-interaction local analysis. By construction

if one takes into account the variation of the radial wavethey share the following properties: they have all the same
number. maximum growth rate; the instability bands of all the reso-

In Figs. §a) and Gb) have been drawn the instability hant modes of even azimuthal wave numbers are close to

curves associated with the quasi-resonaf@g). Surpris- €ach other and superimpose for large wave numbers; they are
ingly, this type of resonance has never been analyzed b§eparated by the instability bands of resonant modes of odd
global or numerical methods for Kirchhoff vortex. For the azimuthal wave numbers which also tend to collapse for
Moore—Saffman vortex, the global stability analysis haslarge wave numbers. The above estimates E§8a and
been carried out only recently in Eloy and Le D878 Their ~ (58b) for the width of the instability band also apply for all
results show that this type of resonance as well as resonandee quasi-resonant modes. As a consequence, the instability
of higher order modes such &%,3) and so on, can lead to bands overlap for large wave numbers. These predictions are
instability with a maximum growth rate comparable to thein agreement with the results obtained by global analysis for
local maximum growth rate computed here. In all thesethe Moore—Saffman vorte®.

cases, the local analysis provides a good estimate for the Note, finally, that the viscous damping of the global per-
frequency and the instability band width. By contrast, theturbation Eq.(53) is also given by Eq(45) as all the inertial
local analysis developed here, which focuses on the mostaves summed to obtain E3) have the same wave vector

0.9 y y y y 05 FIG. 7. Instability band widthsk ver-

(@) o (b sus the axial wave number of the reso-
048} ] nant modeg—1, 1). Stars(*): Local
0851 e 1 o o stability analysis. CirclegO): global
stability analysis(a) Moore—Saffman
046 + T vortex. The circles are from Tsai and
Widnall (Ref. 9 and Arendt and Fritts
$ Q 0.44} * i (Ref. 31). Dashed line: expression
* * (58a. (b) Kirchhoff vortex. The
075F———————————— - — — — — * * * circles are from Vladimirov and Il'in
042 _ _ ______________] (Ref. 29. The crosses are deduced
from Miyazaki et al. (Ref. 30 for an
0.7 04 aspect ratio equal to 1.1. Dashed line:

2 4 kx 6 8 10 0 1 2 K, 3 4 5 expression(58b).

*0
3k
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modulus. For the most unstable perturbations, this local es- Qmax p
timate is comparable to the one obtained b lobat
analysig® P Y 9O 10,0=0.33 (from LC 98 —0.46 0.5
' k,=2:p=0.33(from PP 99 -0.31 0.5
ac - k,=2;p=0.5 (from PP 99 -0.24 0.32
B. Stuart vortices in a rotating frame z= <P
vart vortices | g k,=2:p=0.75 (from PP 99 ~0.18 0.14
Stuart vortices are described by the stream function
¥ =log(coshx— p cosy), (590  These values are used to draw the curves displayed in Fig. 8.

) In these plots are also displayed values taken from the curves
wherep is a real parameter between 0 and 1. per0, EQ.  of poyylitsin and Peltié? and Leblanc and Cambdh.

(59 reduces to a pure shear-flow with an hyperbolic tangent When p=0.33, Figs. &) and (b) demonstrate that the
profile. Whenp— 1, the solution becomes singular and tendsasymptotic analysis provides very good estimates for both
to an array of point vortices of infinite vorticitout finitt  the maximum value of the growth rate and the width of the
circulation. In the |ntermed|at9 range<_0p< 1,_ the solution | |nstable region. For larger values pf the growth rate is
represents an array of co-rotating vortices with a smooth propgyever slightly overestimated. At first view, this is surpris-
file of vorticity. Each vortex is in that case elliptical near its ing because the asymptotic theory shoalgriori work bet-
center with a vorticity and a strain rate giyen in the center by a5 the vortices become less elliptical. But, in factpas
V\'/r'I(l-i-p)/(l—p) .and So=1/2, respectively. The eccen- _, 1 vorticity gradients increase as well, which implies that
tricity of the streamline near the center goes o Zerp@ses  the |ocal stability properties in the vortex core change more
to 1. Forp close to 1, the maximum growth rateormalized  ranidly with respect to the radial coordinate. As a global
by W;) of Stuart vortices in a frame rotating at the angulargyowth rate is more or less a local growth rate averaged on a
frequency() is therefore given by Eq42) with n=2 and  fixeq area, if the local growth rate decreases more rapidly,
p=28o/W,=(1-p)/(1+p). o the gap between the average and the maximum increases,
The global stability properties of Stuart vortices in a ro- 54 this could explain the discrepancy.
tating frgme were recently analyzed in Leblanc and | cgg analyzed the stability properties for large axial
Cambor® and Potylitsin and Pgltlézr(hereafter, referred t0  \yave numbers. They showed that the global growth rate is
as LC98 and PP99PP99 considered several valuesp@p  yell-estimated by the local growth rate of pure axial waves
=0.33,0.5,0.75) but a fixed axial wave numlsgr-2 forthe :— o) at either elliptic or hyperbolic stagnation points. Con-
perturbation, while LC98 only studied the cgse 0.33 but  ¢cering the elliptic stagnation points, their analysis can be
considered several axial wave numbers. In both studies, ¢onsidered as a particular case of the present study. In par-
was varied between-0.5 and 0.1(vv_|th our definition. For  ticylar, it can be checked that formula Ed@4) with n=2
each case, they were able to obtain an unstable branch assggyces to their expression of the local growth rate. More-
ciated with the elliptical instability of the core. Our goal is gyer the good agreement can be explained by the above
here to compare their computed growth ratdlagaries with  5gument. Indeed, based on what we observed for Rankine
the prediction of the local asymptotic theory. . vortex, we expect the radial wave number of the perturbation
As seen in Sec. IVA, the finite size of the vortex dis- modes to be more or less a constankasaries. It follows
cretizes the pp§S|bIe wave numbers of the perturbationgpat whenk, increases, the angigof the wave vector with
Moreover, sufficiently close to the vortex center, these peryespect to thé, axis goes to zero, and therefore the unstable
turbations are always combinations of inertial waves. For Ylobal modes are only composed of purely axial waves. As
fixed axial wave number, one then expects the wave vectafhqwn by LC98, fok,=100, the pure axial wave prediction
angle ¢ of the inertial waves to be also discretized. If the jg very good. But fork,= 10, Fig. 8a) shows that it already
instability is due to the inertial wave resonance mechanisnerestimates the growth rate and our prediction which takes

explained in Sec. Ill, the instability growth rate should still jt5 account the inclination of the wave vector is better.
be given by Eq(32). But here, by contrast with the Rankine

vortex, no dispersion relation that provides the argfer a
given wave number is available. For a given axial waveV. CONCLUSION
number, the angl€ is fixed but cannot be determined from

lculati | The local stability th h This article has focused on the local stability properties
our calculation alone. The local stability theory NOWEVer pré-¢ ie ¢ore of g nonaxisymmetric vortex in a rotating frame.

dicts that the instability should be maximized when the rotayye have shown that amfold symmetrical vortex is locally
tion rate () reaches the paruculgr valdémax_ tha_t satisfies unstable, with a growth rate proportional to the local strain
Eq. (37). If one replaces cos by. Its expression In tem."s of rate s, as soon as the angular frequen@yof the rotating
Qmax, €xpression39) thus provides the following estimate frame satisfiesW,| =|W, +20Q|>n|W,|/4, whereW, and

for the growth rate as) varies W, are the absolute and relative vorticities, respectively. The
JBH20,20° P2 = 16(1+ Qo 20— Q)2 asymptgtic analysis has also proved that the instability do-
= 161+ 0, )2 . main slightly extends belowabove W,=nW,/4 up to the
m (60) value Wy=nW,/4—sW,/2 if W,>0 (if W,<0). An explicit
formula [expression32)] for the leading order growth rate
The most dangerous rotation rafk,,,, obtained by LC98 has been obtained as a functionmf) and the wave vector
and PP99 are given in the following table: angle¢ of the perturbation.

o
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0 02 LC98 (Ref. 20 (a) and PP99Ref. 32
(b—d). As explained in the text, the
solid curve is the local asymptotic pre-
diction where the angular frequency

0.12 0.05 that gives the maximum value has
been taken from the numerical data.
0.1 I (8 p=0.33, k,=10; the dashed line
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The results have been applied to perturbed Rankine vor- The local results have also been applied to the more
tices such as the Kirchhoff and Moore—Saffman vorticesrealistic Stuart vortex. We have shown how both the maxi-
with an aspect ratio close to 1. From the expression of thenum value of the growth rate and the size of the instability
most unstable local perturbations, we have shown how globand can be obtained as soon as the most unstable rotation
bal perturbations of the core can be constructed for thesgyte is known. A good agreement with numerical data from
vortices. For the elliptic casen¢2), these global perturba- | eplanc and Cambdfiand Potylitsin and Peltiéf has been
tions have been found to correspond to pairs of resonafemonstrated for Stuart vortices which are not too elliptical
normal Kelvin modes of Rankine vortex of azimuthal wave oy 100 concentratedp= 0.33).
numbersm and m+2 in agreement with global stability Finally, it is important to again point out that the local
analysis. However, contrary to the global analysis, the fregapility results are not limited to a specific vortex. For
guency of the most unstable global perturbations is here pro-. 2, the local analysis is expected to provide good estimates

\lgdle d by tr(;e cal;:tgatlokn. Usm? thethd|sper5|t?]n retlatl(;r:hof _thefor vortices of aspect ratio up to 2 if the local stability prop-
elvin modes of Rankin€ vortex, the growth rate ot the in- g ;0o 46 ot vary too much on the characteristic radial per-

stability has been obtained as a function of the axial wav . . .
) . urbation wavelength. For these cases, the only information
number for the Kirchhoff and Moore—Saffman vortices and .
needed from the vortex is the most unstable wave numbers

compared to available results in the literature. The instability,

. . . for a given angular rotation or the most dangerous rotation
bands associated with a resonance of Kelvin modes of azi- 9 9 9

muthal wave numbenmi=1 andm= —1 has been recovered r?t(ta fgr "’; gl;\'/ﬁn ;\(ave ”“T“b"t‘r- Frgmftms |r|1form3t|g]cn, acom-
with a remarkable precision. Other instability bands associP €€ INStabliity diagram IS given by formuia ECR2) if ones
ated with a resonanam=0 andm=2 have also been cal- neglects the small variation of the radial wave number,
culated. For the Moore—Saffman vortex, the results havd/hich has been found to be justified in the above examples.
been compared with global stability results and a good agree- F0r n=>3, the local instability characteristics vary with
ment has been found for the most unstable modes. For Kircfhe vortex radial coordinate in a similar way as the local
hoff, the new instability bands associated with this resonancgtrain rate. This nonhomogeneous character makes the local
have never been documented elsewhere. predictions less successful than for2. Nevertheless, the

It has also been argued that the local stability analysidocal analysis still provides the regions where the unstable
could be generalized in order to describe less unstableharacter is the strongest and the value of the largest possible
modes. Contrary to the modes analyzed in this paper whicgrowth rate. Moreover, analysis of the generalized Moore—
correspond to a self-interaction of a single inertial wave,Saffman vortex suggests that the growth rate of a global
these other modes would be associated with the interactioperturbation could be related to a certain average of the local
of two distinct inertial waves. growth rates over the region where the perturbation sits.
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