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The elliptic instability of a Rankine vortex with axial flow subject to a weak strain field
perpendicular to its axis is analyzed by asymptotic methods in the limit of small strain rate. General
unstable modes associated with resonant Kelvin modes of arbitrary azimuthal wavenumbers are
considered. Both the effects of axial flow and viscosity are analyzed in details. ©2005 American
Institute of Physics. [DOI: 10.1063/1.1814987]

I. INTRODUCTION

A stable vortex can become unstable when it is placed in
a strain field that deforms its streamlines into ellipses. This
so-called elliptic instability is due to the resonance of two
Kelvin modes with the external strain field associated with
the elliptic deformation. The aim of this paper is to study the
effect of an axial flow on the characteristics of this instabil-
ity.

The elliptic instability in a vortex without axial flow has
already been the interest of many works. It has also been
observed in various geometries, which could be relevant ei-
ther to geophysical applications, or industrial issues. The
reader is referred to the review of Kerswell1 for a list of
references. The elliptic instability is also present in open
flows. In particular, it plays an important role in the dynam-
ics of vortices generated by aircraft. In the aeronautical con-
text, the elliptic deformation of the vortex is due to the strain
field induced by the other vortices present in the wake. So
far, the elliptic instability has permitted to explain the three-
dimensional transition in both counterrotating vortex pairs2

and corotating vortex pairs.3 Several analytical models have
been constructed4–6 but none of them contains the axial flow
that should be present in airplane trailing vortices.7,8

In the present work, we analyze the effect of such an
axial flow. We consider an idealized vortex model(the Rank-
ine vortex) in order to analyze this effect by semianalytical
methods. The stability properties of the Rankine vortex with
axial flow have been calculated by Lessenet al.9 and
Loiseleux et al.10 Without external strain field, they have
shown that this vortex possesses an unstable mode and infi-
nitely many neutral Kelvin modes. Here, our goal is to con-
sider these neutral modes and to analyze the conditions under
which they can be resonantly excited by a strain field. Our
approach follows the asymptotic analysis developed in Refs.
11–14. The small parameter of the analysis is the ratio of the
external strain rate by the vorticity.

Moore and Saffman12 also considered the effect of a
weak axial flow on the elliptic instability characteristics. But
their analysis was limited to axial flow parameter of the or-
der of our small parameter. They showed, in a general set-

ting, that weak axial flow tends to create a stabilizing fre-
quency detuning if the axial wavenumber is fixed. Contrarily
to Moore and Saffman analysis, in the present study, the
axial flow is not small. Moreover, the characteristics of the
resonant modes are allowed to vary with the axial flow pa-
rameter such that the detuning effect discovered by Moore
and Saffman12 is not present.

II. SMALL STRAIN ANALYSIS

We consider a basic flow whose velocity field in cylin-
drical coordinatessr ,u ,zd is of the form

U = s0,r,W0d + «f− r sins2ud,− r coss2ud,0g, r ø 1,
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up to Os«d terms, where« is the small strain rate. The lead-
ing order terms correspond to the Rankine vortex with con-
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FIG. 1. Eigenfrequencies vsk for m=−1 (dashed line) andm=1 (line) for an
axial parameterW0=0.3. The thin lines represent the real part of the fre-
quency of the Kelvin–Helmholtz mode. The Kelvin–Helmholtz mode is here
always unstable.
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stant axial flow. Here, the vortex radius and the angular ve-
locity in the core have been chosen to nondimensionalize all
the quantities. The parameterW0 measures the strength of the
axial flow. It is the inverse of the so-called Swirl number.
The order« terms in(1) represent the small strain field which
elliptically deforms the vortex. As shown by Tsai and
Widnall11 and Moore and Saffman,12 it is these terms which
are the source of instability. The mechanism is the following.
Two Kelvin modes associated with the leading order flow
can resonate with the weak strain field. This resonance oc-
curs if two normal modes defined by their frequencyv, axial
wavenumberk, and azimuthal wavenumberm satisfy the fol-
lowing conditions:

v2 = v1, k2 = k1, m2 − m1 = ± 2. s2d

It leads to an inviscid temporal growth of the two coupling
mode amplitudes with a characteristic growth rate propor-
tional to «. Normal modes for the Rankine vortex with axial
flow can be calculated explicitly.10 As for the Rankine vortex
without axial flow, there exist an infinity of nonviscous neu-
tral modes which are associated with the fluid rotation.15

Their frequencies are such that

− 2 , v − m− kW0 , 2.

There exists an additional mode which is due to the axial
velocity jump across the vortex core boundary(see Fig. 1).
This mode is associated with the Kelvin–Helmholtz instabil-
ity: its growth rate for large axial wavenumberk is s
,W0k. This Kelvin–Helmholtz mode is, however, strongly
affected by the Kelvin neutral modes for smallk. As shown
by Loiseleuxet al.,10 it can even become neutral, in small
wavenumber intervals satisfyingk,kssmd if W0 is above a
critical valueW0s

smd. Loiseleuxet al.10 providedkss−1d and
W0s

s−1d. Values ofkssmd andW0s
smd are given in Table I for

other m. For a givenm, if k,kssmd and W.W0s
smd, the

neutrally stable Kelvin–Helmholtz mode becomes a new
candidate for resonance. Yet, we have found that it never
satisfies the resonance condition(2) with any other modes
whateverm. Thus, it could not intervene in the elliptic insta-
bility.

When the Kelvin–Helmholtz mode is unstable(in par-
ticular, if k.ks or W,W0s

), it cannot be considered as a
possible mode in the resonance condition because this con-
dition only applies to neutral modes. For this reason, it has to
be dismissed from the analysis. Moreover, it is worth men-
tioning that this unstable mode, which is obtained here for
small axial flow, is not expected to be always present in other
vortices. For more realistic vortices such as the Batchelor
vortex(Gaussian profiles), nonviscous instability only occurs

TABLE I. Critical axial flow parameterW0s
and critical axial wavenumberks for variousm associated with the

Kelvin–Helmholtz instability. The Kelvin–Helmholtz mode is unstable forW0,W0s
or k.ks but it can be

neutral if none of these conditions is satisfied.

m −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7

W0s
0.48 0.55 0.64 0.76 0.96 1.32 2.17 2.08 1.41 1.11 0.94 0.81 0.73 0.65

ks 0.92 0.80 0.69 0.58 0.47 0.34 0.22 0.29 0.51 0.69 0.85 0.99 1.12 1.24

FIG. 2. Characteristics of the first three principal modes forsm1,m2d
=s−1,1d. Solid, dashed, and dash-dot lines are, respectively, the first, sec-
ond, and third principal modes.(a) Axial wavenumberk. (b) Convective
frequencyv−kW0. (c) Coupling coefficientz (also equal to the nonviscous
growth rate normalized by the strain rate).
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when the axial flow is sufficiently largesW0ù0.6d.16 This
means that for the Batchelor vortex there is no unstable
Kelvin–Helmholtz modes for small axial flow. This provides
a physical justification for dismissing the unstable Kelvin–
Helmholtz mode from the analysis.

As shown by Eloy and Le Dizès13 for the Rankine vortex
without axial flow, a combination of two neutral modes sat-
isfying the condition of resonance is always destabilized by
the strain field. The growth rate can be calculated by a per-
turbation method. The method is classical and the analysis of
Eloy and Le Dizès13 can be applied to the present case al-
most without any modification. The final result is an expres-
sion for the growth rates which reads

s

«
=Îz2 +

1

4
snm1

− nm2
d2 −

1

2
snm1

+ nm2
d. s3d

In this expression,z is the destabilizing term which is
associated with the coupling of the resonant mode with the
strain field. It provides the inviscid growth rate assnv=z«.
The coefficientsnm1

and nm2
are viscous damping terms of

order 1/s« Red. In order to keep these terms in(3), it is
implicitly assumed that Re=Os1/«d. As demonstrated by
Eloy and Le Dizès,13 it is important to consider viscous ef-
fects on the perturbation to understand the mode selection in

more realistic configurations. Viscous damping will always
tend to stabilize resonant configurations of large wavenum-
ber. It also favors the unstable modes with the smallest wave-
numbers which is in agreement with all the experimental
observations of the elliptic instability.

In Fig. 1 are displayed the normal mode frequenciesv
versusk for two azimuthal wavenumbersm=1 andm=−1
and for a fixed axial parameterW0=0.3. Each branch cross-
ing, except those involving the Kelvin–Helmholtz branch in-
dicated by thin lines, corresponds to a resonant configura-
tion. Yet, these unstable configurations do not exhibit the
same growth rate. As demonstrated by Eloy and Le Dizès13

for the Rankine vortex without axial flow, resonant configu-
rations associated with the crossing of two branches of same
label, possess a growth rate much larger than the others. This
feature is also observed in presence of axial flow. As in Eloy
and Le Dizès,13 these resonant configurations will be called
“principal modes.” The first three principal modes for the
azimuthal wavenumbersm=1 andm=−1, noteds−1,1,id i
=1,2,3, areindicated by small circles in Fig. 1. In the fol-
lowing section, the condition of resonance(2) is analyzed for
various couples of azimuthal wavenumberssm1,m2d as a
function of W0. The characteristics of the first principal
modes and the coefficientsz, nm1

, and nm2
in their growth

rate expression(3) are computed.

TABLE II. Characteristics of the principal modes close to ideal resonance.

Modes

sm1,m2d s−4,−2d s−3,−1d s−2,0d s−1,1d

i 1 2 3 1 2 3 1 2 3 1 2 3

W0 0.1309 0.0527 0.0268 0.1698 0.0529 0.0240 0.2563 0.0456 0.0176 0 0 0

v−kW0 −3.0023 −3.0025 −3.0013 −2.0091 −2.0031 −2.0014 −1.0329 −1.0035 −1.0015 0 0 0

k 3.0521 5.0044 6.8832 2.3259 4.2191 6.0734 1.5505 3.3842 5.2321 2.505 4.349 6.174

z 0.5850 0.5707 0.5679 0.5876 0.5710 0.5683 0.5901 0.5710 0.5686 0.5708 0.5695 0.5681

FIG. 3. Marginal stability curve for the resonant modes of azimuthal wave-
numbers m1 and m2. Solid line, sm1,m2d=s−1,1d; bold dashed line,
sm1,m2d=s0,2d; thin dashed line,sm1,m2d=s0,−2d; bold dash-dot line,
sm1,m2d=s1,3d; thin dash-dot line,sm1,m2d=s−1,−3d.

FIG. 4. Viscous growth rate of four more unstable modes asW0 varies for
« Re=950. Solid line,s−1,1,1d; dashed line,s−2,0,1d; dash-dot line,(1, 3,
2); dotted line,(0, 2, 2).
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III. RESULTS

In Figs. 2(a) and 2(b) are plotted as a function ofW0 the
characteristics of the first three resonant modes for
sm1,m2d=s−1,1d. The coupling coefficientz is shown in Fig.
2(c). It measures the nonviscous growth rate normalized by
the strain rate. The dotted line in Fig. 2(c) is the local esti-
matez=9/16 obtained by Waleffe17 by considering the vor-
tex core only. As shown by Eloy and Le Dizès13 for a Rank-
ine vortex without axial flow, this estimate is also obtained
for the growth rate of principal modes if their frequency is
close tosm1+m2d /2. Similar results are observed in the pres-
ence of axial flow. The local estimate of Waleffe17 is not
modified by axial flow. However, one can easily show that
the principal mode frequency must satisfy

v =
m1 + m2

2
+ kW0 s4d

in addition to(2), to reach the local estimate. In the sequel,
we shall denote this condition as the condition of “ideal reso-
nance.” The condition of ideal resonance is shown by a dot-
ted line in Fig. 2(b). Upon comparing the plots in Figs. 2(b)
and 2(c), one can see that there is a good correlation between
the growth rate curve and the gap between mode frequency
and ideal frequency. When the gap is the largest, the growth
rate is the smallest. This correlation becomes even better ask
increases for a fixedW0. These features were also observed
in the Rankine vortex without axial flow.13 Note, however,
that without axial flow, the principal modess−1,1d were all
“ideally” resonant because of the symmetry of the dispersion
relation vs−md=−vsmd. When an axial flow is present, as
this symmetry is broken, no principal mode isa priori ide-
ally resonant. It is only for particular values ofW0 that the
frequency of a given principal mode can satisfy(4). Such
values ofW0 are given in Table II for a few principal modes
of negative azimuthal wavenumbers. For positive azimuthal
wavenumbers, one has to changeW0 into −W0. In this table
are also given the frequency, the wavenumber and the cou-
pling coefficientz of the principal modes. Again, one can
check thatz is very close to9

16,0.5625 for all these modes
and the closest for the largestk.

As seen on the growth rate formula(3), viscosity is al-
ways stabilizing. Moreover, viscous damping increases ask
increases: the most unstable principal modes are therefore
expected to have a small axial wavenumber. The marginal
curves for a few couples of azimuthal wavenumberssm1,m2d
are plotted in Fig. 3. The principal mode(0,2,1) is seen to be
always the first mode to be destabilized forW0.0. Surpris-

FIG. 5. Most dangerous axial flow parameterW0c
(solid line) and corre-

sponding maximum growth rate(dashed line) as a function of« Re.

FIG. 6. Most unstable mode in the
sW0,Red plane.
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ingly, this occurs for a value of« Re which is almost inde-
pendent ofW0 (for 0,W0,0.8) and close to 10.

Note that the classical principal modes−1,1,1d is desta-
bilized for much larger values of« Re. Note also that as« Re
increases, more and more principal modes are destabilized.
But the first mode to be destabilized does not always remain
the most unstable mode.

In Fig. 4, the normalized viscous growth rates /« is
plotted for the most unstable modes when« Re=950. In this
figure, one can see that four different principal modes be-
come the most unstable asW0 varies. The bold line repre-
sents the maximum growth rate versusW0 for « Re=950. It
is worth noticing that for this value of« Re there exist a most
dangerous axial parameterW0c

<0.25 for which the maxi-
mum growth rate is the largest.

The variations ofW0c
and of the corresponding growth

rate versus« Re are shown in Fig. 5. The distribution of the
most unstable modes in the parameter planes« Re,W0d is
given in Fig. 6. One can notice that the larger« Re, the more
important is the number of most unstable modes. This results
from the weakening of the selective character of viscosity.
The mode selection for large« Re is indeed associated with
variation of the coupling coefficientz. In particular, one ex-
pects the ideally resonant modes whose characteristics are
given in Table II and which exhibit the largest nonviscous
growth rate to appear for sufficiently large« Re. This is vis-
ible on the right side of Fig. 6.

IV. CONCLUSION

In this paper, we have analyzed the stability of a strained
Rankine vortex with axial flow with respect to the elliptic
instability for small strain field, following the analysis of
Tsai and Widnall.11 The marginal stability curve and the
complete diagram of instability providing the most unstable
mode have been obtained as functions of viscosity and axial
flow.

The effect of axial flow has been shown to be important.
By breaking the symmetry of the dispersion relation, it fun-
damentally modifies the nature of the resonant modes. Con-

trarily to the case without axial flow, the most unstable
modes for large« Re, are not always principal modes with
azimuthal wavenumbersm=−1 andm=1. Instead, various
unstable modes with higher azimuthal wavenumbers have
been shown to exist depending on the value ofW0. However,
all these modes exhibit a same property. Their frequency
satisfies the condition(4) of ideal resonance which is de-
duced from a maximization of the local instability.
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