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Earthquakes are a great challenge for the safety of nuclear reactors. To address this
challenge, we need to better understand how the reactor core responds to seismic forcing.
The reactor core is made of fuel assemblies, which are themselves composed of flexible fuel
rods immersed in a strong axial flow. This gives rise to strongly-coupled fluid-structure
interactions whose accurate modelling generally requires high computational costs. In
this paper, we introduce a new model able to capture the mechanical response of the
reactor core subjected to seismic forcing with low computational costs. This model is
based on potential flow theory for the fluid part and Euler-Bernoulli beam theory for the
structural part allowing us to predict the response to seismic forcing in presence of axial
flow. The linear equations are solved in the Fourier space to decrease computational time.
For validation purposes, we first use the proposed model to compute the response of a
single cylinder in axial flow. We then implement a multiple cylinder geometry made of 4
fuel assemblies, each made of 8 × 8 cylinders, corresponding to an experimental facility
available at CEA. The comparison between numerical results and experiments show good
agreement. The model can correctly predict the added mass. It can also qualitatively
capture the coupling between assemblies and the effect of confinement. This shows that
a potential flow approach can give insight into the complex fluid-structure interactions
within a nuclear reactor and, in particular, be used to predict the response to seismic
forcing at low computational cost.

Key words:

1. Introduction

One of the main concerns for the safety of nuclear power plants is represented by
earthquakes. During an earthquake, the main risk is that fuel assemblies start to move
and potentially touch each other or prevent the drop of the control rods used to cool the
core. To better understand the motion of fuel assemblies subjected to seismic forcing,
fluid-structure interaction models are needed. In this paper, we present such a model,
which has been developed with the objective of gaining insight into the complex fluid-
structure interactions at play inside a nuclear reactor, while remaining computationally
efficient.

† Email address for correspondence: capanna@gwu.edu
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A reactor core of a pressurised water reactor (PWR) is made of fuel assemblies (between
150 and 250 depending on the power of the reactor). Each fuel assembly gathers about
100 fuel rods, stands between four and five meters high, has a cross-section of about
20×20 cm2 and weights about 800 kg. The fuel rods, which contain the pellets of uranium,
have a diameter of about 1 cm for 4 m in height; the space between each fuel rod in the
assembly is about 3 mm. Fuel rods are held together by grids (between 8 and 10 depending
on the power of the reactor) distributed along the height of the fuel assembly. Springs
and dimples are used in-between the grid and the rods to avoid any drop of the fuel rods
(De Mario & Street 1989).

The fuel assemblies are cooled down by a strong axial flow. This water flow is upwards,
with velocities of about 5 m s−1 at 150 bar and 310 ◦C. The flow regime is fully turbulent
with a Reynolds number based on the rod diameter of Re ≈ 5× 105. Note that, even if
the main flow is upwards, the root-mean-square-average of the transverse component is
between 5 and 15% of the vertical velocity.

The presence of the water flow gives rise to strongly-coupled interactions between the
fluid and the structure (Chen & Wambsganss 1972): the motion of the structure modifies
the fluid flow, which itself exerts a force on the structure. A first attempt to describe
fluid-structure interactions is to use the concepts of added mass and added damping. The
added mass is the inertial mass added to a body because of the presence of a surrounding
fluid. For simplicity it can be viewed as a volume of fluid moving with the same velocity
as the body, though in reality all fluid particles will be moving to various degrees (Lamb
1895; Buat 1779). The added mass Ma of a non-deformable body moving at a velocity U
through an unbounded fluid otherwise at rest can be defined such that the kinetic energy
in the volume of fluid is Ek = 1

2MaU
2 or equivalently

Ma =
ρ

U2

∫
‖V‖2 dv, (1.1)

where V is the velocity field. A complete collection of added mass for different geometries
and flow conditions can be found in Wendel (1956) or Brennen (1982), for instance.

While the added mass is mainly due to pressure forces exerted on the body, viscous
forces and boundary layer separation give rise to drag and to an added damping effect.
Taylor (1952) proposed a model for the damping force on a slender structure, which
has been widely used (e.g., Päıdoussis 1966a; Triantafyllou & Cheryssostomidis 1985;
Gosselin & De Langre 2011; Singh et al. 2012). In Taylor’s model, the damping force
is decomposed into two terms: a normal force akin to drag and a longitudinal force
depending on the body surface and on the incident angle.

Generally, the total fluid force exerted on the non-deformable body is assumed to
be decomposed into its added-mass component (proportional to the acceleration) and
its drag component (proportional to the square of the velocity). This decomposition,
known as the Morison equation (Morison et al. 1950), can correctly describe experimental
observations providing drag and inertial coefficients are empirically adjusted (in general,
they depend on the motion amplitude and frequency).

For deformable cylinders in axial flow, the concept of added mass does not apply
directly. In that case, one can use slender body theory developed by Lighthill (1960a,b).
This theory makes use of potential flow theory and arguments of momentum balance in
slices of fluids along the slender body. The resulting normal force per unit length exerted
by the fluid can be written in the limit of small displacement

F (X,T ) = −Ma (∂T + U∂X)
2
W, (1.2)

where W (X,T ) is the normal displacement, U is the undisturbed axial flow velocity, and
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here Ma is the added mass per unit length (Ma = ρπA2, for a circular cylinder of radius
A). In the case of a solid body, W has no X-dependence and one recovers a force opposite
to Ma∂

2
TW , as expected.

Based on the work of Lighthill (1960b), Päıdoussis (1966a,b) studied theoretically and
experimentally the dynamics of a flexible slender cylinder clamped at its leading edge,
which is immersed in an axial flow. He found that, above a critical flow velocity, a flutter
instability appears. Later, Päıdoussis (1973) and Päıdoussis & Pettigrew (1979) extended
this flutter stability analysis to confined geometries, by using the work of Classen (1972)
and Chen & Wambsganss (1972) on added mass in confined geometries.

The stability analysis of a single cylinder in axial flow has been later generalized to
clusters of cylinders (Päıdoussis 1973; Päıdoussis et al. 1977; Päıdoussis & Suss 1977;
Päıdoussis 1979). If each cylinder is free to move independently, the fluid acts as a
coupling medium and the motions of the cylinders are synchronized. Above a critical
flow velocity, the coupled pinned-pinned cylinders loose stability by divergence (unstable
mode of eigenfrequency zero). For higher flow velocities, the system may be subjected
to several divergence and flutter instabilities simultaneously. In recent years, this work
of Päıdoussis has been extended (e.g., De Langre et al. 2007; Schouveiler & Eloy 2009;
Michelin & Smith 2009) and studied numerically both for a single cylinder (De Ridder
et al. 2013, 2015) and for a cluster of cylinders (De Ridder et al. 2017).

The flutter of a flexible cylinder in axial flow bears similarities with the flutter of an
elastic plate often referred to as the flag instability. For a plate, two asymptotic limits
can be studied: slender structures where Lighthill’s slender body theory applies, and
wide plates for which a two-dimensional approach is suited (Wu 2001). For intermediate
aspect ratios, the pressure distribution on a flexible plate can be solved by projecting
the problem in Fourier space (Guo & Päıdoussis 2000; Eloy et al. 2007, 2008; Doaré
et al. 2011a; Eloy et al. 2010; Doaré et al. 2011b). With this projection, the approaches
of slender body approximation and large span approximation can be generalised to any
aspect ratio. In this paper, we will follow a similar approach to describe the flow around
assemblies of flexible cylinders found in PWR.

A different approach was proposed by Ricciardi et al. (2009) using a porous medium
method. It becomes now possible to model both the fluid and the structure dynamics of
a whole core. Some local information is lost compared to a direct numerical simulation,
such as the vibrations of individual rods, but fluid-mediated interactions between fuel
assemblies can be modelled. This model shows good agreement with experimental results
on the response of the whole core to external forcing, but computational cost remains
high.

At present, the models describing the fluid-structure interactions within a reactor core
can be divided into two families: (1) complex numerical models with high computational
costs, which usually hinder the understanding of physical mechanisms; and (2) linear
models with low computational costs, which do not capture important mechanisms
such as fluid-mediated interactions between assemblies. In this paper, we introduce a
new model based on potential flow theory, with the objective of providing an accurate,
computationally effective modelling of fluid-structure interactions within a reactor core.

The paper is organised as follows. In §2 the model is presented and the mathematical
methodology used to solve the problem is described. The model is then applied to a single
cylinder in §3 and compared to results of the literature for validation purposes. In §4, it
is applied to a multiple cylinder geometry, replicating the geometry of an experimental
facility. Numerical results are compared to experimental data and discussed in §5. Finally,
in §6, some conclusions are drawn.
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Figure 1: Representation of confined pinned-pinned cylinder deformed under axial flow
in real space and in Fourier space.

2. Potential flow model

In this section, we describe the proposed model where the fluid flow is treated as
potential and the structure as an Euler-Bernoulli beam. The model is introduced for a
single cylinder in axial flow, but as we shall see, it can be generalised to multiple cylinders.

2.1. Problem statement

We consider a pinned-pinned cylinder of length L and radius A (Figure 1a). We will
use two coordinate systems: a Cartesian system (X,Y, Z) with its origin at the bottom
of the cylinder and a cylindrical system (R, θ, Z) with same origin (Figure 1a).

The cylinder is immersed in a uniform axial flow with velocity U and bounded in
the X and Y directions by rigid walls at distances Lx and Ly from the cylinder axis.
Without loss of generality, we consider that the cylinder deflects in the Y -direction and
the deflection is called W (Z, T ) (Figure 1a).

We use the linearised Euler-Bernoulli beam equation (Bauchau & Craig 2009) to
describe the dynamics of the cylinder deflection

Ms∂
2
TW +B∂4

ZW = FY , (2.1)

where Ms is the mass of the cylinder per unit length, B = EI is the bending rigidity (E
being Young’s modulus and I = 1

4πA
4 the second moment of area), and FY is the force

per unit length that the fluid exerts on the cylinder in the Y -direction.
We assume that the forces exerted by the fluid on the structure are mainly originating

from pressure difference. Hence, the force per unit length can be expressed as

FY (Z, T ) = −
∫ 2π

0

P (A, θ, Z, T ) sin(θ)Adθ, (2.2)

where P (R, θ, Z, T ) is the pressure field in cylindrical coordinates.
The problem is made dimensionless using the cylinder radius A, the flow velocity U and
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the fluid density ρ as characteristic length, speed and density. Dimensionless quantities
are designated with lowercase letters such that, for instance

r =
R

A
, w =

W

A
, z =

Z

A
, lx =

Lx
A
, ly =

Ly
A
, t =

UT

A
, p =

P

ρU2
.

In dimensionless form, the linearised Euler-Bernoulli equation (2.1) becomes

m∂2
tw + b ∂4

zw = fy, (2.3)

where

m =
Ms

ρA2
, b =

B

ρU2A4
, fy =

FY
ρU2A

.

The flow is assumed to be potential, inviscid and incompressible, such that the flow
velocity is given by

V = Uez +∇Φ, (2.4)

where ez is the unit vector along z and Φ(X,Y, Z, T ) is the perturbation potential.
In dimensionless units, this potential is φ = Φ/(UA). To find the flow around the
moving cylinder, one has to solve a Laplace problem with Neumann boundary conditions
(linearised for small displacements)

∆φ = 0, (2.5)

∂φ

∂x

∣∣∣∣
|x|=lx

= 0, (2.6)

∂φ

∂y

∣∣∣∣
|y|=ly

= 0, (2.7)

∂φ

∂n

∣∣∣∣
r=1

= −(∂t + ∂z)w(z, t) sin θ, (2.8)

where (2.6) and (2.7) come from the impermeability of the walls and (2.8) from the
impermeability on the cylinder wall.

Using the linearised unsteady Bernoulli equation, the dimensionless pressure field can
be linked to φ (Capanna 2018)

p(x, y, z, t) = −(∂t + ∂z)φ. (2.9)

Using this relation and applying the operator (∂t + ∂z) to the system (2.5–2.8) above
yields

∆p = 0, (2.10)

∂p

∂x

∣∣∣∣
|x|=lx

= 0, (2.11)

∂p

∂y

∣∣∣∣
|y|=ly

= 0, (2.12)

∂p

∂n

∣∣∣∣
r=1

= (∂t + ∂z)
2w(z, t) sin θ. (2.13)

It shows that the pressure field is also a solution to a Laplace equation with Neumann
boundary conditions. This is why the term P/ρ is called the acceleration potential in
airfoil theory.
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2.2. Problem in Fourier space

To solve the set of equations (2.10–2.13), we will use the method proposed by Doaré
et al. (2011b). It consists in expressing the Laplace problem in Fourier space along z

p̂(x, y, k, t) = F [p(x, y, z, t)] , (2.14)

where p̂ is the Fourier transform of p with F [·] defined as follows

F [f(z)] =
1

2π

∫ +∞

−∞
f(z)e−ikz dz = f̂(k), (2.15)

together with the inverse Fourier transform

F−1
[
f̂(k)

]
=

∫ +∞

−∞
f̂(k)eikz dk = f(z). (2.16)

The convolution product along z, noted ?, is also introduced

f ? g =

∫ +∞

−∞
f(ζ)g(z − ζ) dζ = 2πF−1

[
f̂ ĝ
]
. (2.17)

In Fourier space, the three-dimensional Laplace problem is transformed into a two-
dimensional Helmholtz problem

(∂2
x + ∂2

y)p̂ = k2p̂, (2.18)

∂p̂

∂x

∣∣∣∣
|x|=lx

= 0, (2.19)

∂p̂

∂y

∣∣∣∣
|y|=ly

= 0, (2.20)

∂p̂

∂n

∣∣∣∣
r=1

= γ̂(k, t) sin θ, (2.21)

where γ̂(k, t) is the Fourier transform of the impermeability boundary condition, such
that

γ̂ = F
[
(∂t + ∂z)

2w
]
. (2.22)

Equation (2.2) relates the force per unit length exerted by the fluid on the cylinder
and the pressure field. Using dimensionless quantities and taking the Fourier transform
of (2.2), one obtains the equivalent in Fourier space

f̂y(k, t) = −
∫ 2π

0

p̂(r = 1, θ, k, t) sin θ dθ, (2.23)

where f̂y is the Fourier transform of fy. The pressure p̂ being solution of the linear
Helmholtz problem (2.18–2.21), its solution is proportional to γ̂(k, t). Hence, (2.23) can
be written

f̂y = −µ̂(k)γ̂(k, t). (2.24)

where the function µ̂(k) depends on lx and ly through the boundary conditions (2.19)
and (2.20).

Equation (2.3) governing beam dynamics then becomes in Fourier space

m∂2
t ŵ + k4bŵ = µ̂(k)

[
−(∂2

t ŵ + 2ik∂tŵ − k2ŵ)
]
, (2.25)

showing that µ̂ plays the role of an added mass in Fourier space and that added damping
2ikµ̂ and added stiffness −k2µ̂ are proportional to this added mass.
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Figure 2: (a) Eigenmodes for the first 3 modes of a pinned-pinned beam and (b) their
Fourier transform.

The objective now will be to calculate the added mass µ̂(k). In practice, to calculate
it, we can assume γ̂ = 1, compute numerically the solution p̂ of the Helmholtz problem
(2.18–2.21) for different values of k, lx and ly, and finally use (2.23) and (2.24) to compute
µ̂(k).

2.3. Modal decomposition and range of interest for k

Considering an external forcing at a given frequencyΩ, the displacement of the cylinder
can be written in dimensionless form as

w(z, t) =

∞∑
j=1

qj(t)χj(z), (2.26)

where χj(z) are the beam eigenmodes and qj(t) = ηje
iωt the generalised coordinates,

with ηj the modal amplitudes (which do not depend on time), and ω = ΩA/U the
dimensionless forcing frequency.

To determine the interesting range for k for which µ̂ should be computed, let us
examine the eigenmodes χj(z) and their Fourier transform χ̂j(k) for pinned-pinned
beams. Eigenmodes are given by Blevins (2015)

χj(z) =
√

2 sin(kjz), with kj = jπ/l, (2.27)

with l = L/A the dimensionless cylinder length. Using this normalisation, the scalar
product of two eigenmodes is

〈χi, χj〉 =
1

l

∫ l

0

χi(z)χj(z) dz = δij . (2.28)

As Figure 2(b) shows, k values greater than 10kj have contributions at least 100 times
smaller than low k values in Fourier space. Hence, they can be truncated.

Classical values for PWR beams are A ∈ [10−3, 10−2] m and L ∈ [1, 10] m. Hence,
classical slenderness ratios l belong to [102, 104] and dimensionless wavenumbers kj =
jπ/l ∈ [3×10−4, 0.3] when considering the first 10 modes. This implies that the interesting
range for which µ̂ should be evaluated is roughly k ∈ [10−4, 10].

2.4. Equation of motion in generalised coordinates

Taking the Fourier transform of the modal decomposition (2.26), inserting it into
the beam equation (2.25) in Fourier space, performing an inverse Fourier transform,
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and taking the scalar product (2.28) with the eigenmodes χj gives a set of differential
equations for the generalised coordinates qi(t) that can be written in vector form as

M q̈ + K q = − (Ma q̈ + Ca q̇ + Ka q) , (2.29)

where q(t) = [q1(t), q2(t), · · · ]T is the vector of generalised coordinates, the left-hand side
corresponds to the unforced beam equation, and the right-hand side corresponds to the
forcing by pressure forces. Here, we have omitted the external forcing term representing
the seismic forcing.

The matrix M = mI , with I the identity matrix, is the mass matrix, and K =
bdiag({k4

j}) is the stiffness matrix (where diag({k4
j}) means the diagonal matrix with

k4
1, k4

2, etc. on the diagonal). Equating the left-hand side of (2.29) to zero allows to

recover the eigenmodes and the eigenfrequencies ωj =
√
bk4
j/m of the beam in vacuum.

The matrices Ma, Ca, and Ka correspond to the added mass, added damping and added
stiffness matrices respectively. Their coefficients can be calculated as

(Ma)ij = 〈χi,F−1 [µ̂χ̂j ]〉 =
1

2π
〈χi, µ ? χj〉, (2.30a)

(Ca)ij = 〈χi,F−1 [2ikµ̂χ̂j ]〉 =
1

2π
〈χi, 2µ ? χ′j〉, (2.30b)

(Ka)ij = 〈χi,F−1
[
−k2µ̂χ̂j

]
〉 =

1

2π
〈χi, µ ? χ′′j 〉, (2.30c)

where χ′j and χ′′j respectively denote first and second derivatives of χj , µ = F−1 [µ̂] and
we have used the property (2.17) of the convolution product.

We see here that the knowledge of µ̂(k) or µ(z) is enough to compute the matrices Ma,
Ca, and Ka. In addition, these matrices only depend on the geometry of the problem (i.e.
the wall distances lx and ly) and not on the forcing. Finally, note that the Helmholtz
problem (2.18) only depends on k2, which means that µ̂(k) and µ(z) are real and even
functions. The coefficients of the matrices Ma, Ca, and Ka are thus all real, as expected.

3. Single cylinder

In this section, the numerical calculations performed for the single cylinder geom-
etry using the code implemented on FreeFEM++ (Hecht 2012a,b) will be presented.
FreeFEM++ requires the weak formulation of problems. Problem (2.18)-(2.21) is then
implemented as follows∫

∂C
v sin(θ) dS −

∫
D

(∇p̂ · ∇v + k2p̂v) dV = 0,∀v

where ∂C denotes the rod’s boundaries and D the fluid domain (see Appendix A).

3.1. Meshing

As previously described, the numerical resolution of the problem takes advantage of
the Fourier transform. This allows us to solve several 2D problems, instead of solving a
3D problem.

In this section, we present numerical solutions of the Helmholtz problem described by
(2.18–2.21). Our objective is to compute the value of the function µ̂(k; lx, ly) for different
values of k, lx and ly. Thanks to the symmetries of the problem, the equations can be
solved on a quarter of the domain only (Figure 3).

Before showing the results of these numerical computations, some considerations have
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Figure 3: Helmholtz problem represented in the FEM domain: limit conditions and
example mesh for k = 0.01, lx = 1.5 and ly = 2.

to be made on the discretisation of the domain. A convergence study has been performed
in order to find the optimal meshing for different combinations of wall distance and wave
number. Typically, the size of the meshes must be decreased when the wave number
k is increased. In addition, the refinement of meshes will increase as the enclosure size
decreases and when getting closer to the cylinder.

Explored values are k ∈ [10−5, 103], lx, ly ∈ [1.25, 50]. The variations of the number of
cells in the mesh with lx and ly do not depend on k: number of cells is maximum for
lx = ly = 5. This maximum is equal to 864 for k 6 1 and increases quadratically for
k > 1. The FreeFEM++ code used in this study is included in Appendix A. Raw data
can be found in the csv file attached to this article; it contains the 2448 combinations of
lx, ly and k values and the resulting µ̂ values.

3.2. General trends

Figure 4 shows the dependence of the added mass µ̂ on the wavenumber k for
different values of the wall distances lx and ly. It shows the added mass does not change
substantially for k . 10−2 or k & 102, for the enclosure sizes considered. This was
expected because the only scales in the problem are the radius a = 1 and the enclosure
lengths lx and ly, which are of order 1. Hence, for lx and ly fixed, most variations of the
added mass are expected to occur near k ≈ 1. Note that the slenderness ratio of cylinders
in a reactor core assembly is very large and the range of relevant wavenumbers in this
context is k ∈ [3× 10−4, 0.3], as stressed already in §2.3. For the sake of clarity, the raw
data used for the plots in Figure 4 are published online joint to this paper.

3.3. Slender body limit

In the asymptotic limit of large wavelengths (k � 1) and large enclosure sizes (lx, ly �
1), we expect to recover the result of slender body theory Lighthill (1960b) given by (1.2),
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Figure 4: Value of µ̂ as function of the wavenumber k for different values of the wall
distances lx and ly. Dots denote computed values and the solid line shows the fit (3.5),
valid for k > 10.

which writes in dimensionless form

fy = −ma(∂t + ∂z)
2w, (3.1)

with ma = π, the added mass per unit length of a circular cylinder in dimensionless
units. By analogy with (2.24), one thus expects

lim
k→0

µ̂ = π, for lx, ly � 1, (3.2)

and this is indeed what is found numerically when lx & 10, lx & 10, and k . 10−2

(Figure 4c). This validates our numerical results for small wavenumbers k, in the limit
of negligible enclosure sizes.

3.4. Comparison with cylinder in annular enclosure

In the previous section, the numerical computations of the added mass have been
validated in the limit of long wavelengths and large enclosure size by comparison with the
slender body theory of Lighthill (1960b). In this section, we perform further comparisons
with the theoretical results of Chen (1985) on a single cylinder confined in a concentric
annular chamber. In a potential flow, the added mass of such a cylinder is

µ̂ = π
a2

ext + 1

a2
ext − 1

, (3.3)
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Figure 5: Comparison between the computed added mass of a single cylinder in squared
enclosure and the theoretical predictions of Chen (1985) for a concentric annular
enclosure. (a) Geometry of the squared enclosure (lx = ly = 1.25) superimposed with the
three proposed annular enclosure radii: ahydr, ainsc, and afit. (b) Comparison between
our numerical results (dots) for lx = ly and the prediction given by (3.3) for the three
proposed radii (solid lines).

where aext is the radius of the annular enclosure in dimensionless units.
We will compare this prediction with our numerical calculations of a cylinder in a

squared enclosure (lx = ly). To perform this comparison, we need to relate the wall
distances lx = ly to the annular radius aext. One possibility is to use the hydraulic
diameter equivalence, which leads to an annular radius

ahydr = 1 +
4lx

2 − π
4lx + π

. (3.4)

Alternatively, one can simply use the inscribed circle, which gives an annular radius
ainsc = lx. Finally, one can look for the best linear fit with the numerical data, which
leads to afit = 1.0775 lx.

Figure 5 shows a comparison between our computations of the added mass for a
squared enclosure (lx = ly and k � 1) and the added mass predicted by (3.3) for
an annular enclosure. This comparison shows that the effect of the squared enclosure is
equivalent to an annular enclosure with radius afit = 1.0775 lx. The hydraulic diameter
equivalence gives a good estimate of the effect of the enclosure. This validates our
numerical calculations in a squared enclosure geometry in the limit k � 1.

3.5. Confinement effects

Figure 4 shows that µ̂ does change significantly for small values of k, but still depends
on the wall distances lx and ly when lx . 5 or ly . 5. Two extreme cases can be
considered: (1) a small value of the wavenumber k = 10−5; and (2) a large value k = 10.

Figure 6 shows how the added mass depends on both lx and ly for the two extreme
wavenumbers considered (k = 10−5 and k = 10). For k = 10−5, the enclosure length
along the x-direction has much more influence than its counterpart along the y-direction
(Figure 6a). For k = 10, it is the opposite. Note however that these effects have different
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Figure 6: Confinement effects for (a) small wavenumbers and (b) big wavenumbers.

magnitudes: for k = 10−5, the value of µ̂ roughly triples between lx = 10 and lx = 1.25,
while, for k = 10, µ̂ varies only by 15% between ly = 10 and ly = 1.25.

Figure 4 thus shows that, for large wavenumbers, the dependency on the enclosure
size is weak. Assume that µ̂ is independent of lx and ly for large k values, we can find a
power-law approximation of µ̂ displayed as black solid line in Figure 4

µ̂ ≈ 2.5 k−1, k > 10. (3.5)

For small wavenumbers, although the cylinder can only move in the y direction, it
is the wall distance along x that has the strongest influence. To better understand this
paradoxical result, we plot the velocity field in the Fourier space (Figure 7). For k =
10−5, a strong flow in the y direction (opposite to the cylinder displacement) is observed
along the wall x = lx around the cylinder diameter (y ≈ 0) as shown in Figure 7a. For
large wavenumbers however, no such flow is observed (Figure 7b). By virtue of mass
conservation, when the wall distance along x is reduced, this flow increases. This is why
there is a strong dependency of the fluid-structure interaction force on the x direction
confinements for small wavenumbers.

Finally, for all the wavenumbers that have been considered and for all enclosure
sizes, the added mass µ̂ appears to increase as the enclosure lengths decrease (in both
directions). This observation is in agreement with the literature on channel flows made
by Chen & Wambsganss (1972); Chen (1985); Päıdoussis & Pettigrew (1979).

The calculations performed for a single cylinder geometry allowed us to prove the
reliability of the proposed simplified model. The introduction of the potential flow theory
and the use of Fourier transform are key to directly relate the cylinder displacement and
the resulting pressure force.

This approach leads to fast calculations for any kind of geometry. In the next section,
it will be applied to a group of cylinders and compared to experimental results in the
same geometry.
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Figure 7: Velocity and pressure fields in Fourier space for both small and large
wavenumbers.

4. Assemblies of cylinders

This section is dedicated to a geometry with multiple cylinders. This geometry is built
to represent the four surrogate fuel bundles of the experimental facility ICARE that we
used to validate our results.

4.1. ICARE experimental apparatus

The ICARE experimental facility is made of a closed water loop powered by a centrifu-
gal pump, the test-section, a compensation tank and a heat exchanger (Figure 8). The
test-section is placed in vertical position with a square section of 22.5 cm x 22.5 cm and
hosts up to 4 fuel assemblies arranged in a 2 x 2 lattice. The length of the fuel assemblies
is L = 2.57 m. Each of them is constituted of a squared lattice of 8 × 8 rods, in which
there are 60 rods simulating fuel rods made of acrylic and 4 stainless steel guide tubes.
The guide tubes are empty inside, and they are welded to 5 metallic spacer grids along
the length of the assembly. The guide tubes have a structural function since they give
rigidity to the assembly and they hold together fuel rods. Each assembly has a section
of 10.1 × 10.1 cm2, and the 60 rods constituting it have a diameter of 2A = 9 mm with
a pin pitch P/(2A) = 1.39. The top and bottom of the assembly are rigidly fixed to the
guide tubes, and they are fixed to the test-section through the lower support plate and
the upper support plate.

A hydraulic actuator applies dynamic forcing to one of the four fuel assemblies
(assembly 1 in Figure 8). This forcing in one dimension aims to simulate an earthquake.
The actuator is screwed into one of the grids of the assembly and a force sensor is installed
in-between the actuator and the stem.

The test-section is equipped with 24 linear variable differential transformer (LVDT)
position sensors to measure the displacement of each grid in two directions (Figure 9).
For more details on the ICARE experiment, please refer to Capanna et al. (2019).

4.2. Problem geometry and meshing

The ICARE geometry is implemented in the code to allow for comparison with
experiments with large (C = 8 mm) or small (C = 4 mm) confinements (Figures 10a
and 10b respectively). Confinement size denotes the length of the gap between different



14 R. Capanna, G. Ricciardi, E. Sarrouy and C. Eloy

Compensation 

tank

Heat 

exchanger

Pressure 

sensors

Temperature 

sensors

Centrifugal pump

Flow 

meter

LDV
Position 

sensors

Test 

section

Hydraulic 

Jack

Bundle

Enclosure
Support

Jack

Ball joint

Force sensor

Bellow

34

12

Grid 1

Grid 2

Grid 5

Bottom 

nozzle

Holding 

grids

Holder

Bundle

Rods

Grid 4

Grid 3

Guid tubes

Figure 8: Scheme of the ICARE experimental facility.

Grid 5

Grid 1

Grid 4

Grid 3

Grid 2

USP (Upper Support 

Plate)

LSP (Lower Support 

Plate)

Figure 9: Scheme of the displacement sensors on the ICARE test-section.
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[1][2]

[3][4]
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(a) 4 assemblies in large confinement.

[1][2]

[3][4]

CC

(b) 4 assemblies in small confinement.

Figure 10: Mesh for the two configurations simulating the ICARE set-up. These two
geometries only differ by the value of the confinement C as pictured.

assemblies and between the assemblies and the walls. For both confinement sizes the
distance in-between the rods of the same assembly remains the same.

Assemblies are numbered as depicted in Figure 10a. As in the experiments, the rods of
assembly [1] are forced along the x-direction and they all exhibit the same displacement

w
[1]
x (z, t). Those rods are assumed not to move along y direction and the rods in the

other assemblies are assumed not to move.
Based on §3, the Helmholtz problem to solve is

∆p̂ = k2p̂, in the domain, (4.1a)

∂p̂

∂n

∣∣∣∣
∂Cas.

= 0, on the walls, (4.1b)

∂p̂

∂n

∣∣∣∣
∂C[1]

= γ̂[1]
x (k, t) cos(θ), for assembly [1], (4.1c)

∂p̂

∂n

∣∣∣∣
∂C[n]

= 0, for other assemblies, (4.1d)

where the superscripts [n] refer to the assembly number, ∂C[n] denotes the boundaries of
rods of assembly [n] (with θ the local polar angle for each rod) and

γ̂[1]
x = F

[
(∂t + ∂z)

2w[1]
x

]
. (4.2)

As in §3, the solution p̂ of the Helmholtz problem (4.1) is proportional to γ̂
[1]
x and one

can define added masses µ̂
[n]
x and µ̂

[n]
y from the forces exerted on each assembly

f̂ [n]
x (k, t) = −

∫
∂C[n]

p̂ cos(θ) dθ = −µ̂[n]
x γ̂[1]

x , (4.3a)

f̂ [n]
y (k, t) = −

∫
∂C[n]

p̂ sin(θ) dθ = −µ̂[n]
y γ̂[1]

x . (4.3b)

In practice, µ̂
[n]
x and µ̂

[n]
y can be calculated by assuming γ̂

[1]
x = 1 and numerically

solving the Helmholtz problem (4.1) for p̂. The convergence of the calculations depends



16 R. Capanna, G. Ricciardi, E. Sarrouy and C. Eloy

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

-100

0

100

200

300

400

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

-60

-40

-20

0

20

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

-20

0

20

40

60

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

-10

0

10

20

30

Figure 11: Added masses µ̂
[n]
x (blue solid line) and µ̂

[n]
y (red dashed line) on each assembly

(in Fourier space) for different values of k.

on the mesh size. We thus conducted a convergence study and found that convergence is
ensured when the walls are divided at least into 150 sections, and the cylinder borders
into 50 sections. The calculations presented here have been performed with 200 divisions
on the external walls and 75 divisions on the cylinder borders, which corresponds to
approximately 500 000 cells in the domain and a computing time of about 60 s.

Figure 11 shows the results of these computations for k ∈ [10−5, 10]. In Appendix B, we
detail these results for individual rods. As in the single-cylinder case, the added masses
do not change much for extreme values of k, i.e. k . 10−2 or k & 1, except for assembly
[1], the forced assembly. For large k, the added masses converge to zero.

4.3. Equations of motion in real space

The functions µ̂
[n]
x (k) and µ̂

[n]
y (k) can be interpolated using piecewise 6th-order poly-

nomials, which can then be used to calculate µ
[n]
x (z) and µ

[n]
y (z) with an inverse Fourier

transform (appendix C). By analogy with the calculations for a single cylinder done in
§2.4, we can define added mass, added damping, and added stiffness matrices for the
assemblies too. There are 24 such matrices: 3 kinds (mass M , damping C, stiffness K ), 2
axes (x and y, subscript ◦) and 4 assemblies noted with the superscript [n]. Similarly to

(2.30a–c), these matrices are expressed from the added masses µ
[n]
◦ (z)(

M [n]
◦

)
ij

= 〈χi,F−1
[
µ̂

[n]
◦ χ̂j

]
〉 =

1

2π
〈χi, µ[n]

◦ ? χj〉, (4.4a)(
C[n]
◦

)
ij

= 〈χi,F−1
[
2ikµ̂

[n]
◦ χ̂j

]
〉 =

1

2π
〈χi, 2µ[n]

◦ ? χ′j〉, (4.4b)(
K [n]
◦

)
ij

= 〈χi,F−1
[
−k2µ̂

[n]
◦ χ̂j

]
〉 =

1

2π
〈χi, µ[n]

◦ ? χ′′j 〉, (4.4c)
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where χi(z) is the i-th beam eigenmode defined in (2.27).

Because it is forced at mid-height, we can assume that assembly [1] moves mainly in its

first beam eigenmode, i.e. w
[1]
x (z, t) = q

[1]
x (t)χ1(z). We can further assume that the added

mass and added stiffness matrices are diagonal and that the added damping is negligible
(appendix C). With these hypotheses, the equation of motion for the x-component of
assembly [1] is (

ms +m[1]
x

)
q̈[1]
x + cv q̇

[1]
x +

(
ks + k[1]

x

)
q[1]
x = fee

iωt, (4.5)

where ms = 64m is the dimensionless mass of one assembly per unit length, ks = 64bk4
1

its stiffness, cv accounts for the damping induced by the viscosity effect, m
[1]
x and k

[1]
x

denote the component (1, 1) of the added matrices M [1]
x and K [1]

x and fee
iωt is the external

forcing projected onto the first eigenmode with fe a scalar. The m
[1]
x and k

[1]
x coefficients

represent the added mass and stiffness encountered by an assembly which moves in its
first mode in either x or y direction. Here, we consider only a weak coupling between the
assemblies, such that we can neglect the hydrodynamic forces due to the motion of the
other assemblies on assembly [1] (the validity of this assumption will be assessed below).
The solution of (4.5) is simply

q[1]
x = h[1]

x fee
iωt, (4.6)

with the transfer function

h[1]
x (ω) =

1

−ω2
(
ms +m

[1]
x

)
+ iωcv + ks + k

[1]
x

. (4.7)

It is possible to estimate the motion of assemblies [2] to [4] by considering the
superimposition of the two following cases: still rods undergoing fluid forces induced
by assembly [1] on the one hand, and moving rods undergoing fluid forces generated by
their own movement while other assemblies stand still(

ms +m[1]
x

)
q̈

[n]
◦ + cv q̇

[n]
◦ +

(
ks + k[1]

x

)
q

[n]
◦ = −

(
−ω2m

[n]
◦ + k

[n]
◦

)
q[1]
x , (4.8)

where the coefficientsm
[1]
x , cv, and k

[1]
x appear on the left-hand side because, by symmetry,

they also correspond to the pressure force induced by the motion q
[n]
◦ on the assembly

[n] itself. The right-hand side represents the action of assembly [1] motion via the fluid.

From (4.4c), we see that the added stiffness is k
[n]
◦ = −k2

1m
[n]
◦ , with k1 = π/l (since

χ′′i = −k2
i χi). We will now assume that ω � k1, which is true here because typical values

of ω are around 0.3 and l ≈ 571. This means that the added stiffness term k
[n]
◦ can be

neglected compared to the added mass term −ω2m
[n]
◦ in (4.5) and (4.8). The values of

the added masses m
[n]
◦ are given in table 1. From this table, we see that the ratio of added

masses, m
[n]
◦ /m

[1]
x is at most 21% (for n > 1). This justifies to neglect the hydrodynamic

forces due to the motion of the assemblies [n] onto assembly [1], which can be estimated
as the square of this ratio and is thus of order 4% at most.

Under these hypotheses, we can calculate the displacement ratio at the forcing fre-
quency ω

q
[n]
◦

q
[1]
x

≈ − −ω2m
[n]
◦

−ω2
(
ms +m

[1]
x

)
+ iωcv + ks

, (4.9)
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Table 1: Added mass matrix coefficients for small and large confinement

confinement m
[1]
x m

[2]
x m

[3]
x m

[4]
x m

[1]
y m

[2]
y m

[3]
y m

[4]
y

large 350 -22.1 72.7 18.6 -17.0 20.5 -20.5 26.2
small 384 -24.0 79.0 21.3 -22.4 25.3 -25.3 29.3

which becomes at the resonant frequency ωres

q
[n]
◦

q
[1]
x

≈ −iωres
m

[n]
◦

cv
, with − ω2

res

(
ms +m[1]

x

)
+ ks = 0. (4.10)

Note that this equation is only applicable to n 6=1.

4.4. Comparison with a periodic assembly of cylinders

The model presented above allows us to compute the added mass of an assembly
of cylinders organized in a square array. A qualitative comparison can be made with an
infinite assembly made of a periodic arrangement of cylinders (Pettigrew & Taylor 2003).
In this case, by analogy with (3.3), the added mass of each cylinder is expressed as

µ̂ = π
a2

equiv + 1

a2
equiv − 1

, (4.11)

where aequiv is a measure of the equivalent confinement that can be approximated as

aequiv = (0.535 + 0.14p) p, (4.12)

with p = P/A, the period along x and y of the arrangement.
Using the value P/A = 2.78 of the ICARE assemblies, (4.11) corresponds to an added

mass per cylinder µ̂ = 4.26. Considering an assembly made of 64 cylinders, the total

added mass is mx = 274. This value can be compared to the value m
[1]
x = 350 obtained

in our simulations (Table 1). The two values are of the same order, but in the ICARE
geometry, the presence of other assemblies and of the walls tends to increase the added
mass.

5. Comparison with experimental results

This section compares results obtained using the simplified model and results from a
set of experiments conducted on the ICARE facility described in §4.1. Experiments are
performed imposing a sine sweep ranging from 0 to 10 Hz with a constant amplitude of
1 mm and an axial fluid velocity of 1 m/s when water is present. To catch the transfer
function of a system using a swept sinusoidal excitation, the sweep rate needs to be small
enough to avoid any transient phenomena and contamination of different harmonics in
the system. For these experiments a sweep rate of 0.05 Hz/s is applied, respecting the
international standard ISO-7626 indications. The frequency range embraces assembly [1]
first and second mode in water.

5.1. Added mass

Let us consider the transfer function H
[1]
exp between the displacement W

[1]
x along x of

the grid with vertical position Zw, and the force Fg applied by the actuator on grid with
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position Zf . Since the data are acquired with a swept sinusoidal excitation, the transfer
functions are calculated using the cross-correlation product, and are defined as

H [1]
exp =

∥∥∥∥∥W [1]
x ? W

[1]
x

W
[1]
x ? Fx

∥∥∥∥∥ , (5.1)

where W
[1]
x ? W

1]
x is the spectral autocorrelation of the displacement signal of the 1st

assembly along the x direction and W
[1]
x ?Fx is the spectral cross-correlation between the

displacement signal of the 1st assembly and the force imposed on the first assembly. Cross
correlation functions are calculated using an Hamming windowing filter (5000 points per
windows) to clean up the noise from the signal.

The theoretical transfer function modulus for a one degree of freedom system is given
by

H
[1]
theo(Ω) =

1√
(Ke −Ω2Me)2 +Ω2C2

e

, (5.2)

where Me, Ce and Ke are the coefficients of mass, damping and stiffness identified and
Ω is the circular frequency.

Assembly [1] is excited around its first mode; to identify its dynamical properties, one

has to find Me, Ce and Ke that make H
[1]
theo fit the experimental data H

[1]
exp. This can be

easily achieved by a conjugate gradient optimization method.
Using an Euler-Bernoulli beam model for the rods as described in Eq. (2.1), one can

write the virtual work of assembly [1]

Mt

∫ L

0

∂2
TW

[1]
x δWdZ + Ct

∫ L

0

∂TW
[1]
x δWdZ +Bt

∫ L

0

∂2
ZW

[1]
x ∂2

ZδWdZ

=

∫ L

0

FgδZf
δW dZ,

(5.3)

with

Mt = Ms +Mf , Bt = B +Bf , (5.4)

where Mf and Bf are respectively the participation of the fluid into mass and stiffness, Ct
is a linear damping coefficient and the sum accounts for the 64 rods inside the assembly.

When the structure vibrates on its jth natural mode

W [1]
x (Z, T ) = Nj(T )Xj(Z), (5.5)

with Xj(Z) = χj(Z/A), one can rewrite the energy of the system

Mt

∫ L

0

X2
j dZ ∂

2
TNj + Ct

∫ L

0

X2
j dZ ∂TNj +Bt

∫ L

0

(∂2
ZXj)

2dZ Nj = FgXj(Zf ). (5.6)

Noting that the experimental signal is

W [1]
g = N1(T )X1(Zw), (5.7)

one can relate the mass per unit of length to the identified coefficient

Mt =
X1(Zf )X1(Zw)∫ L

0
X2

1dZ
Me. (5.8)

Measurements take into account the effect of the fluid added mass Mf and the mass
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Table 2: Values of added mass M
[1]
x

M
[1]
x experiment simulation

Large confinement 4.06 kg/m 7.09 kg/m

Narrow confinement 10.36 kg/m 7.78 kg/m

of the structure Ms, therefore to isolate the fluid added mass the participation of the
structure is subtracted based on experimental results obtained in air. Finally, one then
obtains the results listed in Table 2 where added mass are provided for the whole assembly

M [1]
x = Mf . (5.9)

To get a comparison with results from numerical simulation obtained in §4, the following
transformation is applied

M [1]
x = ρA2m[1]

x , (5.10)

with ρ = 1000 kg m−3 the water density.
Table 2 shows the values of added mass for large and narrow confinement given

by experiments and simulations. Both agree on the increase of added mass when the
confinement gets narrower. Experiments give a large increase, more than double, whereas
simulations predict an increase of about 10%. Although the order of magnitude is
respected the differences observed could cast doubt on the validity of the model. To
properly analyse these results, one has to keep in mind that the methodology used to
obtain the experimental results is subject to uncertainties coming from the accuracy of
measurement, the optimization process and the fact that we try to identify constants of
a linear one degree-of-freedom system from a complex nonlinear system. As a result one
could estimate that the added mass coefficient given by the simulations is a reasonable
estimation.

The added stiffness is orders of magnitude smaller than the “in air” structural stiffness:
the added stiffness estimated from simulations in §4 is about 4.7 N m2, while the measured
flexural stiffness of a fuel assembly is about 2300 N m2. As a consequence, we cannot
extract the added stiffness from the total stiffness measured experimentally.

5.2. Coupling

To characterise the coupling between the fuel assemblies induced by the fluid, let us
consider the transfer function between the imposed displacement and the displacement of
the other fuel assemblies at the third grid level in the two transverse directions. Similarly
to (5.1) transfer functions are calculated as

H
[n]
◦ =

∥∥∥∥∥W [n]
◦ ? W

[n]
◦

W
[n]
◦ ? W

[1]
x

∥∥∥∥∥ , ◦ ∈ {x, y}, (5.11)

with W [n] being the displacement signal of the n-th assembly along the ◦ direction.
For each transfer function the maximum value, which occurs at the first natural

frequency is accounted for. These experimental results are compared to displacement
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Figure 12: Displacement ratios obtained by experimental data (left) and approximated
from numerical simulations (right) for 4 fuel assemblies in large confinement at first
natural frequency.

ratio given by (4.10), with the addedd mass coefficients m
[n]
◦ given in table 1 and cv and

ωres estimated from identification of dynamical parameters using (5.6) as follows

Cv =
X1(Zf )X1(Zw)∫ L

0
X2

1dZ
Ce, cv =

Cv
ρUA

, ωres =
A

U

√
Ke

Me
. (5.12)

Experimental values give cv = 69.2 and ωres = 0.12.
Figure 12 compares graphically the displacement ratios as observed in the experiments

with the ratios predicted by (4.10) with these values of cv and ωres. Experiments show
a ratio of about 10 % for most of the fuel assemblies in the two directions except for
fuel assembly [3] which shows a coupling of about 20 % in the direction of forcing.
Although simulations seem to underestimate the values of coupling, they give a good
prediction of the order of magnitude. Moreover, the general pattern is well reproduced
with a significantly more important coupling for fuel assembly [3] in the direction of
forcing. Therefore, the methodology developed seems to be appropriate to simulate the
coupling between fuel assemblies.

6. Conclusions

In this paper a new model for fluid-structure interaction of PWR fuel assemblies is
proposed. The model used the well known potential flow theory and the equations are
solved by using a Fourier approach. This approach leads to the important result of
relating the fluid-structure interaction forces directly to the displacement of the structure
itself. This result is an important achievement since it allows to drastically reduce
computational time, avoiding the necessity of solving fluid equations. As a drawback
it should be considered that the assumption of potential flow leads to completely neglect
the fuel grids, which introduce vorticity in the flow.

Calculations with a potential flow model are first performed for a single cylinder geome-
try and results have been compared with reference works in literature. The model showed
perfect agreement with the Slender Body Model and it also shows good predictions with
respect to the confinement size. The model has been validated, and thus the mathematical
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approach used to solve the equations has been demonstrated to be consistent and reliable.
The model was thus improved for multiple-cylinder geometries.

Finally, in order to validate the multiple cylinders model, calculations simulating
the ICARE geometry are discussed and compared with experimental results. Modal
parameters are identified as functions of the flow rates and compared with experimental
ones. The model reasonably fits experimental data for the added mass and gives a good
estimation of the coupling between fuel assemblies.

Many perspectives are opened as a result of this work. As discussed in this paper, the
model which has been implemented does not account for viscous forces. An improvement
that would be of fundamental importance is to introduce with empirical factors the
viscous forces in the model. One possible way to do this is to introduce viscosity in the
model is to consider the axial water flow as the sum of two flows: a potential bulk flow and
a viscous flow which has a defined empirical distribution. In this way the viscous forces
would be taken into account with an empirical formulation, and it would be extremely
interesting to assess the effects of such improvements, especially on the added damping
coefficient estimation.
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Appendix A. FreeFEM++ code for one cylinder

1 r e a l k = 0 . 0 1 ;
r e a l l x = 1 . 5 ;
r e a l l y = 2 ;
r e a l A = 1 . ;

6 // Geometry
border Cxb( t =0, 1){x=A+(lx−A)∗ t ˆ ( 2 ) ; y=0∗t ; l a b e l =1;}
border Cyr ( t =0, 1){x=lx+0∗t ; y=tan ( atan ( ly / lx )∗ t )/ tan ( atan ( ly / lx ) )∗ l y ; l a b e l =2;}
border Cxt ( t =0, 1){x=tan ( atan ( lx / ly )∗(1− t ) )/ tan ( atan ( lx / ly ) )∗ l x ; y=ly+0∗t ; l a b e l =2;}
border Cyl ( t =0, 1){x=0∗t ; y=A+(ly−A)∗(1− t ) ˆ ( 2 ) ; l a b e l =2;}

11 border Beam( t =0, p i /2){x=A∗ cos ( t ) ; y=A∗ s i n ( t ) ; l a b e l =3;}

// Mesh
r e a l ds = 1/k /10 ;
i n t NbA = max( c e i l ( p i /2∗A/ds ) , 2 1 . ) ;

16 i n t Nbx = c e i l ( atan ( lx / ly )/ ( p i /2)∗ (NbA))+1;
i n t Nby = c e i l ( atan ( ly / lx )/ ( p i /2)∗NbA)+1;
i n t NbxmA = c e i l ( ( lx−A)/ lx ∗NbA)+1;
i n t NbymA = c e i l ( ( ly−A)/ ly ∗NbA)+1;
mesh cMesh = buildmesh (Cxb(NbxmA) + Cyr (Nby) + Cxt (Nbx) + Cyl (NbymA) + Beam(−NbA) ) ;

21

// FE
fe space Vh( cMesh , P2 ) ;
Vh u , v ;

26 // Reso lut ion
so l v e pFour ier (u , v )

= − int2d ( cMesh ) ( u∗v∗kˆ2 + dx (u)∗dx (v ) + dy (u)∗dy (v ) )
+ int1d ( cMesh , 3 ) ( y/A∗v )
+ on (1 , u=0);

31

// mu computation
r e a l mu = 0 ;
mu = −4∗ int1d ( cMesh ,3)( −u∗y/A) ;

Appendix B. Qualitative analysis

After solving numerically the Helmholtz problem (4.1) for γ̂
[1]
x = 1, the resulting forces on

each rod q of each assembly n can be evaluated in both the x and y directions. From this, we

can calculate the associated added masses µ̂
[n,q]
x and µ̂

[n,q]
y

µ̂[n,q]
x =

∫
∂C[n,q]

p̂ cos(θ) dθ, (B 1a)

µ̂[n,q]
y =

∫
∂C[n,q]

p̂ sin(θ) dθ, (B 1b)

with ∂C[n,q] the boundary of the rod q in assembly n. Note that µ̂
[n,q]
x and µ̂

[n,q]
y are unchanged

when k is changed into −k since k always appears squared in the problem.
These added masses are illustrated in Figures 13 and 14 for the 8 mm confinement.
Analogy with the one cylinder case explains the positive values observed on assembly [1] for
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Figure 13: Added mass along x µ̂
[n,q]
x for each rod for four values of k as labelled. Full

circles note positive values, hollow ones negative values. The confinement is 8 mm.

µ̂
[n,q]
x . Confinement size is about the rod diameter, that may be compared to lx = ly = 3 in the

previous section for which µ̂ > π when k � 1. This is consistent with the values observed for
assembly [1] (even though the rods are not properly confined). An interesting result is that rods
in assemblies [2] to [4] experience very small forces. As noted in §3.5, this phenomenon is all the
more true as k becomes large: pressure perturbations remain closer to the moving rods when k
is large and interactions with far away rods are almost negligible.

Appendix C. Calculation of pressure forces in physical space

In §4.3, we explained how to compute numerically the functions µ̂
[n]
◦ (k), which are then

interpolated with piecewise 6th-order polynomials. These interpolations can be used to compute

the added masses µ
[n]
◦ (z) with an inverse Fourier transform (Figure 15).

The functions µ
[n]
◦ (z) are needed in (4.4a–c) to compute the added mass, added damping, and

added stiffness matrices. Note that the functions µ
[n]
◦ (z) are non-zero on an interval ∆z . 100

(figure 15). This means that on a z-scale of order l = L/A ≈ 571, these functions are almost

proportional to a Dirac function, such that the convolution products between µ
[n]
◦ and χj , χ

′
j ,

or χ′′j appearing in (4.4a–c) can be approximated by simple product with
∫∞
−∞ µ

[n]
◦ dz.

As a consequence, the added mass matrix M [n]
◦ and the added stiffness matrix K [n]

◦ are almost

diagonal (since 〈χi, χj〉 = δij) and the diagonal terms of the added damping matrix C[n]
◦ are

almost zero (since 〈χi, χ
′
i〉 = 0). This can be verified by computing the first 3 × 3 terms of the

matrices M [n]
x and C[n]

x for n = 1 and 4 (we chose assembly [4] because it is the assembly for
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Figure 14: Same as Figure 13 for the y-component of the added mass: µ̂
[n,q]
y .

which the extension of µ
[n]
x (z) is widest, see figure 15)

M [1]
x =

 350 0 0.0182
0 347 0

0.0182 0 342

 , (C 1a)

M [4]
x =

 18.6 0 0.0882
0 17.4 0

0.0882 0 15.4

 , (C 1b)

C[1]
x =

 0 -3.26 0
3.26 0 -5.79

0 5.79 0

 , (C 1c)

C[4]
x =

 0 -0.167 0
0.167 0 -0.272

0 0.272 0

 . (C 1d)

Note that the matrices K [n]
◦ satisfy (K [n]

◦ )ij = −k2j (M [n]
◦ )ij , such that they share the same

characteristic of being almost diagonal with the matrices M [n]
◦ .
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Figure 15: Added mass µ
[n]
x (z) (blue solid line) and µ

[n]
y (z) (red dashed line) as a function

of z for the different assemblies (large confinement).
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