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Chaotic self-trapping of a weakly irreversible double Bose condensate

PHYSICAL REVIEW E, VOLUME 64, 02520@QR)

P. Coullet and N. Vandenberghe
Institut Non-Lineaire de Nice, 1361 Route des Lucioles, 06560, Valbonne, France
(Received 16 January 2001; published 19 July 2001

We analyze the dynamics of a weakly open Bose-Einstein condensate trapped in a double-well potential.
Close to the self-trapping bifurcation, numerical simulations of the weakly irreversible one-dimensional Gross
Pitaevskii equation reveal chaotic behaviors. A two-mode model is used to derive amplitude equations describ-
ing the complex dynamic of the condensate.
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Seventy years after its prediction, Bose-Einstein conden- Although there is no rigourous reduction of the GP model
sation has been observed in trapped gases of rubiflim to the two-mode mod€]8,9], such a model has been very
sodium[2], and lithium[3]. The mean-field theoryGross-  useful in particular to predict the self-trapping bifurcation. In
Pitaevskii equationhas been quite successful in reproducingthis letter we will use it as a toy model to investigate ana-
guantitatively many experimental observatiddg lytically the fate of the self-trapping instability in weakly

We consider a weakly open thin cigar shaped Boseopen condensate. The two-mode model reads
Einstein condensate in a double-well potential described by
the weakly dissipative version of the Gross-Pitaevé&iP) 0¥ =U|¥ |V~ KV, (29
equation,

i(?t‘l'2:U|\I,2|2\I,2_K\P1, (Zb)

i — 2 2
(D) = VexX) = Vo e[ XD D0, whereV , , represent the ground-state amplitudes in the two
+ie(a— Byl p(x,0)|2+7VDy(x,t), (1)  Wells,U measures the atomic interactidd {0 in the attrac-
tive case andJ >0 in the repulsive caggandK the tunnel-
ing coupling parameter.
These equations admit two simple solutions of interest.
'e['he in-phase solution

where (x,t) is the condensate wave function, avig(x)
=ax’+b(exp(—cx’)—1), is the trapping potential. The coef-
ficient c,) measures the interaction between the atoms of th
condensate. The magnitude of the irreversible effects, which
will be described later, is represented &y

A nl,_|me_rical_ simulation of Eq(1) using _finite differences _corresponds to the ground state. The antiphase solution
discretization in space and a Crank-Nicholson scheme in
time, shows that the condensate exhibits Lorenz-like chaotic — b)
behavior[5] (see Fig. 1 This paper aims to explain such a oitl

Vi=w)=Jpexpi(—Up+K)t)

behavior. A

In the case of a condensate with attractive atoms, the self- / \
trapping instability is the result of the competition between (a) ’ '
the focusing of the wave function of the ground state at the \
center of the trap and the repulsive effect of the energy bar-
rier. In the case of a condensate with repulsive atoms, a simi-
lar competition occurs for the first excited state, the black X oi
soliton [6,7], which, in the absence of barrier, is also local-
ized at the center of the trap. The self-trapping bifurcation is
a reversible pitchfork bifurcation that leads to two stable
nonsymmetric states.

This bifurcation was first predicted in the frame of a dras- 5
tic truncation of the GP equation, the two-mode model (C)
[8-1Q. In order to check the prediction of this model, a
detailed numerical analysis of the stationary solutions
T (x,t)=f(x)exp(—iwt) of the reversible Gross-Pitaevskii
equation e=0 in Eq.(1)] has been performed. The stability
of the stationary solutiongig. 2) confirms the existence of

a pitchfork bifurcation. FIG. 1. Numerical solutions of Eq1): c,=—1, a=1, b=6,
c=10, a=6, =8, y=3, ande=0.01.(a) Plot of the successive
minima of the “mass”f|¥|2dx. (b) Density plot of|¥|? showing

*Also at I'Institut Universitaire de France, 103 boulevard Saint-the characteristic time and length scale of the chaotic oscillations.

Michel, 75005 Paris, France. (c) Plot of the center of inertiX = /x| ¥|?dx as a function of time.
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FIG. 3. Phase spacauv) of Egs. (6) with wy=0. () \=
—0.2,(b) A\=0.5.
hp=2(p—EK)4. (50

The antiphase solutioréE — 1) is always stable in that case
and the in-phase solutioré€1) loses its stability wheiK
<K.=p. Close to the instability, the variables scale with the
small parameteh =4K (K—K,), which measures the dis-
tance from the instability threshold. The scalings are the fol-
lowing: ¢;~O(\Y?), o~0O(N\), 6~0(\"?), andp~O(N).

In the limit wherex —0, Egs.(4) asymptotically reduce to

-8 0
Space
- a_
FIG. 2. Stationary numerical solutions of E3) with e=0. (a) u=(r+wju+u=0, (6a)
¢y =—1, the ground state and its nonsymmetric bifurcated state. :
(b) ¢,=1, the black soliton and its nonsymmetric bifurcated state. w=0, (6b)

The dashed line represents the potentéat(, b=12,c=10). The

solid curve represents the symmetric unstable solution, the curv&here 5 12K,
' represents one of the two stable nonsymmetric — 1/8K

marked with “
solution.

=Jpexpli(—Up—K)t)

corresponds to the dark soliton stateand ¢, ,

Vi=—V;

i=1,2 are

$p=1/2\2K%v, and o=1/4K>w
These equations catch the universal features of the self-
trapping transition(See Fig. 3 The instability can be
achieved either by decreasing the coupling parantetarby
increasing the total number of atoms in the trap. This insta-
bility was depicted in[10], where the authors used elliptic

the amplitudes and phase perturbations of the in-phase aridnctions to describe symmetric and nonsymmetric oscilla-

antiphase solutions
(33
(3b)

W= (1+xy)exp(i 1) Vp expli(— Up+ £K)t),

W= E(L+Xo) eXpli o) Vp expli (— Up+ EK)),
whereé=1 (resp.¢= —1) for the in-phase solutiofrespec-
tively antiphase solution The use of the new variables
=X+ Xy, 6=Xo—Xq, and = ¢,— ¢4 simplifies Eqs(2) to

dyo=—EKSsing, (43
016=2&K sing+ (Ko sing, (4b)
2+0—6 2+o+6
dbp=—Upd(2+0)+¢K| 5————5——|coss.
(40)

tions in the two-mode model. Equatiof® can be deduced
directly from the GP mod€l11].

Inelastic collisions cause the decay of the condensate
[12—-15. Once the condensate is formed, there is a flux of
particles from the nonequilibrium above-condensate cloud to
the condensate that tends to maintain a fixed number of con-
densed atoms: this is the pumping process. These effects can
be included in the GP equation giving Ed) [16]. The term

YV2¥ represents diffusion. The corresponding modified
two-mode model becomes

0V =U|W, >V, —KW¥,+iel,, (78
10 W,=U|W,|2W,— KW +iel,, (7b)

where
l10=aW o Bo| W1 Wit yWoy, ®)

The invariance of these equations under the transformation

§——§ U—-U,

sis to the attractive cas&JE — 1) without loss of generality.

The linearization of Eqs4) reads
5t0'= O, (56)

0,0=2¢K ¢, (5b)

5— &, allows us to restrict our analy- where « represents the feeding rate of the condensate and

B2|W1 42, its decay rate induced by the inelastic two body
collisions, andy describes the irreversible small coupling
between the condensates due to inhomogeneous effects and
diffusion. The irreversible terms in the two-mode model can
be computed from Eq(l), using an ansatz based on two
ground states of the isolated traf®§. Though these effects
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are small, they will dramatically affect the dynamic close to i+l
the self-trapping instability. Eq$5) become ;"-::
A
do=—Kébsing+eD,, (9a) /
/
d16=2K singp+Kosing+eDy, (9b) /
) 524 011K 2+0—6 2+o0+6 i A “oi
W= po2t o)t K| T 2 g 5) 0S¢ T €Dy (®)
(90 FIG. 4. (a) Projection in the planed— &) of a typical chaotic
. solution of Eqgs.(9) for parametersU=-1, K=1.175, €
where the dissipative terms are =005, a=1, B,=1, B3=0, y=0.2; (b) Plot of the suc-
cessive maxima ofr.
D,=(1+x)[ @~ Bop(1+X1)?]+(1+X,)
X[a@— Bop(1+X)%]+ y(2+ X1+ X5)COSH, plot of the successive maxima of the total number of con-

10 densed atoms reveals the chaotic structure of the Lorenz at-
(103 tractor[Fig. 4(b) and Fig. 1.

_ B 21 The origin of the chaotic behaviors can be understood
D= (1x)[a=Bop(11X1)7] = (1+x) qualitatively. The dissipation and the forcing affect dramati-
X[a— Bop(1+X,)2]+ v(X,—X1)c0s¢, (10b  cally the dynamics near the self-trapping instability. First the

stationary self-trapped state is selected among all the solu-

1+x; 1+X%,| . tions of the conservative dynamical system. Second, when
Dy=—v + sing, (100  the number of atoms becomes larger than a critical value, the
1+x, 1+x; X - .
self-trapped state can lose its stability because the density
andx,=1(o—8) andx,=1(o+ ). becomes so high in a given well that the dissipation leads to

We can adjust the order of magnitude of the bifurcationthe drop in the number of atoms in the condensate. This
parameteh to the amplitude of the small irreversible effects. effect tends to stabilize the symmetrical state where the num-

Close to the self-trapping instability, using the same_ber Qf condensed atoms grows again. But because of the
) i _ _ 1 inertia, the center of mass of the condensate can move to the
asymptotic as in the reversible case, vithO(A2), we then  iher well. This dynamical process can continue forever, giv-

derive a new set of equations: ing rise to oscillations of the center of inertia of the conden-
. . sate in a potential well separated by an abrupt change to the
u—(\"+w)u+ru+ud=0, (118  other well.
) Despite their weaker thermodynamical stability, trapped
W= — uw— 7u?, (11b gases with attractive interactions appear to be one of the
candidate for such an investigation, since in this case the
where  \'=4K (K.~ K)+2€e*y(a—y—3Bp), 0  ground state itself experiences the self-trapping instability.

=1N2Keu, ¢=1/2J2K2v+eallN2K2u, o=1/4KZw  The number of atoms in the trap is supposed to be small
—1/8K2u?, andK. = a+ y/B,. Irreversible effects are cap- enough for the quantum tunneling and the temperature ef-
tured by the parameterg, v, and . The parameterr  fects to be neglected 8]. Once the condensate is formed, a
=e€e(2a+6v) measures the damping of the oscillations oflaser sheet with a very low intensity is applied in order to
the center of inertia of the condensater2e(a+y) mea-  separate the condensate into two parts. As the intensity of the
sures the loss of atoms due to the inelastic two body collifaser increasesthe tunneling parameter of the two-mode
sions, andy=e(4a+67) measures the “stimulated” loss model K decreases the self trapping instability leads to a
of atoms induced by the symmetry breaking. This last ternsteady state characterized by different populations of atoms
gives rise to the complex behavior, since it couples the equabetween the two condensates+#0). As the intensity de-
tions of the dynamic. These equations can be deduced déreases further, a time-dependent regime that eventually
rectly from the irreversible GP modgEq. (1)] without the  leads to regular or chaotic alternation between the two self
intermediate step of the two-mode model. The coefficientgrapped states will appear. In the case of a trapped gas with
(N, u, v, and ») are then numerical quantities that are repulsive interactions, the similar scenario should be ob-
computed from the eigenfunctions of the linearized GP equaserved when the initial state is a black solitfh7]. The
tions[11]. variation of the nonlinearity as proposed [it9] is another

As shown in[17], Egs.(11) are equivalent to the Lorenz accurate experimental protocol that can be used in order to
equations. They possesses complicated dynamical solutiobserve the chaotic behaviors described in this letter.
that are likely to be observed in condensates. A typical solu- The value of the dissipative coefficients appearing in Eq.
tion of the weakly irreversible two-mode model is shown on(1) are really difficult to estimate. The values of dissipation
Fig. 4(a). strongly depend on the temperatl9] of the condensate,

The chaotic alternation between self-trapped states of odaut are smaller than one. For the simulation of Fig. 1, we
posite sign is a typical behavior of the Lorenz model. Thetook ea/+/a (wherey/a is the frequency of the tragqual to
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0.06, which gives a time scale for losses close to the timeis is based on the approximate two-mode model, our con-
scale observed in classical experimef24]. The intensity clusions are independent of this model. The nature of the
and the width of the laser sheet is easily tunable in experiirreversible effectgtwo-body or three-body recombination
ment and it would be easy to adjust it in order to approachs not crucial in our analysis, since they only contribute to
the self-trapping bifurcation. For the realistic value of Fig. 1,actual values of the macroscopic friction parameters of the
the characteristic length and time scales can be seen on Figerenz equations.
1(b).

We have demonstrated that an open Bose condensate canNumerical simulations have been performed thanks to the
experience a transition to chaos. Although most of our analyNLKit software developed at the INLN.
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