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Three-dimensional instability of a multipolar vortex in a rotating flow
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In this paper, the elliptic instability is generalized to account for Coriolis effects and higher order
symmetries. We consider, in a frame rotating at the angular frequencyV, a stationary vortex which
is described near its centerr 50 by the stream function written in polar coordinatesC52(r 2/2)
1p(r n/n)cos(nu), where the integern is the order of the azimuthal symmetry, andp is a small
positive parameter which measures the strength of the nonaxisymmetric field. Based on the Lifschitz
and Hameiri@Phys. Fluids A3, 2644–2651~1991!# theory, the local stability analysis of the
streamlineC521/2 is performed in the limit of smallp. As for the elliptic instability@Bayly, Phys.
Rev. Lett.57, 2160–2163~1986!#, the instability is shown to be due to a parametric resonance of
inertial waves when the inclination anglej of their wave vector with respect to the rotation axis
takes a particular value given by cosj564/(n(11V)). An explicit formula for the maximum
growth rate of the inertial wave is obtained for arbitraryj, V, andn. As an immediate consequence,
it is shown that a vortex core of relative vorticityWr ~assumed positive! is locally unstable ifV
,2(11n/4)Wr /2 or V.(211n/42p(n21)/2)Wr /2. The predictive power of the local theory is
demonstrated on several vortex examples by comparing the local stability predictions with global
stability results. For both the Kirchhoff vortex and Moore and Saffman vortex, it is shown how
global stability results can be derived from the local stability analysis using the dispersion relation
of normal ~Kelvin! modes. These results are compared to those obtained by global methods and a
surprisingly good agreement is demonstrated. The local results are also applied to rotating Stuart
vortices and compared to available numerical data. ©2000 American Institute of Physics.
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I. INTRODUCTION

The emergence of multipolar vortices in rotating fluids
a well-known feature which has been evidenced both exp
mentally and numerically~see, for instance, Hopfinger an
van Heijst1 and references therein!. These vortical structure
are usually formed of a central vortex surrounded by sev
vortices of opposite sign. They are known to appear spo
neously by a 2D inviscid instability from monopolar vortice
which have not a monotonous vorticity profile.

These vortices may be unstable with respect to the
symmetric centrifugal instability. For axisymmetric vortice
in a fixed frame, Rayleigh showed that the nondecreas
behavior of the square of the circulation provides a condit
for stability. Analogue criteria have been obtained for no
axisymmetric vortices in a fixed frame2 and in a rotating
frame.3,4 Here, we shall not be concerned with the centri
gal instability. We shall assume that the instability is gen
ated by another mechanism associated with the nonaxis
metry of the vortex.

That the nonaxisymmetry could be a source of instabi
was first understood by Pierrehumbert5 who studied the
short-wavelength stability of an elliptic vortex. Bayly6 and
Waleffe7 gave a complete explanation of the instabil
mechanism in the context of uniform elliptical flows. The

a!Electronic mail: ledizes@marius.univ-mrs.fr
2761070-6631/2000/12(11)/2762/13/$17.00
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showed that the inertial waves of the vortex could be pa
metrically excited by the underlying strain field via the vo
ticity stretching mechanism.8 An early explanation was also
given in terms of Kelvin modes resonance by Tsai a
Widnall9 and Moore and Saffman.10 The inertial wave de-
scription was extended and formalized in a more gene
framework using Lagrangian methods by Lifschitz a
Hameiri.11 This has permitted to consider additional effec
such as stratification,12 rotation,13–15 stretching,16

nonuniformity,17–21 and time-dependence.22–24

Vortices with a fold symmetry larger than 2 were co
sidered only recently.25–28 Le Dizès and Eloy25 showed that
in a fixed frame an instability similar to the ‘‘elliptical insta
bility’’ exists in triangular and quadripolar vortices. This in
stability was analyzed by global techniques for a Rank
vortex in Eloy and Le Dize`s.26 The first experimental evi-
dence was given by Eloy, Le Gal, and Le Dize`s.27,28 Our
goal is here to extend the local analysis of Le Dize`s and
Eloy25 by considering the additional effects of Coriol
forces.

The paper is organized as follows. In Sec. II the fram
work of the local stability theory is presented. The gene
system of equations for the perturbations obtained by Ba
et al.23 is extended to account for Coriolis forces. In Sec. I
these equations are solved in a frame rotating at the ang
frequencyV for the basic flow given by the stream functio
2 © 2000 American Institute of Physics
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C52
r 2

2
1p

r n

n
cos~nu!,

where the integern is the order of the azimuthal symmetr
and p is a small positive parameter which measures
strength of the nonaxisymmetric field. The local stabil
properties of the streamlineC521/2 are obtained by an
asymptotic method in the limit of smallp. An explicit for-
mula for the leading order maximum growth rate is deriv
in terms ofn, V, and the wave vector inclination anglej. The
consequences of this formula are detailed in Sec. III B.
Sec. IV A, the results are applied to a deformed Rank
vortex. It is shown how global results can be obtained
summing local perturbations to form normal~Kelvin! modes.
The results obtained by this approach are compared to a
able global stability results for the Kirchhoff vortex29,30 and
the Moore–Saffman vortex.10,26,31 In Sec. IV B, the local
growth rate formula is applied to Stuart vortices in a rotat
frame. For a fixed wave number perturbation, it is sho
how the maximum growth rate and the size of the interva
unstable rotation rates can be obtained from the value of
most dangerous rotation rate. The results are compare
numerical data from Leblanc and Cambon20 and Potylitsin
and Peltier.32

II. GEOMETRICAL OPTICS STABILITY EQUATIONS IN
A ROTATING FRAME

Let U(x) be the velocity field of a 2D inviscid stead
flow in a frame rotating at the angular frequencyV. In the
geometrical optics stability theory,1,23 one considers local
ized 3D short-wavelength perturbations. At leading ord
with respect to a characteristic wavelengthe, the perturbation
velocity is written in the geometrical optics, or WKB form

u~x,t !5a~x,t !expS i

«
F~x,t ! D , ~1!

where the amplitudea(x,t) and phaseF(x,t) are real func-
tions dependent on spacex5(x,y,z) and timet. The local
~renormalized! wave number is defined fromF by

k5¹F. ~2!

Substituting Eq.~1! in the linearized Euler equations an
equating terms of same order ine lead to a system of equa
tions fora andk. As shown by Lifschitz and Hameiri,11 this
system reduces to simple ordinary differential equatio
along the streamlines of the basic flow which are defined

dX

dt
5U~X,t !. ~3!

In a frame rotating at the angular frequencyV, the Lifschitz
and Hameiri equations read15

dk

dt
2LT~ t !k, ~4a!

da

dt
5F S 2kkT

uku2
2I DL~ t !1S kkT

uku2 2I D CGa, ~4b!

k.a50, ~4c!
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where d/dt denotes Lagrangian derivativesd/dt5]/]t
1U.¹, I the identity matrix,L(t)5¹U(X(t),t) and

C5S 0 22V 0

2V 0 0

0 0 0
D . ~5!

Equation~4c! is the condition of incompressibility. That con
dition is always fulfilled if Eqs.~4a! and~4b! are solved from
an initial condition (X0 ,k0 ,a0) which satisfiesk0 .a050.
Lifschitz and Hameiri proved that ifa(t) grows indefinitely,
the nonviscous flow is unstable. This is also true in a visc
flow,33,1 if the characteristic wavelengthe is larger thanAn/s
wheren is the kinetic viscosity ands the maximum inviscid
growth rate ofa. On a closed streamline, stability is natural
analyzed by looking at the behavior ofa after one revolution.
The initial position on the streamline is not important as
does not modify the growing character ofa. For this reason,
a single initial position by streamline is in general take
Note also that Eq.~4a! for k is decoupled and Eq.~4b! does
not depend onuku so one can choose without restrictio
uk0u5ua0u51.

Equations~3! and ~4a! also imply thatk.U is conserved
along the streamlines. In order to avoid the stretching of
wave vector, Sipp and Jacquin21 showed thatk andU must
remain orthogonal, i.e.,k.U50. Otherwise,uku increases at
each revolution and the perturbation is damped by visc
effects at large time.33 Finally, if one assumesk0 .U(X0)
50, the initial wave vectork0 only depends on the anglej of
the wave vector with respect to the rotation axis of the fram

In a fixed frameV50, Bayly, Holm, and Lifschitz23

showed that Eq.~4b! can be reduced to a system of tw
equations for

V5S uku
uk'u ~k' .a'!

uku
uk'u ~k'∧a'!

D , ~6!

where' denotes the projection in the plane perpendicular
the rotation axis. Below the indexz will denote the compo-
nent along the rotation axis. A similar reduction can be c
ried out in a rotating frame. It yields the system

dV

dt
5N V, ~7!

with

N5S 2
kz

2~L'k' .k'!

uku2uk'u2
2kz

2~L'Jk' .a'!

uku2uk'u2 12V
kz

2

uku2

22V2Wz
kz

2~L'k' .a'!

uku2uk'u2
D ,

~8!

whereWz is the ~relative! vorticity of the basic flow in the
rotating frame and

J5S 0 1

21 0D .
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2764 Phys. Fluids, Vol. 12, No. 11, November 2000 Stéphane Le Dizès
The goal of this paper is to resolve Eqs.~3!, ~4a!, and~7! for
a family of 2D solutions which generically describe the flo
in the core of a nonaxisymmetric vortex.

III. LOCAL STABILITY ANALYSIS OF A VORTEX
CORE

In a frame rotating at the rotation rateV, consider the 2D
basic flow described by the stream function~in polar coordi-
nates!

C~r ,u;p!52
r 2

2
1p

r n

n
cos~nu!, ~9!

where n is an integer larger than 1 andp a real positive
parameter. This flow is the superposition of a rotational fi
of uniform vorticity ~first term! and of a multipolar irrota-
tional strain field~second term! characterized by its fold-
symmetrical ordern and its strengthp. As explained by Le
Dizès and Eloy,25 it describes the core of a 2D nonvisco
vortex in equilibrium with an external strain field which e
hibits ann-fold symmetry. Forn52 andn53, Eq.~9! is the
generic expression for the stream function of a station
vortex ~in a rotating frame! near its center as it correspond
to the first terms of its Taylor expansion with respect to
distance to the vortex axis. This is also the case for largen
if one assumes that the vorticity is sufficiently uniform in t
vortex core. In particular, for alln, Eq. ~9! is the stream
function of a Rankine vortex deformed by either a we
external rotatingn-fold symmetrical strain field or a sma
2D Kelvin mode of azimuthal wave numbern. Accordingly,
V is either the rotation rate of the external field or the an
lar frequency of the Kelvin mode. These two cases co
spond to generalized Moore–Saffman vortices and gene
ized Kirchoff vortices which will be analyzed in detail i
Sec. IV A. In the following, we focus on local perturbation
which grow within the basic flow described by Eq.~9!. The
external strain field generated by boundaries or distant
tices is not considered in the analysis.

A. Perturbation analysis

In Le Dizès and Eloy,25 the local stability of Eq.~9! was
studied without the smallp restriction but in a fixed frame
(V50). Here, we focus on the additional effects of rotati
but limit the analysis to smallp. Our main objective is to
obtain an explicit formula for the leading order growth ra
in the limit of smallp that involvesn andV.

For this purpose, we carry out an asymptotic analy
with respect top→0. Following the classical procedure o
perturbation analysis,34 all the quantities are expended
power ofp:

V5V01pV11¯ , ~10a!

X5X01pX11¯ , ~10b!

k5k01pk11¯ , ~10c!

V5V01pV11¯ , ~10d!

L5L01pL11¯ , ~10e!
Downloaded 11 Jan 2006 to 147.94.56.67. Redistribution subject to AIP
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N5N01pN11¯ . ~10f!

At leading order, the basic flow is a solid body rotation. T
solution of Eq.~3! is then justX0'5@cos(t1u0),sin(t1u0)#
whereu0 is the initial azimuthal angle. The equation fork0

reduces to

dk0

dt
52L0

Tk0 with L05S 0 21 0

1 0 0

0 0 0
D . ~11!

This gives with the conditionsk0(0)•U0(0)50 and
uk0(0)u51

k05@sinj0 cos~ t1u0!,sinj0 sin~ t1u0!,cosj0#, ~12!

wherej0 is the angle between the wave vectork0 and the
rotation axis. Due to the symmetries of Eq.~8! which is
invariant by the changek in 2k and kz in 2kz , we can
assume without restriction that 0<j0,p/2.

Substituting expression~12! in the leading order equa
tion for V0 leads to

dV0

dt
5S 0 2~V011!cos2 j0

22~V011! 0 DV0 . ~13!

The general solution of that equation is

V05AaVa~ t !1AbVb~ t !, ~14!

whereAa andAb are two real constants and

Va5@cosj0 sin~v~ t1u0!!,cos~v~ t1u0!!#,
~15!

Vb5@cosj0 cos~v~ t1u0!!,1sin~v~ t1u0!!#,

with

v52~V011!cosj0 . ~16!

The solution V0 exp(ik0(t)•x) is the well-known inertial
wave solution of solid body rotating flows.35 Its wave vector
rotates periodically with respect to thekz-axis with the same
frequency as the basic flow and with a constant inclinat
angle j0 ; its amplitude is periodic with a frequencyv
5Wa cosj0, whereWa is the absolute vorticity of the flow.

At the next order, the trajectory is slightly deformed: th
streamlineC521/2 is given by

r 511
p

n
cos~nu!1O~p2!, ~17a!

du

dt
512p cos~nu!1O~p2!, ~17b!

and the correction of the velocity tensor reads

L1'5~n21!S sin@~n22!u# cos@~n22!u#

cos@~n22!u# 2sin@~n22!u#
D . ~18!

This permits to write the equation fork1 as follows:

dk1

du
52L0'k12~L1'1cos~nu!L0'!k0 , ~19!

which yields
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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k15
sinj0

2n S ~122n!cos@~n21!u#1cos@~n11!u#

~122n!sin@~n21!u#1sin@~n11!u#
0

D ,

1j1S cosj0 cosu
cosj0 sinu

2sinj0

D , ~20!

where u(t) is obtained from Eq.~17b! and the condition
u(0)5u0 . The second term is an homogeneous solutionk1h

which is such that the wave vectork01pk1h of the inertial
wave satisfiesuk01pk1hu511O(p2) and (k01pk1h)•ez
5cos(j01pj1)1O(p2). Note that if one had consideredk0
g
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such thatk0•U0Þ0, the inhomogeneous solution would co
tain terms proportional tou; this would characterize a degen
eracy which would in the present case signify that the wa
vector amplitude should increase at each revolution with
angular growth rate proportional top. This situation has been
excluded because it always leads to large wave vec
damped by viscosity.

The equation forV1 can be written as

dV1

du
5N0V11N1V0 , ~21!

whereN0 is the operator in Eq.~13! and
N15S ~n21!cos2 j0 sin~nu! a cos~nu!12V1 cos2 j024~11V0!j1 sinj0 cosj0

22~V011!cos~nu!22V1 2~n21!cos2 j0 sin~nu!
D , ~22!
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a52~n1V0!cos2 j014~n21/n!~11V0!sin2 j0 . ~23!

The form of Eqs.~15! and ~22! guarantees that the forcin
termN1V0 is a sum of terms oscillating at the frequenciesuvu
and un6vu. The terms oscillating atuvu are proportional to
j1 or V1 . They are always resonant with the homogene
solutions of Eq.~21!. This degeneracy induces anO(p) fre-
quency correction of the inertial wave but it does not cre
any instability. By contrast, when the terms oscillating at
frequencyun6vu resonate with the homogeneous solutio
of Eq. ~21!, i.e., when their frequency matches the inert
wave frequency, the degeneracy in general yields an in
bility. There are two conditions of self-resonance which a
v5n2v andv52n2v. They give

4~V011!cosj05e0n, ~24!

wheree0561. The instability growth rate associated wi
each resonance is calculated using the classical procedu
multiple scales analysis:34 An additional dependence on th
slow angular scaleQ5pu is introduced in the amplitudesAa

andAb of the inertial wave in such a way that the degenera
is suppressed. Here, a weak exponential growth is expe
so Aa andAb can be searched in the form

Aa5es1QAa
~0! , Ab5es1QAb

~0! , ~25!

whereAa
(0) and Ab

(0) are real constants ands1 the angular
growth rate. The slow-angular variation ofV0 modifies Eq.
~21! which now contains an additional term2s1V0 on the
right-hand side. As explained in text books,34 this additional
term permits to suppress the degeneracy by enforcing
orthogonality of the forcing terms with respect to the adjo
modes of the homogeneous equation. For the scalar pro
^ f /g&5*0

2p f g* du, the adjoint modes are

Va
'5@e0 sin~nu/2!,cosj0 cos~nu/2!#, ~26a!

Vb
'5@cos~nu/2!,2e0 cosj0 sin~nu/2!#. ~26b!
s
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Thus the orthogonality conditions leads to two linear hom
geneous equations for the constantsAa

(0) andAb
(0) which de-

pend on the parameters1 . The condition of solvability of
this system finally gives

s1
25

^N1VbuVa
'&^N1VauVb

'&

^VauVa
'&^VbuVb

'&
, ~27!

which surprisingly reduces to a simple expression:

s15
A~n21!2~n14~11V0!!42K2

64~11V0!2 , ~28!

with

K532~11V0!~nV12~11V0!@16~11V0!22n2#1/2j1!.
~29!

As, at leading order,u5t1u0 along the streamline trajecto
ries,s1 also corresponds to a temporal growth rate. Thus
temporal growth rate in terms of the initial variables~nondi-
mensionalized by the half of the relative vorticity! is

s5s1p1O~p2!. ~30!

This expression applies only if the condition of resonan
Eq. ~24! is satisfied, or equivalently if the leading order wa
vector anglej0 of the inertial wave satisfies

cosj05k0•ez5
e0n

4~11V0!
. ~31!

In order to plots, it is necessary to transcribe expre
sions~28!–~31! in terms of the initial variablesj andV. For
instance, this can be done by fixingj5j0 and by replacing
V0 by its expression in terms ofj. This leads to

s5 1
4A~n21!2~11e0 cosj!4p224~n24e0~11V!cosj!2,

~32!

which is equivalent to Eqs.~28!–~30! with condition ~31! if
one expandsV5V01pV1 andj5j01pj1 .

In the above formula,V corresponds to 1/Ro where th
Rossby number Ro is the ratio of the relative vorticity in t
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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vortex center by twice the angular frequency of the rotat
frame. Here the relative vorticity isWr52 and the absolute
vorticity is Wa52(11V)52(111/Ro).

B. Local stability properties

Expression~32! shows that for a fixedj, there is insta-
bility as soon asV satisfies

UV2
n

4 cosj
11U,~n21!~11cosj!2

8ucosju
p, ~33!

or

UV1
n

4 cosj
11U,~n21!~12cosj!2

8ucosju
p. ~34!

Inversely, for a fixedV, one can similarly show that th
unstable wave vector anglesj are given by

Ucosj2
n

4~11V!
U,~n21!~n14~11V!!2

128u11Vu3
p, ~35!

and

Ucosj1
n

4~11V!
U,~n21!~n14~11V!!2

128u11Vu3
p. ~36!

Conditions~35! and ~36! were also given by Baylyet al.23

for n52. For a fixed anglej, there are two local maximum
growth ratessmax

6 (j) associated with each resonance, i.
e0561. In each case, the maximum growth ratesmax

6 (j)
over all the possible rotation ratesV is obtained when the
resonance is perfect, that is for

Vmax
1 ~j!5211

n

4 cosj
, ~37!

or

Vmax
2 ~j!5212

n

4 cosj
. ~38!

Expressions forsmax
1 (j) andsmax

2 (j) obtained from Eq.~32!
are particularly simple. They read

smax
1 ~j!5~cos~j/2!!4s, ~39!

and

smax
2 ~j!5~sin~j/2!!4s, ~40!

wheres is the local strain rate on the streamline

s5~n21!p. ~41!

The graphs ofVmax
6 (j) andsmax

6 (j)/s are displayed for 0<j
,p/2 in Fig. 1. From Fig. 1~a!, one clearly sees that th
resonance associated withe051 is more dangerous than th
other onee0521 ~except atj5p/2!. The largest maximum
growth rate is thereforesmax

1 (j) for 0<j,p/2. Expression
~39! also shows that the largest maximum growth rate
always smaller or equal than the local strain rate. This is
agreement with the interpretation of the instability by t
vortex stretching mechanism~see Orszag and Patera8

Waleffe,7 Huerre and Rossi,36 Eloy and Le Dize`s26!. More-
over, one can check that there is a direct correlation betw
Downloaded 11 Jan 2006 to 147.94.56.67. Redistribution subject to AIP
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the good alignment of the perturbation vorticity with the d
rection of stretching and the largeness of the growth rate
particular, for the resonant vertical wave vectors (j50),
vorticity is oriented along a direction which makes an an
2e0nu/2 with respect to the radial polar vectorer(u) for all
u. For e051, this direction is exactly the same as the dire
tion of stretching everywhere along the streamline. T
alignment of vorticity with the stretching direction is ther
fore maximized in that case, which justifies both the ma
mization of the instability and the equality of the growth ra
with the local strain rate.26 Inversely, for the other resonanc
e0521, the angle between the vorticity direction and t
direction of stretching is equal tonu at the azimuthal posi-
tion u on the streamline. This implies that, during a revo
tion on the streamline, vorticity is as much compressed
stretched. Based on the vortex stretching mechanism,
therefore again not surprising that the growth rate cancel
that case. For a fixedV, the maximum growth ratesmax(V)
over all the possible anglesj can also been obtained from
Eq. ~32!. However, contrary tosmax, its value depends on
both n andp. Formula~32! leads to the following results.

• For V<212n/4 and V>211n/4, smax(V) is up to
O(p2) terms given by expression~39!, wheree0 cosj is
replaced byn/4/(11V), i.e.,

FIG. 1. Normalized maximum growth ratesmax
6 /s ~a! and most dangerous

rotation rateVmax
6 ~b! as a function ofj. In ~b!, solid line:n52, dashed line:

n53, dotted line:n54. On both figures, the thick lines correspond to t
most unstable resonance (e051).
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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smax~V!5
~n14~11V!!2

64~11V!2 ~n21!p1O~p2!. ~42!

In this interval ofV, the most dangerous anglejmax(V) in
~0,p/2! is given by

cos@j max~V!#5
n

4u11Vu
1O~p2!. ~43!

Note that there is a single resonance with 0<j<p/2. One
therefore must takee051 for V>211n/4 bute521 for
V<212n/4. The other resonance which corresponds t
value of j in ~p/2,p! is obtained by the transformatio
jmax→p2jmax. Due to the symmetry mentioned abov
this second resonance shares exactly the same propert
the first one and does not have to be considered.

• For 211n/42p(n21)/2,V,211n/4, the resonance
is imperfect. One hasjmax(V)50 and

smax~V!5A~n21!2p224~V112n/4!21O~p2!. ~44!

• For 212n/4,V,211n/42p(n21)/2, there is no
resonance. Up toO(p2) terms, the flow is then locally
stable.

For n52, expression~42! was first given by Miyazaki
et al.30

The dependence of the stability properties onn andp is
illustrated in Figs. 2 and 3, respectively. In Fig. 3~a!,
smax(V) is plotted nearV5211n/4 for n52 and two posi-
tive values ofp. The corresponding most dangerous an
jmax is plotted in Fig. 3~b!. It is interesting to note that the
interval of V where purely axial inertial waves (j50) are
the most unstable grows withp. In addition, it is clearly seen
that the region of instability enlarges and the growth r
increases asp grows. This can also be observed in Fig.
where are shown contour plots ofs/s in the ~V,j! plane for
several values ofp andn.

For smallp and whatevern, the interval without reso-
nance contains the valueV521 for which the absolute vor
ticity of the vortex vanishes. It immediately follows that th
core of a multipolar vortex of zero absolute vorticity is 3
stable. This is in agreement with the results obtained
uniform elliptic vortices.13,14 Note also that, for smallp, the
interval without resonance contains negative values oV
only if n52,3,4. This means that all the cyclonic vortic
with a fold-symmetry of order smaller than 5 are loca
unstable. For larger value ofn, the rotation rate must be
superior to (n2422p(n21))/4 to destabilize the vortex. It
is worth mentioning that the instability is not suppressed
strong rotation. For both strong cyclonic and strong anti
clonic rotations, the stability properties become identical:
maximum growth ratesmax(V) tends tos/4 andjmax(V) goes
to p/2 asV→6`. The main effect of strong rotation is the
to force the instability to become two-dimensional. This
reminiscent of the Taylor–Proudman theorem.35 Note also
that if the growth rate was normalized with the absolute v
ticity, the vorticity would disappear in the limituVu→1` in
agreement with the 2D stability of the flow.

The asymptotic results obtained here are in agreem
with recent computations by Sippet al.37 They computed the
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local stability properties of a Taylor–Green vortex of asp
ratio 2. Althoughp50.6 in their case, their results compare
surprisingly well with our smallp analysis. In particular,
they obtained, as we did forn52, that the local growth rate
is maximum and proportional to the local strain rate~which
is 0.3 in their case! for V521/2 and axial wave vectors
(j50). They showed that axial wave vectors were the m
instable for20.8,V,20.33 which is very close to wha
we have obtained~see Fig. 3!. They also obtained a stabili
zation of the elliptical instability for anticyclonic rotation
between approximatively21.33 and20.8 which favorably
compares with our stabilization interval:21.5,V,20.8.
For strong cyclonic and anticyclonic rotation, they observ
that the growth rate tends to the quarter the local strain
and that the perturbations becomes two-dimensional as
dicted here. Sippet al.37 also performed a global stability
analysis and obtained the form of the eigenmodes assoc
with the elliptic instability. They confirmed the relevance
the local stability results by showing that the most unsta
eigenmode is localized in the vortex core and that its grow
rate is close to the local growth rate of the elliptic center w
an accuracy increasing with the wave number. Other
amples given in the next section will also demonstrate
predictive power of the local stability results.

FIG. 2. Normalized maximum growth ratesmax/s ~a! and wave vector angle
jmax ~b! versusV in the limit p→0 for variousn. Solid line:n52; dashed
line: n53; dotted line:n54.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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To close this section on local stability results, it is wor
mentioning that viscous effects on the perturbations can
easily taken into account38,33 by adding in expression~32!
the viscous damping rate

sv52nuk/«u2, ~45!

wheren is the kinematic viscosity. This damping rate favo
the largest wave numbers and introduces a cutoff wave n
ber proportional toAs/n above which the instability disap
pears.

IV. APPLICATIONS TO VORTEX EXAMPLES

A. Moore–Saffman vortex, Kirchhoff vortex, and
higher order generalizations

Rankine vortex is a circular region of uniform vorticit
surrounded by an irrotational flow. Nonaxisymmetric exte
sions of this nonviscous solution have been considere
numerous works. Kirchhoff~see Saffman39! first considered
the case of an elliptic region of uniform vorticity in strain
free environment. His solution was numerically extended
Deem and Zabusky40 to vortices with a fold-symmetry o
higher order. Moore and Saffman41 analyzed the nonaxisym
metric deformation generated by a stationary external str
They obtained an exact solution in closed form forO(1)

FIG. 3. Normalized maximum growth ratesmax/s ~a! and wave vector angle
jmax versusV for n52 and variousp. Solid line: p→0; Dash-dotted line:
p50.2; Dotted line:p50.6. The symbolss and* indicate the interval in
which axial wave vectors are the most unstable forp50.2 andp50.6,
respectively.
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deformation. Kida42 extended both the Moore and Saffma
and Kirchhoff solutions by considering an elliptical vorte
patch in a uniform rotating strain field.

In this section, we analyze the stability of Moore
Saffman vortex and Kirchhoff vortex and their higher ord
symmetrical analogues in the limit of small nonaxisymmet
deformations.

When the azimuthal deformation is small, Kirchhoff vo
tex and its higher order symmetrical extension are at lead
order nothing but the Rankine vortex deformed by a 2D l
ear Kelvin mode of azimuthal wave number 2 or larger~see,
for instance, Saffman39!. In particular, if p is the amplitude
of the Kelvin mode, the deformed Rankine vortex has
stream function of the form39

C52m
r 2

2
1p

r n

n
cos@n~u2vnt !#, ~46!

where the angular frequency of the Kelvin mode isvn

5m(121/n). This solution is stationary in the frame rota
ing at the angular frequencyV5vn . In this rotating frame
the stream function is then exactly given by Eq.~9! provided
that m5n, which givesV5n21.

Similarly, a Rankine vortex subject to a weak stationa
multipolar strain field has a stream function in its core giv
by Eq. ~9! with V50. The casen52 corresponds to the
expression for Moore–Saffman vortex in the limit of wea
strain.

Using the results of the previous section, the local s
bility properties of both types of vortices are immediate
obtained.

• For the generalized Kirchhoff vortex: Both the most da
gerous wave vector anglejmax and the maximum growth
rate smax are independent of the azimuthal symmetry
the vortex. They are given by

cosjmax51
4 ~47!

and

smax5~ 5
8!

2~n21!p5~ 5
8!

2s, ~48!

wheres is the local strain rate on the streamline. Whatev
n, the generalized Kirchhoff vortex is therefore unstab
with respect to 3D short-wavelength perturbations and
most unstable local perturbation is independent ofn.

• For the generalized Moore–Saffman vortex: The gene
ized Moore–Saffman vortex is unstable only ifn<4. The
most dangerous wave vector anglejmax satisfies

cosjmax5
n

4
, ~49!

and the maximum growth rate is

smax5
~n14!2

64
~n21!p5

~n14!2

64
s. ~50!

These local results provide the maximum possi
growth rate but they are unable to predict the stability of
vortex for a given axial wave number nor the spatial stru
ture of the unstable modes. For this purpose it is necessa
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 4. Contour plot of the growth
rates/s in the plane~V, j! whereV is
the rotation rate andj the wave vector
angle with respect to the rotation axis
The solid line is the limit of the do-
main of instability@obtained from ex-
pression~33!#. The dashed lines are
expressions~37! and ~38!. ~a! n52,
p50.05; ~b! n52, p50.5; ~c! n53,
p50.5; ~d! n54, p50.5.
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build a global perturbation from the unstable inertial wav
This was done by Waleffe7 for the elliptic instability in a
fixed frame. Here, we slightly extend his analysis to acco
for the angular rotation of the frame and higher order a
muthal symmetries.

Let us consider the axial velocityvz of the most unstable
inertial waves. This field is, at leading order, proportional
the first component ofV. Using expressions~14!–~16! and
equality ~24!, it reads in cylindrical coordinates (r ,u,z)

vz5A~u0!cos~n~ t1u0!/22f!eikr r cos~u2u02t !eikzzest,
~51!

whereA(u0) is an arbitrary amplitude and

kr5
sinj

«
,

kz5
cosj

e
,

~52!
s5 1

4A~11e0 cosj!4s224~n24u11Vucosj!2,

tanf5A~11e0 cosj!2s22~n24u11Vucosj!

~11e0 cosj!2s12~n24u11Vucosj!
.

Here, in addition, it is implicitly assumed thatj is close to
the most resonant anglej0 in the interval~0,p/2! which sat-
isfies Eq.~24! and thate0(11V).0. Expression~51! can be
used on any streamline of the vortex core~defined by21/2
<C<0! provided that one writes the local strain rate ass
5(n21)r n22p.
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If one takesA(u0)52eimu0 and sums expression~51!
over the interval~0,2p!, we get, in the fixed frame, the fol
lowing expression forvz ~see Waleffe7!:

vz5@Jn/22m~krr !ei ~n/22m!u2 ifei ~m2~n/22m!V!teikzz

1J2~n/21m!~krr !e2 i ~n/21m!u1 if

3ei ~m1~n/21m!V!teikzz#est, ~53!

whereJn is the usual Bessel function.
This expression is well-defined only if it is 2p-periodic

with respect tou. This implies thatm2n/2 must be an inte-
ger. If one enforces this condition and writesm5n/22 l ,
with l an integer, the expression between the brackets in
~53! is nothing but the sum of two normal modes with th
following frequency, azimuthal and axial wave numbers:l
2n/21 lV,l ,kz) and (l 2n/21( l 2n)V,l 2n,kz). These
two modes have also by construction the same radial w
number. They are possible perturbations of the underly
Rankine vortex if they are so-called Kelvin modes, that is
their characteristics satisfy the dispersion relation of
Rankine vortex. To study that condition, it is more conv
nient to express the frequency of the Kelvin modes in ter
of kr , kz and l and to write the dispersion relation of th
Kelvin modes as D( l ,kz ,cosj)50 with cosj5kz /(kr

2

1kz
2)1/2. The condition that the bracket in Eq.~53! is the sum

of two Kelvin modes thus reduces at leading order to

D~ l ,kz ,cosj!5D~ l 2n,kz ,cosj!50, ~54!

with

cosj;
n

4u11Vu
. ~55!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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For a givenl, two relations must be simultaneously satisfi
for a single parameterkz . This condition is reminiscent o
the condition of resonance of Kelvin modes in the glob
stability analysis.9,10,26 Indeed, Eloy and Le Dize`s26 showed
for the generalized Moore–Saffman vortex~see also Moore
and Saffman10 for the elliptic case! that the simple resonanc
of two Kelvin modes with azimuthal wave numbersl and l
2n always implies instability. In their analysis, the fre
quency of the modes, or similarly cosj was not close to a
particular value and they computed the growth rate ass
ated with all possible resonance. Here, we focus on the m
unstable configurations, which explains why there is the
ditional condition Eq.~55!.

It is important to point out that the local growth rates
appearing in Eq.~53! varies with respect to the radial coo
dinate via the local strain rates5(n21)prn22. For n
>3,smax is then dependent on the radial coordinate: It mo
tonically increases from the center where it vanishes to
vortex core boundary where it is the largest. Consequen
the radial structure of the perturbation is also dependen
time and evolves such that it becomes localize near the
tex edge for large time. Forn>3, expression~53! is there-
fore not the expression of two resonant Kelvin modes co
trary to what is assumed in the global stability analysis26

This difference makes the comparison between both anal
difficult. In fact, a comparison is possible only ifkz andl are
large. Indeed, in that case, the time-dependence of the ra
structure disappears as the perturbation is initially alre
localized near the vortex edge. The maximum growth r
obtained from Eq.~53! is thus the maximum local growth
rate of the vortex edge which is exactly the result obtain
by Eloy and Le Dize`s26 for the Moore–Saffman vortex whe
kz and l go to infinity.

The time-dependence of the radial structure also dis
pears whenn52 because the growth rates is then indepen-
dent of r. For n52, expression~53! therefore represents
globally amplified perturbation of the vortex core. The vali
ity of such an expression is based on condition~54! which
can be analyzed by plotting the dispersion relation in
(kz ,cosj) plane for two distinct valuesl and l 12 of the
azimuthal wave number. Figures 5~a! and 5~b! display the
different branches forl 561 and l 50,2 respectively. A
symmetry of the dispersion relation guarantees that
branches forl 51 collapse with the branches forl 521. For
the azimuthal wave number couple~21,1!, any wave num-
ber such that cosj51/(2u11Vu) for one family of branch is
then a possible wave number in expression~53!. In Fig. 5~a!
are circled the possible states for Kirchhoff vortex (V
51,cosj051/4) and the Moore–Saffman vortex (V
50,cosj051/2). For all the other couples of azimuthal wa
number the branches do not collapse. However, as it is s
on Fig. 5~b! for the couple~0,2!, some branches are ver
close such that one may consider that there is a qu
resonance. Again, these possible states are indicated
circles for the Kirchhoff vortex and Moore–Saffman vorte
at cosj51/4 and cosj51/2, respectively. Near resona
states or quasi-resonant states, one expects the growth r
be given by formula Eq.~32!. Its expression in terms ofkz is
obtained from the dispersion relation which gives cosj for
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eachkz . In Figs. 6~a! and 6~b! is shown the growth rate as
function of kz obtained by this procedure for the Moore
Saffman vortex and Kirchhoff vortex. Both the growth ra
associated with perfect resonant modes~21,1! and quasi-
resonant modes~0,2! have been plotted.

The destabilization of Kirchhoff vortex by the resona
modes ~21,1! has been comprehensively analyzed
Miyazaki et al.30 They, in particular, compared their numer
cal results with local stability predictions and with glob
stability results obtained by Vladimirov and Il’in29 for aspect
ratios close to 1. They confirmed the good agreement
tween the three approaches in predicting the maxim
growth rate. Here, we go one step further by providing
estimate for the size of the instability bands using only
local stability result and the dispersion relation of the Kelv
modes. The instability band in terms of cosj is given by
expression~35! which reduces to

ucosj2 1
2u,

9
32 p for the Moore–Saffman vortex,

~56a!

ucosj2 1
4u,

25
256 p for the Kirchhoff vortex. ~56b!

Using the ~dispersion! relation between cosj and kz , this
yields an instability interval of the form

ukz2kz
maxu,dk~kz

max!kz
maxp, ~57!

FIG. 5. Dispersion relation of the Rankine vortex in the (kz ,cosj) plane.~a!
Modes of azimuthal wave numberm51. ~b! Modes of azimuthal wave
numbersm50 ~solid lines! andm52 ~dashed lines!. Resonant states for the
Moore–Saffman vortex and Kirchhoff vortex are indicated by circles
cosj51/2 and cosj51/4, respectively.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 6. Growth rates versus the axial
wave numberkz of the perturbation for
a vortex of aspect ratio equal to 1.1.s
and kz are nondimensionalized with
the relative vorticity and the mean ra
dius, respectively. Solid line: Kelvin
modes l 561; dashed line: Kelvin
modes l 50 and l 52. ~a! Moore–
Saffman vortex.~b! Kirchhoff vortex.
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wherekz
max is a resonant or quasi-resonant wave number~as-

sociated with a circle in Fig. 5!, and dk(kz
max) a function

slightly dependent onkz
max for a given vortex. If one neglect

the variation of the radial wave number, i.e., assum
kz tan(j) as constant near each resonant point,dk is also
constant:

dk53/4 for the Moore–Saffman vortex, ~58a!

dk55/12 for the Kirchhoff vortex. ~58b!

It can be checked on Fig. 7 that this assumption is appr
matively justified. The results are displayed in Fig. 7~a! for
Kirchhoff vortex and Fig. 7~b! for Moore and Saffman vor-
tex. The agreement between the local prediction and the
bal stability analysis is astonishing. Note, in particular, th
for the Moore–Saffman vortex the gap between the simp
local prediction~which neglects the variation of the radi
wave number! and the global results is almost entirely fille
if one takes into account the variation of the radial wa
number.

In Figs. 6~a! and 6~b! have been drawn the instabilit
curves associated with the quasi-resonance~0,2!. Surpris-
ingly, this type of resonance has never been analyzed
global or numerical methods for Kirchhoff vortex. For th
Moore–Saffman vortex, the global stability analysis h
been carried out only recently in Eloy and Le Dize`s.26 Their
results show that this type of resonance as well as reson
of higher order modes such as~1,3! and so on, can lead to
instability with a maximum growth rate comparable to t
local maximum growth rate computed here. In all the
cases, the local analysis provides a good estimate for
frequency and the instability band width. By contrast, t
local analysis developed here, which focuses on the m
Downloaded 11 Jan 2006 to 147.94.56.67. Redistribution subject to AIP
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unstable configuration, is unable to estimate the characte
tics of less unstable configurations. In particular, for the re
nance~0,2!, Eloy and Le Dize`s obtained an unstable mode
kz'1.24 andv'0.83 with a growth rate only 5% smalle
than smax. For this value ofkz , the two Kelvin modesm
50 and m52 satisfy cosj'0.42 and cosj'0.58, respec-
tively. In terms of inertial waves, this unstable configurati
thus corresponds to an interaction of two different wav
which differs from the self-interaction process considered
Sec. III. The possibility of resonance of two distinct inerti
waves has never been explored in the elliptical instabi
literature. It would be interesting to extend the analysis
this more general case in order to check whether all the
stable global modes can be correctly recovered from the
cal analysis.

Quasi-resonance of modes (m,m12) are also predicted
by the simple self-interaction local analysis. By constructi
they share the following properties: they have all the sa
maximum growth rate; the instability bands of all the res
nant modes of even azimuthal wave numbers are clos
each other and superimpose for large wave numbers; they
separated by the instability bands of resonant modes of
azimuthal wave numbers which also tend to collapse
large wave numbers. The above estimates Eqs.~58a! and
~58b! for the width of the instability band also apply for a
the quasi-resonant modes. As a consequence, the insta
bands overlap for large wave numbers. These predictions
in agreement with the results obtained by global analysis
the Moore–Saffman vortex.26

Note, finally, that the viscous damping of the global pe
turbation Eq.~53! is also given by Eq.~45! as all the inertial
waves summed to obtain Eq.~53! have the same wave vecto
-

d

d

e:
FIG. 7. Instability band widthdk ver-
sus the axial wave number of the reso
nant modes~21, 1!. Stars~* !: Local
stability analysis. Circles~s!: global
stability analysis.~a! Moore–Saffman
vortex. The circles are from Tsai an
Widnall ~Ref. 9! and Arendt and Fritts
~Ref. 31!. Dashed line: expression
~58a!. ~b! Kirchhoff vortex. The
circles are from Vladimirov and Il’in
~Ref. 29!. The crosses are deduce
from Miyazaki et al. ~Ref. 30! for an
aspect ratio equal to 1.1. Dashed lin
expression~58b!.
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modulus. For the most unstable perturbations, this local
timate is comparable to the one obtained by glo
analysis.26

B. Stuart vortices in a rotating frame

Stuart vortices are described by the stream function

C5 log~coshx2r cosy!, ~59!

wherer is a real parameter between 0 and 1. Forr50, Eq.
~59! reduces to a pure shear-flow with an hyperbolic tang
profile. Whenr→1, the solution becomes singular and ten
to an array of point vortices of infinite vorticity~but finite
circulation!. In the intermediate range 0,r,1, the solution
represents an array of co-rotating vortices with a smooth p
file of vorticity. Each vortex is in that case elliptical near i
center with a vorticity and a strain rate given in the center
Wr5(11r)/(12r) and s051/2, respectively. The eccen
tricity of the streamline near the center goes to zero asr goes
to 1. Forr close to 1, the maximum growth rate~normalized
by Wr! of Stuart vortices in a frame rotating at the angu
frequencyV is therefore given by Eq.~42! with n52 and
p52s0 /Wr5(12r)/(11r).

The global stability properties of Stuart vortices in a r
tating frame were recently analyzed in Leblanc a
Cambon20 and Potylitsin and Peltier32 ~hereafter, referred to
as LC98 and PP99!. PP99 considered several values ofr(r
50.33,0.5,0.75) but a fixed axial wave numberkz52 for the
perturbation, while LC98 only studied the caser50.33 but
considered several axial wave numbers. In both studiesV
was varied between20.5 and 0.1~with our definition!. For
each case, they were able to obtain an unstable branch
ciated with the elliptical instability of the core. Our goal
here to compare their computed growth rate asV varies with
the prediction of the local asymptotic theory.

As seen in Sec. IV A, the finite size of the vortex di
cretizes the possible wave numbers of the perturbatio
Moreover, sufficiently close to the vortex center, these p
turbations are always combinations of inertial waves. Fo
fixed axial wave number, one then expects the wave ve
angle j of the inertial waves to be also discretized. If th
instability is due to the inertial wave resonance mechan
explained in Sec. III, the instability growth rate should s
be given by Eq.~32!. But here, by contrast with the Rankin
vortex, no dispersion relation that provides the anglej for a
given wave number is available. For a given axial wa
number, the anglej is fixed but cannot be determined fro
our calculation alone. The local stability theory however p
dicts that the instability should be maximized when the ro
tion rate V reaches the particular valueVmax that satisfies
Eq. ~37!. If one replaces cosj by its expression in terms o
Vmax, expression~39! thus provides the following estimat
for the growth rate asV varies

s5
A~312Vmax!

4p22162~11Vmax!
2~V2Vmax!

2

16~11Vmax!
2 .

~60!

The most dangerous rotation rateVmax obtained by LC98
and PP99 are given in the following table:
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Vmax p

kz510;r50.33 ~from LC 98! 20.46 0.5
kz52;r50.33 ~from PP 99! 20.31 0.5
kz52;r50.5 ~from PP 99! 20.24 0.32
kz52;r50.75 ~from PP 99! 20.18 0.14

These values are used to draw the curves displayed in Fi
In these plots are also displayed values taken from the cu
of Potylitsin and Peltier32 and Leblanc and Cambon.20

When r50.33, Figs. 8~a! and ~b! demonstrate that the
asymptotic analysis provides very good estimates for b
the maximum value of the growth rate and the width of t
unstable region. For larger values ofr, the growth rate is
however slightly overestimated. At first view, this is surpr
ing because the asymptotic theory shoulda priori work bet-
ter as the vortices become less elliptical. But, in fact, ar
→1, vorticity gradients increase as well, which implies th
the local stability properties in the vortex core change m
rapidly with respect to the radial coordinate. As a glob
growth rate is more or less a local growth rate averaged o
fixed area, if the local growth rate decreases more rapi
the gap between the average and the maximum increa
and this could explain the discrepancy.

LC98 analyzed the stability properties for large ax
wave numbers. They showed that the global growth rate
well-estimated by the local growth rate of pure axial wav
(j50) at either elliptic or hyperbolic stagnation points. Co
cerning the elliptic stagnation points, their analysis can
considered as a particular case of the present study. In
ticular, it can be checked that formula Eq.~44! with n52
reduces to their expression of the local growth rate. Mo
over, the good agreement can be explained by the ab
argument. Indeed, based on what we observed for Ran
vortex, we expect the radial wave number of the perturbat
modes to be more or less a constant askz varies. It follows
that whenkz increases, the anglej of the wave vector with
respect to thekz axis goes to zero, and therefore the unsta
global modes are only composed of purely axial waves.
shown by LC98, forkz5100, the pure axial wave predictio
is very good. But forkz510, Fig. 8~a! shows that it already
overestimates the growth rate and our prediction which ta
into account the inclination of the wave vector is better.

V. CONCLUSION

This article has focused on the local stability propert
of the core of a nonaxisymmetric vortex in a rotating fram
We have shown that ann-fold symmetrical vortex is locally
unstable, with a growth rate proportional to the local stra
rate s, as soon as the angular frequencyV of the rotating
frame satisfiesuWau5uWr12Vu.nuWr u/4, whereWa and
Wr are the absolute and relative vorticities, respectively. T
asymptotic analysis has also proved that the instability
main slightly extends below~above! Wa5nWr /4 up to the
valueWa5nWr /42sWr /2 if Wr.0 ~if Wr,0!. An explicit
formula @expression~32!# for the leading order growth rate
has been obtained as a function ofn, V and the wave vector
anglej of the perturbation.
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FIG. 8. Maximum growth rate versus
the angular frequencyV of the rotat-
ing frame for the perturbations with a
fixed axial wave numberkz . The
circles are numerical data taken from
LC98 ~Ref. 20! ~a! and PP99~Ref. 32!
~b–d!. As explained in the text, the
solid curve is the local asymptotic pre
diction where the angular frequenc
that gives the maximum value ha
been taken from the numerical data
~a! r50.33, kz510; the dashed line
is the short-wavelength prediction
with pure axial wave vectors (j50)
given by LC98; ~b! r50.33, kz52;
~c! r50.5, kz52; ~d! r50.75, kz

52.
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The results have been applied to perturbed Rankine
tices such as the Kirchhoff and Moore–Saffman vortic
with an aspect ratio close to 1. From the expression of
most unstable local perturbations, we have shown how
bal perturbations of the core can be constructed for th
vortices. For the elliptic case (n52), these global perturba
tions have been found to correspond to pairs of reson
normal Kelvin modes of Rankine vortex of azimuthal wa
numbersm and m12 in agreement with global stability
analysis. However, contrary to the global analysis, the
quency of the most unstable global perturbations is here
vided by the calculation. Using the dispersion relation of
Kelvin modes of Rankine vortex, the growth rate of the
stability has been obtained as a function of the axial w
number for the Kirchhoff and Moore–Saffman vortices a
compared to available results in the literature. The instab
bands associated with a resonance of Kelvin modes of
muthal wave numbersm51 andm521 has been recovere
with a remarkable precision. Other instability bands asso
ated with a resonancem50 andm52 have also been cal
culated. For the Moore–Saffman vortex, the results h
been compared with global stability results and a good ag
ment has been found for the most unstable modes. For Ki
hoff, the new instability bands associated with this resona
have never been documented elsewhere.

It has also been argued that the local stability analy
could be generalized in order to describe less unsta
modes. Contrary to the modes analyzed in this paper wh
correspond to a self-interaction of a single inertial wa
these other modes would be associated with the interac
of two distinct inertial waves.
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The local results have also been applied to the m
realistic Stuart vortex. We have shown how both the ma
mum value of the growth rate and the size of the instabi
band can be obtained as soon as the most unstable rot
rate is known. A good agreement with numerical data fro
Leblanc and Cambon20 and Potylitsin and Peltier32 has been
demonstrated for Stuart vortices which are not too ellipti
nor too concentrated (r50.33).

Finally, it is important to again point out that the loc
stability results are not limited to a specific vortex. Forn
52, the local analysis is expected to provide good estima
for vortices of aspect ratio up to 2 if the local stability pro
erties do not vary too much on the characteristic radial p
turbation wavelength. For these cases, the only informa
needed from the vortex is the most unstable wave numb
for a given angular rotation or the most dangerous rotat
rate for a given wave number. From this information, a co
plete instability diagram is given by formula Eq.~32! if ones
neglects the small variation of the radial wave numb
which has been found to be justified in the above examp

For n.3, the local instability characteristics vary wit
the vortex radial coordinate in a similar way as the loc
strain rate. This nonhomogeneous character makes the
predictions less successful than forn52. Nevertheless, the
local analysis still provides the regions where the unsta
character is the strongest and the value of the largest pos
growth rate. Moreover, analysis of the generalized Moor
Saffman vortex suggests that the growth rate of a glo
perturbation could be related to a certain average of the lo
growth rates over the region where the perturbation sits.
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