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Single-drop fragmentation determines size
distribution of raindrops
Emmanuel Villermaux1,2* and Benjamin Bossa1

Like many natural objects, raindrops are distributed in size. By extension of what is known to occur inside the clouds, where
small droplets growby accretion of vapour and coalescence, raindrops in the falling rain at the ground level are believed to result
from a complex mutual interaction with their neighbours. We show that the raindrops’ polydispersity, generically represented
according to Marshall–Palmer’s law (1948), is quantitatively understood from the fragmentation products of non-interacting,
isolated drops. Both the shape of the drops’ size distribution, and its parameters are related from first principles to the
dynamics of a single drop deforming as it falls in air, ultimately breaking into a dispersion of smaller fragments containing
the whole spectrum of sizes observed in rain. The topological change from a big drop into smaller stable fragments—the
raindrops—is accomplished within a timescale much shorter than the typical collision time between the drops.

The phenomenon of rain was first quantitatively documented
in 1904 by Bentley1 and von Lenard2. While discussing
his ingenious experiments (Fig. 1), Bentley noted: ‘Perhaps

the most remarkable fact, early brought to our notice, was the
astonishing difference in the dimensions of the individual drops,
both in the same and different rainfalls’. Indeed, subsequent
measurements by Laws and Parsons3 and Marshall and Palmer4
showed that the raindrop size distribution is a monotonically
decreasing function of the size: the number of drops n(d) with size
between d and d+dd per unit volume of space is

n(d)= n0e−d/〈d〉 (1)

where n0 is a constant reflecting the average spatial density of the
drops, which depends on temperature5 and is equal to 0.08 cm−4

at the ground level, and 〈d〉 is an average diameter related to the
rate of rainfall R by

〈d〉−1 = 41 R−0.21 (2)

where 〈d〉 is in centimetres and R is in millimetres per hour.
The distribution steepness is solely related to the intensity of
rainfall: drop sizes are more broadly distributed in heavy storms
than in fine mists. The observations suggesting the drop size
repartition in equation (1), initially made from the record of drops’
impacts on absorbing paper, were later cross-checked in situ by
aircrafts flying through clouds and/or precipitation5, and by more
refined measurements exploiting rain’s radar echo reflectivity6,7.
If the interpretations of this law are diverse, its reality has now
reached a consensus8.

Existing interpretations for rain initiation in the clouds rely on a
sequence of nucleation plus condensation of ambient water vapour
followed by coalescence of the colliding drops, possibly enhanced
by turbulence (see refs 9, 10 and 11 for a review). Extension of these
ideas to understand the drop size content of rain at the ground
level6,12–16 emphasizes the (presumed) role of collision-induced
break-up and coalescence between the drops in the falling rain.
Precisely, if drop break-up is considered as an important partner
in the overall process, it is only as a consequence of a collision
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Figure 1 | Raindrops collected at the ground level, and their size
distribution. Drop size histograms n(d) for three different rainfall rates R
measured by Marshall and Palmer (adapted from their 1948 paper4). Inset:
Raindrop specimens captured by Bentley (adapted from his 1904 paper1)
by allowing the drops to fall into a layer of fine uncompacted flour.

between drops, therefore emphasizing the prime importance of
mutual interactions in the structure of rainfall8. Yet, the encounters
between the drops have, in this vision, to be frequent enough for an
equilibrium distribution to build through this mechanism, a fact,
given the typical drop density in natural rain, that is unlikely13,17.

The free-fall of a drop in a gaseous phase, its velocity2, pos-
sible change of shape, inflation18–20, destabilization21,22 and ulti-
mate fragmentation12,23–26 have been studied in various contexts
ranging from agricultural sewage, diesel engines, liquid propellant
combustion and the physics of natural precipitation6,15,27. Figure 2
shows how a liquid drop, falling in a counter-ascending air current
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Figure 2 | Topological changes of falling drops and fragmentation. Top row: series of events of the fragmentation of a d0 =6 mm water drop falling in an
ascending stream of air. The time interval between each image is !t=4.7ms. The sequence shows first the flattening of the drop into a pancake shape, the
inflation of a bag bordered by a thicker corrugated rim, its break-up and the destabilization of the rim itself (highlighted in the inset), leading to disjointed
drops distributed in size. Middle row: a similar series defining the initial diameter d0, the bag thickness h(t), its radius R(t) and shape ξ(r,t), and the final
drop size d. Bottom row: the formation of a bag is not mandatory for the initial drop to break up. However, its fragmentation is always preceded by a change
of topology into a ligament shape, which often occurs without bag inflation. The sequence is for d0 =6mm and !t= 7.9ms.

generated by a big jet2,26 first deforms, then destabilizes and finally
breaks into disjointed fragments that remain stable afterwards (see
the movie of the overall sequence in the Supplementary Informa-
tion), a phenomenon also known for liquid–liquid systems28,29. The
salient stages of this process, sometimes called ‘bag break-up’19
may be summarized as follows: (1) a change of topology of the
initial drop, which flattens into a pancake shape as it decelerates
downwards; (2) the formation of an inflating bag bordered by a
toroidal rim collecting most of the initial drop volume and (3) a
broad distribution of fragment sizes: the highly corrugated rim
ultimately breaks intomany small, and fewer larger drops.

We propose here a renewed vision of raindrop formation
suggesting that both the functional form of equation (1), and
the exponent and pre-factor of equation (2) are quantitatively
understood from the fragmentation of a single drop27. An original
treatment of the drop dynamics showsmoreover that its topological
change into smaller fragments distributed according to equation (1)
occurs when its size exceeds a critical value that we determine, and
that it is accomplished within a timescale much shorter than the
typical collision time between the drops in rain.

Rate of rainfall versus average drop size
The vertical altitude z(t ) of a liquid drop of volume Ω = πd3

0/6
and density ρ falling under gravity g in an ascending air stream of

density ρa and velocity V is ruled by

z̈
g

= −1+ CD

2
ρa

ρ

U 2

g h
(3)

whereU =−ż+V is the relative velocity between the drop and the
air. As the drop falls, it deforms because of the stress (of order ρaU 2,
a turbulent drag form that is suited to millimetre-sited drops at
relative velocities of metres per second in air) at its surface, first into
a rough pancake shape with radiusR(t ) and thickness h(t ) such that
Ω =πR2 h. The drag coefficient CD is of order unity30. Gravity and
drag forces are eventually balanced, setting the equilibrium velocity
of the drop. In the special case of rain for which V = 0, the velocity
of a spherical drop U = −ż(d0)∼ √

(ρ/ρa) g d0 is termed free-fall,
or terminal velocity.

The quantitative link between the average drop size and the
intensity of rain R in equation (2) is readily made. The rate of fall
R expressed as a precipitation velocity (height of water collected at
the ground per unit time) is

R =
∫

n(d) (πd3/6)U dd (4)

where U = √
(ρ/ρa) g d is the free-fall velocity of a drop of size
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Figure 3 | Bag inflation. Temporal increase of the bag maximal amplitude
ξ(0,t) for two different initial drop sizes d0 =6mm (red) and d0 = 12mm
(black). The overall bag shape ξ(r,t) is well represented around its
maximum by the expected parabola in equation (11). The bag height first
increases at constant acceleration (ξ̈/d0 ∼ 1/τ2), and exponentially at later
times, before bag break-up.

d . Let P(d) = n(d)/
∫
n(d)dd be the drop size distribution, and

p(x)= 〈d〉P(d) with x=d/〈d〉. Thus, n(d)=n0 p(x), leading to

R = n0
π

6

√
ρ

ρa

√
g 〈d〉 9

2

∫
x

7
2 p(x) dx (5)

that is

〈d〉−1 ∼ R− 2
9

Up to a constant factor, equation (5) thus gives, from first
principles, a precise estimate of the scaling exponent in equation (2)
originallymeasured byMarshall and Palmer (2/9=0.222...≈0.21)
and shows that it simply follows from the simple mass balance in
equation (4). The pre-factor in equation (2) can be quantitatively
estimated accordingly once the mechanism building the drop size
distribution P(d) is understood.

Drop topological change
The shape change of a spherical drop into an expanding pancake
results from the stress repartition in the surrounding air at its
surface. Let U= (Ur ,Uy) be the axisymmetric velocity field in the
vicinity of the drop, with y being a distance from its surface on
the front side in the z direction and r a direction pointing radially
(Fig. 2). The flow has locally the structure of a stagnation point
Uy = −γ y , with a stretching rate γ set by the relative velocity
U and the drop radius as γ = U/(d0/4). This stretching rate
interpolates30,31 between that for a sphere (U/(d0/6)) and for a disc
(U/(πd0/4)) of radius d0/2. Thus, because

ρaUr∂rUr = −∂r pa and ρaUy∂yUy = −∂ypa

r∂yUy +∂r (rUr )= 0

for this inviscid, incompressible flow in the quasi-steady approx-
imation, pa(r)= p(0)−ρaγ

2r2/8 in the air, where p(0)= ρaU 2/2
is the stagnation pressure in r = y = 0. The pressure in the liquid is

equal to that in the air at the drop surface plus, according to Laplace
law, a jump proportional to the drop surface curvature κ and to
the liquid surface tension σ as p(r) = pa(r)+ σκ . For r ' R(t ),
the drop is close to flat, so that the curvature term is weak and can
be neglected, giving p(r)≈ p(0)−ρaγ

2r2/8. At the pancake border
in r = R(t ) on the other hand, the interface radius of curvature is
essentially half of the thickness h(t ); the curvature κ ≈ 2/h(t ) is
comparatively strong there, so that p(R)=p(0)−ρaγ

2R2/8+2σ/h.
Thus, solving the axisymmetric Euler equation for the radialmotion
u(r,t ) inside the liquid drop

ρ(∂t u+u∂ru)= −∂r p (6)

r∂t h+∂r (ruh)= 0 (7)

with a time-dependent thickness h(t ), so that u(r, t ) = (r/R) Ṙ
owing to equation (7), gives, integrating equation (6) between
r = 0 and r = R(t ),

1
2
R R̈= − 1

ρ
{p(R)−p(0)}

Accounting for the pressure difference between the centre of the
drop and its rim gives

R̈
R

= 1
τ 2

(
1− 6

We

)
(8)

where

τ = d0
2U

√
ρ

ρa
and We = ρa U 2d0

σ

Viscous corrections can be incorporated in equation (6), but
are superfluous for a low-viscosity liquid such as water and
millimetre-sited drops.

As long as the Weber number We is moderate enough so
that We < 6, the drop radius oscillates around a mean, with
a frequency proportional to τ−1. However, when We > 6, the
radius R(t ) increases exponentially, initiating the burst of the
drop on a timescale

τburst ∼
τ√

1−6/We
(9)

proportional to the same timescale τ familiar in the atomization
context22: when We ( 6, τburst ≈ τ and bursting has occurred by
the time it takes for the drop to accelerate to reach the free-
fall velocity U/g ∼ √

(ρ/ρa) d0/g (see equation (3)). The critical
value We = 6 is consistent with ours and earlier observations21,32
when viscous corrections can be disregarded19,20, as is the case for
natural rain. From equation (7), it can be seen that the pancake
thickness h(t ) obeys

∂t̃ h+ r∂r h+2h= 0 with t̃ = t Ṙ/R

for which the asymptotic solution is an exponential decrease33 of
h(t ) independent of r as

h(t )∼ d0 e−2t/τ (10)

The momentum balance in the vertical direction solves the shape
of the bag inflating concomitantly. Letting ξ(r,t ) be the vertical
position of the bag, and assuming that p(r) is a good estimate for
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Figure 4 |Distribution of single-drop fragments. a, Distribution P(d) of fragment sizes d for two initial diameters d0 =6mm (red) and d0 = 12mm
(black). The dashed lines are the Marshall–Palmer exponential distributions P(d)= e−d/〈d〉/〈d〉 parametrized by the corresponding average diameters 〈d〉.
The blue lines are the distribution function in equation (13). Inset: The distributions p(x) of the scaled sizes x= d/〈d〉 compared to the expected distribution
in equation (13). b, The final average diameter 〈d〉 of the fragments versus the initial drop diameter d0. The relationship is proportional for small diameters,
and saturates towards 〈d〉 ≈ a= √

σ/ρg.

the pressure difference between both sides of the bag30,34,35, gives, in
the slender slope approximation (|∂rξ(r,t )|'1),

ξ̈(r,t )= p(r)
ρ h(t )

Thus, using equation (10), when ξ̇(r,t =0)=0, gives

ξ(r,t )= p(r)
ρd0

τ 2

4
(
e2t/τ −2t/τ −1

)
(11)

that is, because p(r) is quadratic in r , a parabola, for which
the amplitude increases exponentially in time and the short-time
(t 'τ ) behaviour35 is ξ(r,t )∼p(r)/(ρd0) t 2/2, as shown in Fig. 3.

The overall drop–bag transition is accomplished within a time
given by τ , and the bag thickness is uniform (a fact further
confirmed by the constancy of the opening velocity of the hole when
the bag breaks) and decays exponentially in time; there is no finite-
time singularity in the case where the stress deforming the interface
is applied normally as opposed to other cases where it is tangential33.
The reason why the bag ultimately breaks is that it is accelerated
perpendicular to its surface, and may thus destabilize because of
thickness modulations due to a Rayleigh–Taylor instability peculiar
to thin films36. The initial acceleration of the inflating bag for a given
largeWe is ξ̈(r,t )∼d0/τ 2 ∼σ/(ρd2

0 )=g (a/d0)2, where a=√
σ/ρg

is the capillary length, of the order of 3mm for water. The whole
force per unit mass exerted on the drop is equal to g at terminal
velocity (see equation (1)) and thus exceeds that due to the inflating
motion for d0 > a. The corresponding cutoff wavenumber kc of the
inflating pancake instability is equal to the capillary wavenumber
constructed with the relevant acceleration36. Thus, kc ∼ 1/d0 for
d0 < a and kc ∼ 1/a for d0 > a. This is why drops with a diameter
that is initially a few units of a inflate as a whole, whereas larger
drops deform into a collection of adjacent bags (Fig. 4 and ref. 37)
of size given by a. As the bag inflates, thickness modulations grow
(although at a slow rate, the growth rate of the instability shrinks
according to

√
g k2c h, where kc h' 1) and finally break the film. At

that moment, the drop essentially amounts to its toroidal rim, most

of the time very corrugated, which breaks by a capillary instability,
forming drops. However large d0 may be, the fragments’ average
size cannot exceed the capillary length a (Fig. 4 and ref. 38). The
maximal size dmax of a stable drop at terminal velocity in quiescent
air for which bothU =√

(ρ/ρa) g dmax andWe=6 is

dmax = a
√
6 (12)

giving dmax ≈ 6mm, a value that indeed coincides with the cutoff
sizes recorded in natural rain (Fig. 1 and ref. 4).

Drop size distribution
Corrugated rims, whether they come from the drop–pancake–
bag transition described above or from a direct topology change
from a drop to a ligament (Fig. 2) due to random motions of
the air, build the overall drop size distribution in the resulting
spray. Consider a collection of ligaments, all of them with a given
volume Ω = πd3

1/6, breaking as they are strongly corrugated.
Strong corrugation means that the amplitude of the cross-section
diameter fluctuations along the ligament is of the order of its mean
radius. The break-up of these ligaments is known27 to produce
drop size distributions well represented by Gamma distributions
Γn(x = d/d1) = nn xn−1 e−nx/Γ (n) of order n = 4 and average d1.
The big drops in this distribution have a relative fraction decaying
exponentially according to e−n d/d1 . These big drops are likely to
suffer subsequent break-up and crossover the critical condition
We = 6 after the first break-up, and do so as long as they all
remain stable. The overall drop size distribution in rain is thus a
compound39 of stable drops coming from the break-up of drops
essentially exponentially distributed in size as

P(d)=
∫

Γ4(d,d1)
e−d1/〈d〉

〈d〉 dd1

providing

p(x = d/〈d〉) = 32
3

x
3
2 K3

(
4
√
x
)

(13)

≈ e−x for x ! O(1)
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where K3(·) is the Bessel function of order 3. This distribution
has the qualitative shape of the fragment distributions recorded in
several related situations12,23–26,40, and fits precisely our experiments
(Fig. 4). This distribution is also consistent with Marshall–Palmer’s
law: its wing above the mean is exponential, with an argument set
by the overall average drop size. This broad distribution is solely
parametrized by the average diameter 〈d〉 or, alternatively, by a
given rate of rainfall R (see equations (2) and (5)). Natural rain
is known to be ‘patchy’41,42, with associated temporal and spatial
fluctuations of R. These fluctuations may affect P(d), but cannot
be solely responsible for its shape17,42. If that were the case, the
fluctuations in R should be such that they screen the dispersion
of drop sizes produced by a single break-up event; however, that
dispersion already contains the whole spectrum of observed sizes,
at constant R (ref. 40).

The complete relationship in equation (5) can now be com-
puted. Using n0 = 0.08 cm−4, ρ/ρa = 103/1.2, g = 9.81m s−2 and∫ ∞
0 x7/2p(x) dx≈28.3with p(x) given by equation (13) yields

〈d〉−1 = 48.5 R− 2
9

in the units of equation (2) giving, in addition to the exponent, a
good order of magnitude for the pre-factor between the steepness
of the drop size distribution and the rate of fall.

Timescales
In the above scenario, the complete distribution P(d) is constructed
from big liquid lumps released intermittently at the base of
the clouds within a time given by equations (9) and (12)
τburst ∼ τ/

√
1− (dmax/d0)2, regardless of any interaction between

nearby drops in the falling rain. The corresponding bursting
distance Zburst =U τburst is given by

Zburst

d0
√

ρ/ρa
= 1

√
1− (dmax/d0)2

and is of the order of a few tens of initial drop diameters
Zburst = d0

√
ρ/ρa for large drops with d0 ( dmax, that is, not far

from the cloud’s base, where Marshall–Palmer distributions have
indeed been observed43,44, and diverges when d0 → dmax ≈ 6mm.
There is a critical slowing down of the drop’s shape dynamics when
d0 approaches dmax (refs 12, 40). The fact that this vision provides
precise and quantitative predictions is not a coincidence because
collisions between independent drops in the process of breaking
are less frequent than their individual bursting frequency. Consider
for instance rain with a water content corresponding to an average
drop size 〈d〉 at the ground level, with a volume of water n0〈d〉4 per
unit volume of space. This volume was initially confined intoN (d0)
big drops of diameter d0, per unit volume of space, distant from
each other by the mean free path 1/N (d0) d2

0 = d0/n0〈d〉4. A lower
bound for the collision time τcoll is the time it takes to travel at the
free-fall velocity U between two drops separated by the mean free
path. Comparing this with the bursting time τburst above gives

τburst

τcoll
= n0 〈d〉4 √

ρ/ρa√
1− (dmax/d0)2

≈ 2×10−2

with 〈d〉≈ 0.3 cm and d0 ( dmax. The corresponding bursting time
τburst ≈ τ ≈ 10−2 s is also much smaller than the falling time of a
typical drop from the clouds a kilometre away from the ground;
this solves the paradox inherent to the vision where coalescence
is thought to be the main ingredient building the distribution,
although the number of collisions is not large enough for a stable
distribution to emerge13,17.

The conclusion is opposite in the clouds. There, the droplet
density is typically much higher (about 102 cm−3), but especially
their average diameter 〈d〉 ≈ 10−3 cm is much smaller15, so that
they do not break up (We < 6, see equation (8)). Drops thus
do have time to coalesce ballistically, and even more efficiently
when turbulence-induced aggregation mechanisms are accounted
for10,11, to grow in size. They ultimately fall when they are heavy
enough to overcome the buoyant ascending motions at the base of
the cloud, and then burst, setting the size repartition in the rain
that wets the ground.

A challenging investigation would be to visualize the above
scenario in situ in precipitation, in real time as in Fig. 2 to check
the relevance of the timescale τ and critical condition for bursting
We = 6 in real rain, and compare the measured instantaneous and
global statistics of P(d). An interesting extension would also be to
consider the same fragmentation problem with, instead of liquid
drops confined by surface tension, brittle solids with a weak tenacity
(critical stress), such as snowflakes, for which the size distribution is
ruled by the same type of law as in equation (1) (refs 5, 44, 45).
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