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The linear stability properties of an incompressible axisymmetrical vortex
of axial velocity W 0(r ) and angular velocity !0(r ) are considered in the
limit of large Reynolds number. Inviscid approximations and viscous WKBJ
approximations for three-dimensional linear normal modes are first constructed.
They are then shown to be singular at the critical points rc satisfying ω =
m!0(rc) + kW 0(rc), where ω is the frequency, k and m the axial and azimuthal
wavenumbers. The goal of this paper is to resolve these singularities. We show
that a viscous critical-layer analysis is analytically tractable. It leads to a single
sixth-order equation for the perturbation pressure. This equation is identical to
the one obtained in stratified shear flows for a Prandtl number equal to 1.
Integral expressions for typical solutions of this equation are provided and
matched to the outer inviscid and viscous approximations in the complex plane
around rc. As for planar flows, it is proved that the critical layer solution
with a balanced behavior matches a non-viscous approximation in a 4π/3
sector of the complex-plane. As a consequence, the Frobenius expansions of a
non-viscous mode on each side of a critical point rc differ by a π phase
jump.
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1. Introduction

The stability of rotating flows with or without axial flow is an important issue
in numerous situations ranging from engineering to geophysics. Moreover,
applications are often concerned with the large Reynolds number limit, which
constitutes a singular limit in the linear stability problem. For planar shear
flows, such a limit has been the subject of a considerable amount of work,
and several textbooks that elucidate the theory are now available [1–3]. For
rotating flows, the asymptotic theory of the stability problem is, by contrast,
much less advanced. The goal of this paper is to provide a first step in
formulating an asymptotic theory. More specifically, our purpose is to resolve
the simple singularities (critical points, turning points) that inviscid and viscous
approximations of linear modes exhibit in the large Reynolds number limit.

The importance of critical points in the hydrodynamic stability theory of
shear flows is now well understood (see, for instance, the text books by Lin [1]
or Drazin and Reid [2]). For two-dimensional modes in planar shear flows, these
singular points occur where the phase velocity of the perturbation equals the
basic flow velocity. As first shown by Lin, these singularities can be smoothed
out in a so-called viscous critical layer of width O(Re−1/3) around the critical
point. The viscous critical layer equation is a fourth-order equation of Airy
type. The behavior of its solutions for large complex values of its argument
provides the nature of the solution around the critical point. In particular, Lin [4]
demonstrated that the presence of a critical point implies the existence of large
regions of the complex plane where viscosity is always important however large
the Reynolds number. Numerous works have been published on this issue and
we refer to the book by Drazin and Reid [2] for details and references. More
complex critical point singularities exist in planar flows when additional effects
are present. For a stratified flow, the critical layer equation is of sixth order and
its resolution involves a more sophisticated analysis [5, 6]. Discussions and
references on other aspects of critical layers in parallel shear flows can be
found in Maslowe [7], Cowley and Wu [8], and Churilov and Shukhman [9].

One of the difficulties of the stability theory for rotating flows is that
viscous perturbation equations do not reduce to a simple single equation such
as the Orr-Sommerfeld equation for planar flows. Three-dimensional viscous
instability modes are governed by a complicated system of at least two coupled
equations that cannot be simplified. In particular, there does not exist any
“Squire theorem” for swirling flows, which permits one to reduce the normal
mode analysis to two-dimensional modes. Most results have thus been obtained
by numerical analysis. The reader is referred to the review of Ash and Khorrami
[10] for a comprehensive discussion of available results in the literature.

Critical point singularities are known to occur in the non-viscous stability
problem for a swirling flow [see, for instance, 11, 13]. So far, these singularities
have been avoided by integrating the stability equations in the complex



Viscous Critical-Layer Analysis of Vortex Normal Modes 317

plane by assuming that the inviscid approximation can be continued around
the critical point as for planar flows [4]. The present paper will provide a
justification of this assumption. Moreover, it will also provide approximations
for the solution in the regions where the behavior of the solution is dominated
by viscosity. More specifically, the critical point singularity will be resolved
by a viscous critical layer analysis. A simple equation governing the spatial
structure of the three-dimensional normal mode pressure in the viscous critical
layer will be derived. Surprisingly, this equation will turn out to be identical to
the critical layer equation obtained for the perturbation transverse velocity in
a stratified shear flow with a unit Prandtl number. This equation was first
solved by Koppel [5] using integral expressions for the solutions. Koppel [5]
also provided the asymptotic behavior of typical solutions. His results were
extended and used to obtain the dispersion relation of particular flows [14–16].
Interestingly, Hughes and Reid [14] also obtained the same critical-layer
equation for the axisymmetric modes in the flow between rotating cylinders in
the narrow gap approximation. It is surprising that nobody has tried to use this
strong indication to show that the same critical-layer equation is also valid for
general rotating flows.

As demonstrated by Koppel [5], the critical-layer equation possesses
solutions with a balanced behavior and with a dominant-recessive behavior as
for the classical critical layer equation. The same type of solutions, based on
definitions given in [14] and [17] will be used here. They will also be matched
to outer viscous and inviscid solutions in the full complex neighborhood of the
critical point.

This paper is organized as follows. Viscous and inviscid approximations
for the normal modes are first derived in section 2. Both are shown to be
singular at the critical points. The viscous critical layer equation is derived and
integrated in section 3. The matching between critical layer solutions and outer
approximations are performed in section 4. The last section briefly summarizes
the results.

2. Three-dimensional linear normal modes

2.1. Basic flow and perturbation equations

Consider a general rotating (swirling) flow with axial flow whose velocity field
in cylindrical coordinates is of the form

U0(r ) = (0, V0(r ), W0(r )). (1)

Both the azimuthal velocity V 0(r ) and the axial velocity W 0(r ) depend on the
radial coordinate r only. It is also useful to define from V 0(r ), the angular
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velocity !0(r ) and the axial vorticity ω0(r ):

!0(r ) = V0(r )
r

, (2)

and

ω0(r ) = 1
r

d(r V0)
dr

. (3)

Such a basic flow is, in general, not a solution of the Navier-Stokes equations
in the presence of viscosity. Both the axial vorticity and the axial velocity
satisfy a diffusion equation, which means that profiles vary slightly in time
for large Reynolds numbers. As is commonly done in stability analysis, this
viscous diffusion is neglected in the present study.

Linear perturbations can then be expressed in the form of normal modes

(U, P) = (u, v, w, p)eikz+imθ−iωt , (4)

where k and m are axial and azimuthal wavenumbers and ω is the frequency. The
velocity and pressure amplitudes (u, v, w, p) then satisfy the linear system:

%u − 2!0v = −∂p
∂r

+ 1
Re

(

'u − u
r2

+ 2imv

r2

)

(5a)

%v + ω0u = − imp
r

+ 1
Re

(

'v − v

r2
− 2imu

r2

)

(5b)

%w + W ′
0w = −ikp + 1

Re
'w (5c)

1
r

∂(ru)
∂r

+ imv

r
+ ikw = 0, (5d)

where a prime denotes a derivative with respect to r, ' = ∂2

∂r2 + 1
r

∂
∂r − m2

r2 , and

%(r ) = −iω + im!0(r ) + ikW0(r ). (6)

The Reynolds number Re is here constructed using characteristic scales of
the basic flow such as the vortex core size and the maximum axial velocity,
or the maximum angular velocity. In the following, we assume only that the
Reynolds number is large to construct an asymptotic theory with respect to the
small parameter 1/Re.

For large Reynolds numbers, approximate solutions can be sought by
expanding the function in powers of 1/Re. If the terms proportional to 1/Re in
the system (5) are negligible, the leading order solution can be considered as
inviscid. Approximations for these non-viscous solutions are considered in the
next section.
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The terms proportional to 1/Re may also be non-negligible at leading order.
This occurs when the perturbation varies on a fast (viscous) scale rv =

√
Rer .

Approximations for these “viscous” solutions are constructed in section 2.3.
Both viscous and inviscid approximations will turn out to be singular at the
radial coordinates rc, where %(rc) = 0. These points are called critical points
and satisfy

ω = m!0(rc) + kW0(rc). (7)

The goal of this paper will be to resolve these singularities to provide the
matching condition of viscous and inviscid approximations across and around
critical points. The regular singularity at r = 0 is not considered. In particular,
it is assumed that the critical point is not at the origin.

2.2. Inviscid approximation

As defined above, the non-viscous approximation is the leading order
approximation of a viscous solution for which the viscous terms in (5) (i.e.,
the terms multiplied by 1/Re) are negligible. If we are far from the critical
points and from the origin, an inviscid approximation can be sought as an
expansion in powers of 1/Re as

u(r, Re) = u0(r ) + 1
Re

u1(r ) + · · · (8a)

v(r, Re) = v0(r ) + 1
Re

v1(r ) + · · · (8b)

w(r, Re) = w0(r ) + 1
Re

w1(r ) + · · · (8c)

p(r, Re) = p0(r ) + 1
Re

p1(r ) + · · · (8d)

System (5) then becomes at leading order

%u0 − 2!0v0 = −dp0

dr
(9a)

%v0 + ω0u0 = − imp0

r
(9b)

%w0 + W ′
0u0 = −ikp0 (9c)

1
r

d(ru0)
dr

+ imv0

r
+ ikw0 = 0. (9d)

This system can be reduced to a single equation for the pressure p0, namely,
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d2 p0

dr2
+

(

1
r

− '′
0

'0

)

dp0

dr

+
(

2mi
r%'0

(!′
0'0 − !0'

′
0) − k2'0

%2
− m2

r2
+ 2mkW ′

0!0

r%2

)

p0 = 0, (10)

where '0(r ) = 2ω0(r )!0(r ) + %2(r ). This equation is given in Saffman’s
book [18], page 244, in the configuration without axial flow.

The simple zeroes of %(r ) are regular singularities of equation (10). Near
such critical points rc, p0 behaves as

p0 ∼ (r − rc)α, (11)

where

α(α − 1) = Kc, (12)

with

Kc = 2!0ck(kω0c − mW ′
0c/rc)

(%′
c)2

= −2!0ck(kω0c − mW ′
0c/rc)

(m!′
0c + kW ′

0c)2
. (13)

The subscript c in the above expression indicates values taken at rc. To each
root α(a) and α(b) of (12) corresponds a leading order pressure p(a)

0nv and p(b)
0nv

with the behavior (11). We denote p(a)
nv and p(b)

nv the non-viscous approximation
(8d) constructed with these leading-order expressions. The coefficients α(a)

and α(b) are a priori both complex. This means that rc is a branch point
singularity of both inviscid solutions p(a)

nv and p(b)
nv . This implies that none of

the inviscid solutions can be uniformly valid around rc in the complex r-plane.
The resolution of the singularity, which will be performed in section 3, will
determine how the non-viscous solution can be continued in the complex
plane.

2.3. Viscous WKBJ approximation

Viscous solutions are the solutions for which the viscous term in system (5d)
is present at leading order. A WKBJ approximation for such a solution can be
sought in the form

u(r, Re) = 1√
Re

(

u1(r ) + 1√
Re

u2(r ) + · · ·
)

e
√

Reφ(r ), (14a)

v(r, Re) =
(

v0(r ) + 1√
Re

v1(r ) + · · ·
)

e
√

Reφ(r ), (14b)
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w(r, Re) =
(

w0(r ) + 1√
Re

w1(r ) + · · ·
)

e
√

Reφ(r ), (14c)

p(r, Re) = 1√
Re

(

p1(r ) + 1√
Re

p2(r ) + · · ·
)

e
√

Reφ(r ). (14d)

This gives, at leading order, [φ′(r )]2 = %(r ), i.e.,

φ±(r ) = ±
∫ r

rc

√

%(s) ds, (15)

where rc has been chosen in the integral to simplify the matching procedure
done in section 4.

At the second order, as for the non-viscous equations, an equation can be
obtained for the pressure amplitude alone. This equation reads, for both phases
φ+ and φ−,

(

2%
d
dr

+ ikW ′
0

)

1
ω0

(

2%
d
dr

+ ik!′
0

)

q1 = k
(

2k!0 − mW ′
0

r

)

q1, (16)

where q1 is related to p1 by

q1 = (%)3/4√r
!0

p1. (17)

For each phase φ+ and φ−, there exists two independent solutions of this
equation. This means that there are four independent viscous solutions. It is
easy to show that p1 is singular at points where % = 0. These points are in
fact turning points of the WKBJ approximation [19]. Near such points rc, p1

behave as

p1 ∼ (r − rc)β, (18)

where β satisfies

4β2 + 8β + 15/4 = Kc, (19)

with K c defined by (13).
We denote p(a)

1v and p(b)
1v , the two independent solutions which satisfy (18),

with β = β (a) and β = β (b), respectively. The four viscous approximations
(14d) constructed with these leading-order solutions and with each phase φ+

and φ− will be denoted by p(a)+
v , p(a)−

v , p(b)+
v , and p(b)−

v . As for the non-viscous
solutions, because both roots β (a) and β (b) of (19) are a priori complex, rc is
again a branch point singularity for each viscous approximation. None of these
approximations is therefore uniformly valid around rc in the complex r-plane.
The critical layer analysis, performed in the next section, will provide the
domains of uniform validity.
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3. Critical layer analysis

Both the turning point singularity of the viscous approximation and the critical
point singularity of the inviscid approximation can be smoothed out in a
viscous critical layer. The size of the critical layer is, as for planar shear flows,
O(Re−1/3). Following classical asymptotic matching analysis, we therefore
introduce the local variable

r̄ = Re1/3(r − rc). (20)

The local solution is sought in powers of Re−1/3:

ū(r̄ , Re) = Re−1/3(ū1(r̄ ) + Re−1/3ū2(r̄ ) + · · ·
)

, (21a)

v̄(r̄ , Re) =
(

v̄0(r̄ ) + Re−1/3v̄1(r̄ ) + · · ·
)

, (21b)

w̄(r̄ , Re) =
(

w̄0(r̄ ) + Re−1/3w̄1(r̄ ) + · · ·
)

, (21c)

p̄(r̄ , Re) = Re−1/3( p̄1(r̄ ) + Re−1/3 p̄2(r̄ ) + · · ·
)

, (21d)

which, when substituted in (5), yields the leading-order equations

−2!0cv̄0 = −d p̄1

dr̄
, (22a)

ω0cū1 = − im p̄1

rc
+ d2v̄0

dr̄2
− %′

cr̄ v̄0, (22b)

W ′
0cū1 = −ik p̄1 + d2w̄0

dr̄2
− %′

cr̄w̄0, (22c)

dū1

dr̄
+ imv̄0

rc
+ ikw̄0 = 0. (22d)

As before, the subscript c in these equations indicates values taken at rc.
A single equation can be obtained for the pressure p̄1 by manipulating the

above equations, namely,
(

d2

dr̄2
− %′

cr̄
) (

d2

dr̄2
− %′

cr̄
)

d2 p̄1

dr̄2
= Hc p̄1, (23)

with H c = 2!0ck(kω0c − mW ′
0c/rc). If we define

s = (%′
c)1/3r̄ , (24)

we obtain
(

d2

ds2
− s

) (

d2

ds2
− s

)

d2 p̄1

ds2
= Kc p̄1, (25)

where K c is as defined in (13).
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This equation is identical to the viscous critical-layer equation obtained in
stratified flow for a unit Prandtl number [5]. As shown by Koppel [5], it admits
solutions of the form

p̄1(s) =
∫

L
zγ exp(−z3/3 + sz) dz, (26)

where γ is a complex number satisfying

(γ + 2)(γ + 1) = Kc. (27)

Consistent with the notation for α and β in the previous section, we shall
denote γ (a) and γ (b) the two roots of (27). The contour L in (26) is a contour
in the complex z-plane, which ends at infinity in one of the steepest directions
of the phase of the exponential factor, i.e.,

arg(z) ∼ {0, 2π/3, 4π/3} as |z| →∞ and z ∈ L.

The choice of the contour L, and the position of the branch cut issuing from 0,
govern the nature of the solution and its behavior for large |s| in the complex
s-plane.

In the following we consider two typical solutions that exhibit a dominant-
recessive behavior and a balanced behavior. These solutions correspond to the
integration contours D1 and C1 shown in Figure 1 with a branch cut along the
positive real axis. They will be denoted by A1 and B1, respectively:

A1(s, γ ) = 1
2π i

∫

D1

zγ exp(−z3/3 + sz) dz, (28a)

B1(s, γ ) = 1
2π i

∫

C1

zγ exp(−z3/3 + sz) dz. (28b)

In Koppel, these solutions correspond to w2(η) and w4(η). The notation for A1

is in agreement with the notation of Reid [17]. It differs from [14] by a constant
factor. Note, however, that because Reid only considered integer values of γ ,
he did not have to define any branch cut. The position of the branch cut is here
an important parameter as it influences the behavior of the solution for large
|s|. The definition of the solution B1(s, γ ) is close to the one given by [14] for
real γ satisfying γ < −1. For γ > −1, B1(s, γ ) was defined differently with
L = (0, +∞) in (26). This definition is less general because it requires )e(γ ) >
−1. We therefore prefer our definition (which was also the one used by Koppel)
which applies for all complex γ except for positive integers.

As is the case for the generalized Airy functions of Reid [see the appendix
of 2], other solutions can be obtained by rotating in the complex z-plane the
contours D1 and C1 and the branch cut by angles 2π/3 and 4π/3 around the
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D
C

1

1

2π/3

Figure 1. Integration contours C1 and D1 in the complex z-plane. The branch cut is indicated
by the dashed line.

origin. These solutions, denoted A2, A3 and B2, B3 are related to A1 and B1

by rotation formulas of the form

A2(s, γ ) = e2iπ (γ+1)/3 A1(se2iπ/3, γ ), (29)

and

A3(s, γ ) = e4iπ (γ+1)/3 A1(se4iπ/3, γ ). (30)

Similar formulas exist for B2 and B3 in terms of B1.
The asymptotic properties of the functions Ak(s, γ ) and Bk(s, γ ) have been

studied in several previous works [5, 6, 14, 17]. Thus, only the main steps of
the analysis are given here. The asymptotic behaviors of the functions A1 and
B1 for large |s| can be obtained by the steepest descent method as shown
in several textbooks [20, 21]. To apply the method, expression (26) is first
transformed by the change of variable y =

√
|s|z into

p(s, γ ) = |s|(γ+1)/2
∫

L′
yγ exp(−|s|3/2ψθ (y)) dy, (31)
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where

ψθ (y) = y3

3
− eiθ y (32)

and

θ = arg(s). (33)

One then looks at the level contours of the real and imaginary parts of the
phase ψθ (y) and deforms the integration contour (as well as the branch cut)
such that it follows the steepest descent paths of )e(ψθ ). The contributions for
large |s| to the integral come from the saddle points of the phase (ψ ′

θ (y) = 0)
or from the branch points which cannot be removed. Here there are two saddle
points y±

s = ±exp (iθ/2) and the branch point 0. The contribution from 0 is
given by

p̄(0)(s, γ ) ∼ e2π iγ
∞

∑

k=0

s−γ−1−3k(−1)k

3kk!.(−γ − 3k)
, as |s| →∞ , (34)

while the saddle-point contributions are of the form

p̄±(s, γ ) ∼ 1
2
√

π i
exp(±ξ )sγ /2−1/4

∞
∑

p=0

(−1)pcp(γ )ξ−p, as |s| →∞ ,

(35)
with ξ = (2/3)s3/2 and

c0 = 1; cp(γ ) =
2p
∑

l=0

(−1)l2p.(p + l + 1/2).(γ + 1)√
π3l+pl!(2p − l)!.(γ + 1 − 2p + l)

, p ≥ 0. (36)

In Figure 2, level contours in the complex y plane of )e(ψθ ) and +m(ψθ ) for
θ = π/2 are shown. Only the level contours going through the saddle points
and y = 0 are plotted. Also drawn on this figure are the deformed contours D1

and C1. It shows that the contour D1 goes only through y−
s while C1 goes

though y+
s and encircles 0. This implies that when |s| →∞ with arg(s) =

π/2, the only contribution to A1(s, γ ) is proportional to p̄−, while B1(s, γ )
has a contribution proportional to p̄+ plus a contribution from 0.

By analyzing the level contours of ψ for other values of θ , we can determine
the contributions to the asymptotic expansions of A1 and B1 for all values of
arg(s) in the interval [0, 2π ]. The results can be summarized as follows: For
0 ≤ arg(s) < 2π/3,

A1(s, γ ) ∼ eiπ (γ−1/2) p̄−(s, γ ) (37a)

B1(s, γ ) ∼ p̄(0)(s, γ ) + (e2iπγ − 1) p̄+(s, γ ). (37b)

For 2π/3 < arg(s) < 4π/3,
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Figure 2. Illustration of the deformation of the contours C1 and D1 in the complex z-plane
for θ = π/2. The branch cut is indicated by the dotted line. Thin solid lines and thin dashed
lines are constant levels of )e(ψθ ) and of +m(ψθ ), respectively.

A1(s, γ ) ∼ eiπ (γ−1/2) p̄−(s, γ ) + p̄(0)(s, γ ) + p̄+(s, γ ) (38a)

B1(s, γ ) ∼ p̄(0)(s, γ ). (38b)

For 4π/3 < arg(s) < 2π ,

A1(s, γ ) ∼ p̄+(s, γ ) (39a)

B1(s, γ ) ∼ p̄(0)(s, γ ) − 2 sin(πγ ) p̄−(s, γ ). (39b)

Note that for 0 < arg(s) < π/3 and π < arg(s) < 5π/3, p̄+(s, γ ) is domi-
nant and p̄−(s, γ ) is recessive while for π/3 < arg(s) < π and 5π/3 <
arg(s) < 2π , p−(s, γ ) is dominant and p̄+(s, γ ) is recessive. The function
A1(s, γ ) is therefore recessive for 0 < arg(s) < π/3 and 5π/3 < arg(s) < 2π ,
and dominant for π/3 < arg(s) < 5π/3 . The function B1(s, γ ) has a balanced
behavior in the angular sector π/3 < arg(s) < 5π/3 and is dominant for 0 <
arg(s) < π/3 and 5π/3 < arg(s) < 2π . From an asymptotic point of view (in
the sense of Poincaré), one obtains from the above expressions (as |s| →∞ ):

A1(s, γ ) ∼ eiπ (γ−1/2) p̄−(s, γ ), 0 ≤ arg(s) < π (40a)

A1(s, γ ) ∼ p̄+(s, γ ), π < arg(s) < 2π (40b)
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A1(s, γ ) ∼ eiπ (γ−1/2) p̄−(s, γ )

+ p̄(0)(s, γ ) + p̄+(s, γ ), arg(s) = π (40c)

and

B1(s, γ ) ∼ (e2iπγ − 1) p̄+(s, γ ), 0 ≤ arg(s) < π/3 (41a)

B1(s, γ ) ∼ p̄(0)(s, γ ), π/3 < arg(s) < 5π/3 (41b)

B1(s, γ ) ∼ −2 sin(πγ ) p̄−(s, γ ), 5π/3 < arg(s) < 2π (41c)

B1(s, γ ) ∼ p̄(0)(s, γ ) + (e2iπγ − 1) p̄+(s, γ ), arg(s) = π/3 (41d)

B1(s, γ ) ∼ p̄(0)(s, γ ) − 2 sin(πγ ) p̄−(s, γ ), arg(s) = 5π/3. (41e)

From the above expressions, one can check that the asymptotic behavior of
the solutions A1 and B1 is uniform in the (Stokes) sector Sk bounded by the
(Stokes) lines Lk = {s, arg(s) = (2 + k)π/3, k = 1, 2, 3} displayed in Figure 3.
The apparent discontinuity in the above expressions in the sector S1 is due to
the choice of definition for arg(s). One can easily show that (40a) and (41a)
are actually valid in S1 defined as −π/3 < arg(s) < π/3. Similarly, (40b) and
(41c) are valid in S1 defined as 5π/3 < arg(s) < 7π/3. The behavior of
the other solutions A2, A3, B2, and B3 can be obtained from the rotation
formulas (29) and (30). In the next section, we show that the critical-layer
solutions A1 and B1 match the inviscid and viscous approximations obtained
in Sections 2.2 and 2.3.

S 1

S 2

S 3

L 1

L 2

L 3

2π/3

Figure 3. Definition of the Stokes sectors Sk and Stokes lines Lk in the complex s-plane.
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4. Matching of critical layer solutions to outer solutions

In this section, the leading order matching between the critical layer solutions
and the outer viscous and inviscid approximations obtained in section 2 is
performed. For this purpose, it is first useful to write the leading-order term of
each critical-layer contribution ( p̄(0), p̄−, and p̄+) as a function of the outer
variable. Using s = (%′

c)1/3Re1/3(r − rc), one obtains at leading order from
(34) and (35),

p̄(0) ∼ (%′
c Re)−(γ+1)/3e2π iγ

.(−γ )
(r − rc)−(γ+1), (42)

and

p̄± ∼ (%′
c Re)(2γ−1)/12

2
√

π i
(r − rc)(γ /2−1/4) exp

(

± (2/3)(%′
c Re)1/2(r − rc)3/2),

(43)
where γ is either of the roots γ (a) or γ (b) of equation (27).

The relation s = (%′
c)1/3Re1/3(r − rc) implies that in the complex r-plane,

the Stokes sectors Sk are now issued from rc and have rotated by an angle
equal to α = −arg((%′

c)1/3). For instance, for a real critical point of a neutral
mode (k and ω real), the rotation angle is α = −sgn(kW ′

0c + m!′
0c)π/6.

If one defines from γ (a) and γ (b), the coefficients α(a,b) = −γ (a,b) − 1 and
β (a,b) = γ (a,b)/2 − 1/4, they satisfy (12) and (19), respectively. Thus, p(0) and
p± are associated with the inviscid and viscous approximations obtained in
sections 2.2 and 2.3. More precisely, one has for γ = γ (a)

p̄(0) ∼ (%′
c Re)−(γ (a)+1)/3e2π iγ (a)

.(−γ (a))
p(a)

0nv, (44)

and

p̄± ∼ (%′
c Re)(2γ (a)−1)/12

2
√

π i
p(a)

1v exp
(

±(2/3)(%′
c Re)1/2(r − rc)3/2) . (45)

Moreover expression (8d) reads, at leading order, near rc

p(a)
nv ∼ p(a)

0nv, (46)

and expression (14d), using (15), becomes

p(a)±
v ∼ p(a)

1nv√
Re

exp
(

±(2/3)(%′
c Re)1/2(r − rc)3/2) . (47)

It follows that the function B1 matches the inviscid approximation in the
sectors S2 and S3 and the dominant viscous approximation in the sector S1. The
function A1 matches a solution, which is by contrast always viscous except on
the Stokes line L1 where it contains a non-viscous contribution. It matches the
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dominant viscous approximation in the sectors S2 and S3, and the recessive
viscous approximation in the sector S1.

From the asymptotic expressions (40) and (41) for A1(s, γ ) and B1(s, γ ), one
can now deduce the form of the outer solutions in the complex neighborhood
around rc. The outer solution which matches to B1(s, γ ) is given by

p ∼ C+(γ (a))Reγ (a)/2+3/4 Ap(a)+
v

+ C+(γ (b))Reγ (b)/2+3/4 Bp(b)+
v − π/3 < arg

(

(%′
c)1/3(r − rc)

)

< π/3

p ∼ Ap(a)
nv + Bp(b)

nv π/3 < arg
(

(%′
c)1/3(r − rc)

)

< 5π/3

p ∼ C−(γ (a))Reγ (a)/2+3/4 Ap(a)−
v

+ C−(γ (b))Reγ (b)/2+3/4 Bp(b)−
v 5π/3 < arg

(

(%′
c)1/3(r − rc)

)

< 7π/3

p ∼ A
(

p(a)
nv + C+(γ (a))Reγ (a)/2+3/4 p(a)+

v

)

+ B
(

p(b)
nv + C+(γ (b))Reγ (b)/2+3/4 p(b)+

v )
)

arg
(

(%′
c)1/3(r − rc)

)

= π/3

p ∼ A
(

p(a)
nv + C−(γ (a))Reγ (a)/2+3/4 p(a)−

v

)

+ B
(

p(b)
nv + C−(γ (b))Reγ (b)/2+3/4 p(b)−

v )
)

arg
(

(%′
c)1/3(r − rc)

)

= 5π/3

where A and B are two independent constants and

C+(γ ) = 1 − exp(−2π iγ )
2i

√
π

(%′
c)γ /2+1/4.(−γ ), (48a)

C−(γ ) = i sin(πγ )√
π

e−2π iγ (%′
c)γ /2+1/4.(−γ ). (48b)

The outer solution which matches to A1(s, γ ) reads

p ∼ Ap(a)−
v + Bp(b)−

v − π < arg((%′
c)1/3(r − rc)) < π

p ∼ D+(γ (a))Ap(a)+
v + D+(γ (b))Bp(b)+

v π < arg((%′
c)1/3(r − rc)) < 3π

p ∼ A
(

p(a)−
v + D+(γ (a))p(a)+

v + D(γ (a))Re−γ (a)/2−3/4 p(a)
nv

)

+ B
(

p(b)−
v + D+(γ (b))p(b)+

v + D(γ (b))Re−γ (b)/2−3/4 p(b)
nv

)

arg((%′
c)1/3(r − rc)) = π

where

D+(γ ) = i exp(−iπγ ) (49a)

D(γ ) = −2 exp(iπγ )
√

π (%′
c)−γ /2−1/4

.(−γ )
. (49b)
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Note that we have extended the domain of uniform approximation of the
function A1(s, γ ) from −π/3 < arg(s) < π to −π < arg(s) < π and from
π < arg(s) < 7π/3 to π < arg(s) < 3π . The other critical-layer solutions
A2, A3, B2, and B3 provide similar expressions for the outer solutions. The
result is just obtained by taking a different definition for the cubic root in s =
(%′

c)1/3(r − rc).

5. Conclusion

In this paper, we have resolved the (simple) singularities that inviscid
approximations and viscous approximations for three-dimensional normal
modes exhibit at the radial coordinates rc, where ω = m!0 + kW 0. These
singularities have been smoothed out in a viscous critical layer of width
O(Re−1/3). The critical layer equation has been shown to be the same as for
planar stratified shear flows with a unit Prandtl number. Integral representations
of two typical critical-layer solutions have been derived and used to deduce the
behavior of the normal mode amplitude in the complex plane around rc.

We have proved that one of these solutions (B1) can be matched to an
inviscid approximation in a sector around the critical point whose angular
range is 4π/3. This means that there exist solutions which are non-viscous
on either side of the singularity. Moreover, the uniform validity in this 4π/3
sector guarantees that the Frobenius expansions of such a solution on both
sides of rc differ by a simple π phase jump only, as is the case for planar
shear flows. In the third 2π/3 sector around rc, the critical-layer solution is
dominant: it matches a dominant viscous solution as r − rc increases. An
asymptotic expression of the solution in this sector has been obtained.

The solution associated with B1 is expected to describe damped inviscid
normal modes. Such modes are known to exist for a Gaussian vortex without
axial flow [13, 22]. Moreover, if they are not too damped, they can appear
spontaneously by a resonance mechanism via the so-called elliptical instability
[13, 23]. The present analysis provides the spatial structure of these modes.

The second type of critical layer solution (A1) has been shown to have a
recessive viscous behavior in a 2π/3 angular sector and a dominant viscous
behavior elsewhere. Explicit asymptotic expressions for the solution around rc

have been provided and matched to dominant and recessive viscous WKBJ
approximations. This type of solution is expected to be present in the asymptotic
structure of viscous modes. In particular, as for planar shear flows, it will
appear in the structure of boundary layer modes.

We have also shown how other solutions can be obtained by simple rotation
formulas. Together, they form a complete set of solutions, which can be used
to represent any linear normal mode eigenfunction around a critical point.
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