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Elliptic instability in a Rankine vortex with axial flow
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The elliptic instability of a Rankine vortex with axial flow subject to a weak strain field
perpendicular to its axis is analyzed by asymptotic methods in the limit of small strain rate. General
unstable modes associated with resonant Kelvin modes of arbitrary azimuthal wavenumbers are
considered. Both the effects of axial flow and viscosity are analyzed in deta90® American
Institute of Physics[DOI: 10.1063/1.18149g7

I. INTRODUCTION ting, that weak axial flow tends to create a stabilizing fre-
- . quency detuning if the axial wavenumber is fixed. Contrarily
A stable vortex can become unstable when it is placed NS Moore and Saffman analysis, in the present study, the

a strain f|e|d- that. deforf‘f's |.ts streamlines into ellipses. ThlsaxiaI flow is not small. Moreover, the characteristics of the
so-called elliptic instability is due to the resonance of two

Kelvin modes with the external strain field associated Withresonant modes are allowed to vary with the axial flow pa-
- . . . . rameter such that the detuning effect discovered by Moore
the elliptic deformation. The aim of this paper is to study the

effect of an axial flow on the characteristics of this instabil—and Saffmatf is not present.
ity.
The elliptic instability in a vortex without axial flow has !l- SMALL STRAIN ANALYSIS
already been the interest of many works. It has also been e consider a basic flow whose velocity field in cylin-
observed in various geometr!es, whlch could_ be_ relevant €igyical coordinatesr, 6,2) is of the form
ther to geophysical applications, or industrial issues. The
reader is referred to the review of Kerswetbr a list of U=(0,r,Wp) +&[~r sin(26),-r cog26),0], r <1,
references. The elliptic instability is also present in open
flows. In particular, it plays an important role in the dynam- U= (0 } 0) + 8{_ }(r + l)sin(Za)
ics of vortices generated by aircraft. In the aeronautical con- r’ 2 re '
text, the elliptic deformation of the vortex is due to the strain 1 1
field induced by the other vortices present in the wake. So - —(r - —3)cos(2.9),o}, r>1, (1)
far, the elliptic instability has permitted to explain the three- 2 r

dimensional transition in both COUnterrOtating vortex F}airs up to O(S) terms, where: is the small strain rate. The lead-

and corotating vortex pairsSeveral analytical models have ing order terms correspond to the Rankine vortex with con-
been constructéd® but none of them contains the axial flow

that should be present in airplane trailing vortiéés.

In the present work, we analyze the effect of such an 6
axial flow. We consider an idealized vortex modtle Rank-
ine vorte® in order to analyze this effect by semianalytical
methods. The stability properties of the Rankine vortex with
axial flow have been calculated by Lesseh al’ and
Loiseleux et al’® Without external strain field, they have
shown that this vortex possesses an unstable mode and infiS
nitely many neutral Kelvin modes. Here, our goal is to con-
sider these neutral modes and to analyze the conditions unde
which they can be resonantly excited by a strain field. Our
approach follows the asymptotic analysis developed in Refs.
11-14. The small parameter of the analysis is the ratio of the
external strain rate by the vorticity.

Moore and Saffmalf also considered the effect of a
weak axial flow on the elliptic instability characteristics. But i) 2 4 6 8 10
their analysis was limited to axial flow parameter of the or- k

der of our small parameter. They showed, in a general set- _ . . .
FIG. 1. Eigenfrequencies \sfor m=-1 (dashed lingandm=1 (line) for an
axial parametei\,=0.3. The thin lines represent the real part of the fre-
3Author to whom correspondence should be addressed. Electronic maijuency of the Kelvin—Helmholtz mode. The Kelvin-Helmholtz mode is here
lacaze@irphe.univ-mrs.fr always unstable.
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TABLE |. Critical axial flow parameteW,_and critical axial wavenumbé for variousm associated with the
Kelvin—Helmholtz instability. The Kelvin-Helmholtz mode is unstable W@;<WDS or k>ks but it can be
neutral if none of these conditions is satisfied.

m -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

W, 048 055 0.64 076 096 132 217 208 141 111 094 081 073 065
ks 092 080 069 058 047 034 022 029 051 069 085 099 112 124

stant axial flow. Here, the vortex radius and the angular ve- 65t et 1
locity in the core have been chosen to nondimensionalize all gl T T _
the quantities. The parameMk measures the strength of the
axial flow. It is the inverse of the so-called Swirl number.
The orders terms in(1) represent the small strain field which > o--=m77777]
elliptically deforms the vortex. As shown by Tsai and =% 450 ______.ccea-m==="""

Widnall* and Moore and Saffmalf,it is these terms which 4l ]
are the source of instability. The mechanism is the following.

Two Kelvin modes associated with the leading order flow >0
can resonate with the weak strain field. This resonance oc- i 1
curs if two normal modes defined by their frequenrgyaxial 25
wavenumbek, and azimuthal wavenumbar satisfy the fol- 2 , ‘ , ‘ , , ,
o o1 02 03 04 05 06 07 08

lowing conditions:

Wy = W1, kzzkl, mz_ml:iz. (2) 0

It leads to an inviscid temporal growth of the two coupling
mode amplitudes with a characteristic growth rate propor- 0
tional to e. Normal modes for the Rankine vortex with axial
flow can be calculated explicitl’;?As for the Rankine vortex
without axial flow, there exist an infinity of nonviscous neu- o 004
tral modes which are associated with the fluid rotafion. E

Their frequencies are such that L

-0.02r

-0.061

-0.08r

-2<w-m-kW,<2.

There exists an additional mode which is due to the axial
velocity jump across the vortex core boundésge Fig. 1 -0z
This mode is associated with the Kelvin—Helmholtz instabil-
ity: its growth rate for large axial wavenumbéer is o
~Wgk. This Kelvin-Helmholtz mode is, however, strongly (b) W,
affected by the Kelvin neutral modes for smkllAs shown
by Loiseleuxet al,’ it can even become neutral, in small
wavenumber intervals satisfying<ky(m) if W, is above a 0.58¢
critical valueWOS(m). Loiseleuxet al® providedky(-1) and
WOS(—l). Values ofky(m) andWOS(m) are given in Table | for
other m. For a givenm, if k<k¢(m) and W>Wos(m), the 0.54f
neutrally stable Kelvin—Helmholtz mode becomes a new

0.6

086 NI e ]

candidate for resonance. Yet, we have found that it never 021

satisfies the resonance conditi@®) with any other modes 05}

whatevemm. Thus, it could not intervene in the elliptic insta-

bility. 048
When the Kelvin—Helmholtz mode is unstalfie par- 046}

ticular, if k>ks or W<Wp), it cannot be considered as a

possible mode in the resonance condition because this con- 044

dition only applies to neutral modes. For this reason, ithasto (0
be dismissed from the analysis. Moreover, it is worth men-
tioning that this unstable mode, which is obtained here fofFIG. 2. Characteristics of the first three principal modes (o, m,)
small axial flow. is not expected to be always present in Othe?(_l’l)' Solid, dashed, and dash-dot lines are, respectively, the first, sec-
. ' . . ond, and third principal modega) Axial wavenumberk. (b) Convective
vortices. For more realistic vortices such as the BatcheIO{requencyw_kWO_ (¢) Coupling coefficient (also equal to the nonviscous

vortex (Gaussian profilgs nonviscous instability only occurs growth rate normalized by the strain rate
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TABLE II. Characteristics of the principal modes close to ideal resonance.

Phys. Fluids 17, 017101 (2005)

(my,my) (-4,-2 (=3.-1 (-2,0 (-1,1
Modes i 1 2 3 1 2 3 1 2 3 2 3
Wo 0.1309 0.0527 0.0268 0.1698 0.0529 0.0240 0.2563 0.0456 0.0176 0 0 0
w—kWp -3.0023 -3.0025 -3.0013 -2.0091 -2.0031 -2.0014 -1.0329 -1.0035 -1.0015 0 0 0
k 3.0521 5.0044 6.8832 2.3259 4.2191 6.0734 1.5505 3.3842 5.2321 2.505 4.349 6.174
14 0.5850 0.5707 0.5679 0.5876 0.5710 0.5683 0.5901 0.5710 0.5686  0.5708 0.5695 0.5681

when the axial flow is sufficiently largéW,=0.6).*° This

more realistic configurations. Viscous damping will always

means that for the Batchelor vortex there is no unstabléend to stabilize resonant configurations of large wavenum-
Kelvin—Helmholtz modes for small axial flow. This provides ber. It also favors the unstable modes with the smallest wave-
a physical justification for dismissing the unstable Kelvin—numbers which is in agreement with all the experimental

Helmholtz mode from the analysis. observations of the elliptic instability.

As shown by Eloy and Le Dizé¥for the Rankine vortex In Fig. 1 are displayed the normal mode frequencies
without axial flow, a combination of two neutral modes sat-versusk for two azimuthal wavenumbens=1 andm=-1
isfying the condition of resonance is always destabilized byand for a fixed axial paramet&,=0.3. Each branch cross-
the strain field. The growth rate can be calculated by a pering, except those involving the Kelvin—Helmholtz branch in-
turbation method. The method is classical and the analysis aficated by thin lines, corresponds to a resonant configura-
Eloy and Le Dizé¥ can be applied to the present case al-tion. Yet, these unstable configurations do not exhibit the
most without any modification. The final result is an expres-same growth rate. As demonstrated by Eloy and Le Dizés
sion for the growth rater which reads for the Rankine vortex without axial flow, resonant configu-
rations associated with the crossing of two branches of same
label, possess a growth rate much larger than the others. This
feature is also observed in presence of axial flow. As in Eloy
and Le Dizes? these resonant configurations will be called

In this expression{ is the destabilizing term which is “principal modes.” The first three principal modes for the
associated with the coupling of the resonant mode with thazimuthal wavenumbensi=1 andm=-1, noted(-1,1,) i
strain field. It provides the inviscid growth rate ag,=(e. =1,2,3, arendicated by small circles in Fig. 1. In the fol-
The Coefficients:vml and Vi, are viscous damping terms of lowing section, the condition of resonan@ is analyzed for
order 1{e Re). In order to keep these terms {8), it is  various couples of azimuthal wavenumbérs;,m,) as a
implicitly assumed that Re@(1/e). As demonstrated by function of W,. The characteristics of the first principal
Eloy and Le Dizé<? it is important to consider viscous ef- modes and the coefficients Vin,» and Vi, in their growth
fects on the perturbation to understand the mode selection irate expressiol3) are computed.
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FIG. 3. Marginal stability curve for the resonant modes of azimuthal wave-
numbers m; and m,. Solid line, (m;,m,)=(-1,1); bold dashed line,
(m;,m,)=(0,2); thin dashed line,(m;,m,)=(0,-2); bold dash-dot line,
(my,my)=(1,3); thin dash-dot line(m;,m,)=(-1,-3.

FIG. 4. Viscous growth rate of four more unstable mode¥\Vgwvaries for
£ Re=950. Solid line(-1,1,1); dashed line(-2,0,1); dash-dot line(1, 3,
2); dotted line,(0, 2, 2.
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o= g 4)
2

in addition to(2), to reach the local estimate. In the sequel,
we shall denote this condition as the condition of “ideal reso-
nance.” The condition of ideal resonance is shown by a dot-
ted line in Fig. 2b). Upon comparing the plots in Figs(t8
and Zc), one can see that there is a good correlation between
the growth rate curve and the gap between mode frequency
and ideal frequency. When the gap is the largest, the growth
rate is the smallest. This correlation becomes even better as
increases for a fixedlV,. These features were also observed
o e o in the Rankine vortex without axial floW. Note, however,
¢ Re that without axial flow, the principal modds1,1) were all
“ideally” resonant because of the symmetry of the dispersion
relation w(-m)=-w(m). When an axial flow is present, as
this symmetry is broken, no principal modeaspriori ide-
ally resonant. It is only for particular values @, that the
frequency of a given principal mode can satigfl). Such
values ofW, are given in Table Il for a few principal modes

In Figs. 2a) and 2b) are plotted as a function &k, the  of negative azimuthal wavenumbers. For positive azimuthal
characteristics of the first three resonant modes fowavenumbers, one has to chanyg into -W,. In this table
(my,my)=(=1,1). The coupling coefficient is shown in Fig.  are also given the frequency, the wavenumber and the cou-
2(c). It measures the nonviscous growth rate normalized byling coefficient{ of the principal modes. Again, one can
the strain rate. The dotted line in Fig(c2 is the local esti- check that{ is very close tof—6~0.5625 for all these modes
mate (=9/16 obtained by Walefftf by considering the vor- and the closest for the largdst
tex core only. As shown by Eloy and Le Diz&$or a Rank- As seen on the growth rate formuld), viscosity is al-
ine vortex without axial flow, this estimate is also obtainedways stabilizing. Moreover, viscous damping increasek as
for the growth rate of principal modes if their frequency is increases: the most unstable principal modes are therefore
close to(m;+m,)/2. Similar results are observed in the pres-expected to have a small axial wavenumber. The marginal
ence of axial flow. The local estimate of Waléffés not  curves for a few couples of azimuthal wavenumkens, m,)
modified by axial flow. However, one can easily show thatare plotted in Fig. 3. The principal mod®,2,]) is seen to be
the principal mode frequency must satisfy always the first mode to be destabilized > 0. Surpris-

o/e

FIG. 5. Most dangerous axial flow paramet/:'sull')C (solid line) and corre-
sponding maximum growth raf@lashed lingas a function of Re.

Ill. RESULTS
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FIG. 6. Most unstable mode in the
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ingly, this occurs for a value of Re which is almost inde- trarily to the case without axial flow, the most unstable

pendent ofW, (for 0<W,;<0.8) and close to 10. modes for larges Re, are not always principal modes with
Note that the classical principal moé¢el,1,] is desta- azimuthal wavenumbersi=—1 andm=1. Instead, various

bilized for much larger values efRe. Note also that asRe  unstable modes with higher azimuthal wavenumbers have

increases, more and more principal modes are destabilizegeen shown to exist depending on the valu®\gf However,

But the first mode to be destabilized does not always remaig|| these modes exhibit a same property. Their frequency

the most unstable mode. satisfies the conditioni4) of ideal resonance which is de-

In Fig. 4, the normalized viscous growth raié's is  duced from a maximization of the local instability.
plotted for the most unstable modes wheRe=950. In this
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