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Abstract
Jets, i.e. collimated streams of matter, occur from the microscale up to the large-scale structure of the
universe. Our focus will be mostly on surface tension effects, which result from the cohesive
properties of liquids. Paradoxically, cohesive forces promote the breakup of jets, widely encountered
in nature, technology and basic science, for example in nuclear fission, DNA sampling, medical
diagnostics, sprays, agricultural irrigation and jet engine technology. Liquid jets thus serve as a
paradigm for free-surface motion, hydrodynamic instability and singularity formation leading to drop
breakup. In addition to their practical usefulness, jets are an ideal probe for liquid properties, such as
surface tension, viscosity or non-Newtonian rheology. They also arise from the last but one topology
change of liquid masses bursting into sprays. Jet dynamics are sensitive to the turbulent or thermal
excitation of the fluid, as well as to the surrounding gas or fluid medium. The aim of this review is to
provide a unified description of the fundamental and the technological aspects of these subjects.

(Some figures in this article are in colour only in the electronic version)
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List of symbols

Q flow rate
g acceleration of gravity
h jet radius
ρ density
γ surface tension
λ wavelength
x dimensionless wave number
We Weber number
Oh Ohnesorge number
ν kinematic viscosity
Bo Bond number
v velocity
κ mean curvature
σ stress tensor
p pressure
φ velocity potential
n normal vector
t tangent vector
λ viscosity ratio
η shear viscosity
k wave number
m azimuthal wave number
ω growth rate
ρa outer density
pa outer pressure
δ penetration depth
ηa outer viscosity
e film thickness
σ elongation rate
ρ1 liquid density
ρ2 gas density
v1 liquid velocity
v2 gas velocity
E electric field
ε0 permittivity of free space
σ0 surface charge
V electric potential
N magnetic Bond number
S Swirl number
CD drag coefficient
G constant of gravity
ξ ligament diameter
L ligament length
νs kinematic viscosity of solvent
νp kinematic viscosity of polymer
b extensibility parameter of polymer
λp time scale of polymer
νe extensional viscosity
- surfactant concentration
Pe Peclet number
β surface activity number

1. Introduction

1.1. Scope and motivation

A jet is a stream of matter having a more or less columnar
shape. They are encountered in an extremely large variety of
situations, spanning a broad range of physical length scales,
hence the wide scope of this review.

Jets occur on the scale of the universe as well as on
subatomic length scales and have attracted attention both for
their potential practical use and for their heuristic interest,
demonstrating some key phenomena of physics and applied
mathematics. Our focus will be on the breakup of jets,
most often driven by surface tension. In the first stage, one
investigates the jet’s stability; in the case of instability one
is ultimately interested in the resulting fragment sizes. The
motivation is essentially twofold:

On one hand, these studies are motivated by practical
questions and applications. Among them, illustrated
below, one can mention: understanding and explaining the
large-scale structure of the universe and the support of
galaxy clusters (figure 1), improving and optimizing liquid
jet propulsion, diesel engine technology, manufacturing
(figure 2), agricultural sewage and irrigation (figure 3), powder
technology, ink-jet printing (figure 4), medical diagnostics or
DNA sampling and nuclear fission. Jets are also present in our
everyday environment in kitchens, showers, pharmaceutical
sprays and cosmetics, and are also used for our entertainment
(figure 3), and for our security, for example to inflate air bags
or to help firemen.

On the other hand, jet dynamics probes a wide range of
physical properties, such as liquid surface tension, viscosity
or non-Newtonian rheology and density contrast with its
environment. Jets are also sensitive, on very small scales
(typically nanometres) to thermal fluctuations (see figure 5).
On very large scales, on the other hand, gravitational
interactions are important. The basic flow state can be both
laminar and turbulent. The carrying fluid can be electrically
charged, or magnetic. Nearly all classical physics comes into
play in jet dynamics, and articulating the different effects in a
sound picture remains in several cases a challenging exercise.

For all these applications or academic situations, the
recurrent questions are: will the jet break, and if so, how
long will it take? How sensitive is the jet to, e.g. background
turbulence, or the presence of a dense, viscous outer medium in
relative motion? How does viscosity affect the ultimate stages
of the separation between two droplets? After breakup, how
disperse in size will the fragments be? If they are, how can the
size distribution be made narrower, or broader?

Experimentally, various laboratory techniques, and
notably high-speed digital cinematography in recent years,
have revived the subject. Minute details of the breakup process
can now be documented in real time, as well as the structure
of the resulting spray, thus providing us with a rich source of
information for comparison with theory.

On the analytical side, the most basic tool is linear stability
analysis around the cylindrical base state. However, there are
many important features of the break-up process for which
non-linear effects are dominant. Numerically, this remains
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Figure 1. Studies of the large-scale structure of the cosmos indicate that the universe consists mostly of voids (90%), with filaments and
sheets of galaxies comprising the rest. In the image on the left (Smithsonian Astrophysical Observatory, 1993), each of the 11 000 dots are
individual galaxies. Our own Milky Way galaxy is at the centre. The outer radius is 450 million light years away. Obstruction by the plane
of the Milky Way caused the missing pie-shaped sectors. The image above is less than 5% of the distance to the edge of the observable
universe. (Right) Numerical simulation of the ‘filamentarization’ of the mass support in the universe, interacting by gravitation, and the
subsequent breakup of filaments.

Figure 2. (Left) A jet of tap water falling into a sink. The jet is too thick and its falling time too short for breakup to occur, yet it has
become rough. The continuous jet hits the sink floor, where it expands radially in the form of a thin sheet boarded by a hydraulic jump.
(Right) Higher speed water jets are also used to cut tissues, meat, and even metal plates.

an extremely hard problem: one either has to focus on a
detailed description of individual breakup events, using very
high resolution. On the other hand, the complex geometry of
a spray is hardly captured by existing codes due to the many
degrees of freedom. The final, highly non-linear stages of
breakup can be understood making use of scale invariance;
an obvious example is visible from the conical shape of a
French baguette (figure 4). The interpretation of the resulting
drop size distribution, inherently large to jet breakup, requires
statistical tools.

This review embraces all the aspects of jet breakup
phenomenology in a progressive manner: we first present the
physical mechanisms leading to breakup in various typical
situations, each characterized by its own relevant ingredients.
Second, we give a precise description of the corresponding
breakup event, and then we describe how jet dynamics is
at the core of spray formation and give a unified picture of
atomization.

1.2. History

The earliest study of the behaviour of jets and of breakup was
by Leonardo da Vinci in the Codex Leicester (cf figure 6). The
same work also contains thoughts on the cohesion of fluids and
its role for the formation of drops [2]:

‘How water has tenacity in itself and cohesion
between its particles. This is seen in the process
of a drop becoming detached from the remainder,
this remainder being stretched out as far as it can
through the weight of the drop which is extending it;
and after the drop has been severed from this mass
the mass returns upwards with a movement contrary
to the nature of heavy things’.

Thus da Vinci notes correctly that the detachment of a drop
falling from a tap is governed by the condition that gravity
overcomes the cohesive (surface tension) forces. However, he
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Figure 3. (Top) Sprays produced by jets are widely used in
agricultural irrigation. The big drops from the rupture of the jet fall
rapidly on the ground where they may damage the plants while
smaller ones go with the wind, possibly across the field and farther,
causing a loss of water, or pesticide. Controlling the drop size
distribution remains a crucial issue in this context. (Bottom) The
‘Bosquet des Trois Fontaines’ in Le Nôtre’s Versailles garden
(1677). Engraving by Jean Rigaud.

then incorrectly goes on to assume that the same principle also
governs the separation of the drop itself, which occurs once a
sufficiently extended fluid neck has formed.

The same flawed argument was elaborated later by
Mariotte [3], who claims that gravity is responsible for drop
breakup (a jet which is projected upward does not break up);
breakup occurs when the fluid thread has become as ‘thin as a
hair’. Thus both authors view the breakup of liquids and solids
as related phenomena. Mariotte argues more quantitatively
that a falling jet acquires a speed corresponding to free fall
v =

√
2gx at a distance x from the nozzle (neglecting the

initial speed). Then if Q is the flow rate, mass conservation
gives

h =
[

Q

π
√

2gx

]1/2

(1)

for the radius h of the jet, making it increasingly thin as it
falls. The ideas of da Vinci and Mariotte suggest that cohesive
forces provide a certain tensile strength σ of water, which
has to be overcome by gravity for the jet to break. Taking
the value for the tensile strength of glass σ = 108 N m−2 as
a conservative estimate, the thread can no longer support a
drop of 1 ml volume when its cross sectional area has become
A = 10−5 cm2. Taking Q = 1 ml s−1 in (1), the fluid thread
can formally extend to a length of 100 km before it breaks!

The resolution of this problem had to wait another 100
years: in 1804–1805 Laplace [4] and Young [5] published
their celebrated work, exhibiting the crucial role of the mean
curvature, made up of contributions from both the axial and
the radial curvature. The subtle point which leads to the
fallacy of earlier authors is that surface tension can act in two
different ways: while for a hanging drop it indeed acts like
an elastic membrane, once a cylindrical shape is reached the
radial curvature is driving the breakup! Namely, the system
is driven towards a state having a smaller surface area, and
thus towards a smaller jet radius, which eventually goes to
zero. Thus paradoxically, the greater the cohesion between
the particles (and thus the surface tension γ [6]), the faster
breakup becomes.

Namely, if the fluid viscosity is neglected, by dimensional
analysis a characteristic timescale of the motion is

τ =
[
ρh3

0

γ

]1/2

, (2)

where h0 is the initial radius of the fluid cylinder. As h0

decreases, the motion accelerates even more, and the radius
h can be estimated to decrease according to ḣ ∝ h−1/2. Thus
from integrating this expression one finds that h goes to zero
in finite time, with a characteristic exponent of 2/3, see below.
The time (2) estimates the total time for breakup to occur.

Although by the early 19th century, combining the effects
of surface tension [4, 5] with the laws of fluid motion [7, 8],
all that was needed for a mathematical description of jet
breakup was at hand, some experimental progress came first, in
particular in the work of Savart4 [9]. Savart noted that breakup
occurs spontaneously, independent of any external force or
the direction in which the jet is projected, and thus must be a
feature intrinsic to jet dynamics. To confirm breakup, Savart
found that a ‘thin object’5 could be made to pass through the
jet without getting wet. For more quantitative observation,
Savart developed a stroboscopic technique, which allowed him
to produce images such as figure 7. To this end he employed
a continuous moving tape painted with alternating black and
white stripes, against which the jet was viewed. In particular,
Savart noticed the appearance of a smaller ‘satellite’ drop
between two main ones, a feature which can only be understood
by considering the non-linear dynamics of jet breakup, as we
will see later.

The most unstable mode of breakup is best excited by
allowing the vibrations produced by the impact of drops to be
fed back to the vessel out of which the jet is flowing. This
produces a definite resonance frequency f of the system, for
which Savart formulated two laws [9, 10]: (a) f is inversely
proportional to the nozzle radius h0, and (b) proportional to the
square root of the pressure head1p. By Bernoulli’s law

√
1p

is proportional to the jet velocity, hence both of Savart’s laws
are explained by the existence of a characteristic wavelength
λopt, corresponding to resonance. Indeed, some years later
Plateau, observing the decay of columns of fluid in density-
matched surroundings (the so-called Plateau tank [11]) found
4 Who worked as a ‘préparateur’ to Abbé Nollet, see figure 10.
5 Savart must have handled well all manners of knives, owing to his training
as a military surgeon.
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Figure 4. (Left) Drops emerging from a bank of ink-jet nozzles (just visible at the bottom of the picture). The image is about 2.3 mm across,
the drop heads are 50 µm across and the tails are less than 10 µm wide (10 times thinner than a human hair). Although very small the drops
are moving at around 6 m s−1 hence the need for a very short flash to freeze the motion (20 ns). Credit: Steve Hoath, Cambridge Engineering
Department, Ink-jet Research Centre investigating the performance of ink-jet printers. (Right) A manifestation of breakup familiar to French
gastronomes: the bread dough is initially shaped into a long circular ribbon. Before cooking them in the oven to make the celebrated
‘baguettes de pain’, the baker cuts the ribbon into disjointed pieces by stretching the dough at regular intervals. The extremity of the crunchy
cooked baguette keeps the imprint of the singular breakup process (Courtesy Boulangerie Breteuil, Marseille).

Figure 5. A MD simulation of a jet of propane coming out of a gold nozzle 6 nm in diameter (see section 4.5, figure 58). From [298].
Reprinted with permission from AAAS.

that perturbations are unstable if their wavelength λ is greater
than a critical one λcr, whose value lies between 6h0 and 7.2h0

[12]. But only after Hagen [13] published the incorrect answer
λcr/h0 = 25/2 ≈ 5.66 did Plateau reveal [14] his ‘perfectly
rigorous’ result, λcr/h0 = 2π ≈ 6.28, first demonstrated
explicitly by Beer [15], and spelled out in detail in [16].

Plateau’s observation is that a jet is unstable to any
perturbation which reduces the surface area, thus finally
recognizing the crucial role of surface energy (or surface
tension) for jet breakup. However, the value of the
‘optimal’ wavelength λopt Plateau [12] deduces from Savart’s
measurements is λopt = 8.76h0, significantly greater than
2π ≈ 6.28. Only Rayleigh [17,18] realized that to understand
this ‘overstretching’, the jet dynamics has to be taken into
account: among all unstable wavelengths λ >λ cr, the one with

the fastest growth rate is selected. For inviscid jet dynamics,
this gives λopt = 9.01h0, in good agreement with Savart’s
data, taken some 50 years earlier! Rayleigh thus introduced
the extremely fruitful method of linear stability to jet breakup,
which will be the topic of section 3.

Of course, as soon as the perturbations are no longer
small, non-linear effects become important, and eventually
dominate close to breakup. The features of this non-
linear dynamics were revealed in increasingly sophisticated
experiments, among which those of Savart [9], Magnus [19],
and Lenard [20] stand out. The photographs of figure 8 were
obtained with an electric spark, triggered off the forgoing drop.
The sequence demonstrates the satellite drop coming from an
elongated neck, which pinches on either end. The form of the
neck, on the other hand, is imposed by the asymmetry of the
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Figure 6. Sketch by Leonardo da Vinci [1] illustrating the impact of
jets.

Figure 7. A figure from Savart’s original paper [9], showing the
breakup of a liquid jet 6 mm in diameter. It clearly shows the
succession of main and satellite drops as well as drop oscillations.

profile close to the pinch point: on one side it is very flat, on
the other it merges into the circular drop shape.

The ubiquity of satellite drops, invariably seen in both
dripping and jetting experiments (cf figures 7 and 8), is
thus understood from the nature of the breakup process: the
profile has a universal shape, which in most cases is highly
asymmetric [21]. Regardless of the initial conditions, such as
the nozzle radius or the nature of the perturbation to the jet,
the breakup behaviour stays the same. In the absence of any
characteristic length scale, the profiles near breakup are self-
similar, and characteristic quantities like the minimum thread
radius hmin are described by power laws [21]. For example, in
the case of small viscosity, the conically shaped neck seen in
figure 8 is predicted to have an opening half-angle of 18.1◦ [22].
Dimensional analysis based on (2) predicts the minimum neck
radius to follow the universal law hmin = 0.7(γ (t0− t)2/ρ)1/3,
where t0 denotes the time of breakup and γ /ρ the surface
tension, divided by density. The scaling properties of solutions
close to pinch-off will be the topic of section 4.

The intricate features of drop breakup were essentially
well established with Lenard’s work [20], and articles by
Rayleigh [23] and Boyd [24] further popularized ‘high-speed’
photography using electrical sparks, see figure 9. However, in
the absence of a theoretical framework in which to describe
the non-linear aspects of free-surface flow, these considerable
advances did not take hold. As reviewed in [25], similar shapes
were rediscovered several times [23, 26–28], but not until self-
similarity had been suggested as the basis for a theoretical
description [28,29] could significant progress occur. It is these
more recent developments that will form the bulk of section 4
of this review.

Although it was known from the beginning of the 20th
century that many natural phenomena give rise to a multiplicity
of drop sizes, in particular as applied to rain (see the remarkable
observations of Bentley (1904) [30]), the quantitative study
of sprays only started in the 1950s. This was motivated by
the wide use of liquid propulsion for cars and aircraft, and
concomitantly the development of appropriate measurement
tools [31], as we review in section 5. The possible relation
of the drop size distribution to jet or ligament dynamics was
hinted at in that period, but a definite proof and quantitative
study have emerged only recently [32].

Some more complex and exotic topics have also been
explored widely during the 19th century and before. One such
topic is the sensitivity of jets to electric field, making them easy
to deflect [19]. As illustrated in figure 10, strong electric fields
are capable of deforming a jet into singular shapes, modifying
the character of breakup completely. The interaction of electric
fields and fluid motion will be investigated in sections 3.9
and 4.7. Finally, in section 6 we will consider jets made
up of non-Newtonian materials, for which forces are not
proportional to deformation rates. Figure 11 shows a series
of instantaneous images of jets of various granular materials,
which appear to break up in a manner similar to that of
fluids. Thus unconventional materials like sand, whose novel
properties have generated widespread interest only recently,
have already been investigated in imperial Russia.

2. Describing jets

This review is devoted almost entirely to hydrodynamic
descriptions of jet decay. In this section we outline the
description of a jet issuing into a dynamically inert medium
in terms of the Navier–Stokes equation. Many important
approximations are derived from it, such as the limiting cases
of very small or very large viscosity, or the case of the jet
geometry being slender.

2.1. Essential parameters

To set the stage, we discuss the dimensionless parameters
controlling jet decay, neglecting the outer atmosphere (i.e. air).
We assume that the driving is purely sinusoidal, so that the
speed at the nozzle is

vnozzle = v0 + A

(
γ

ρh0

)1/2

sin(2πf t). (3)

Here v0 is the speed of the jet and h0 its unperturbed radius.
As an aside, h0 is in general not equal to the nozzle radius,
as the jet contracts for high jet speeds and expands for low
speeds [35]. This effect depends on the fluid parameters
as well as on the velocity profile in the nozzle, so to this
day there is no complete theory for the effect [35–37].
The dimensionless perturbation amplitude A is multiplied
by the capillary velocity u0 = (γ /(ρh0))

1/2. By properly
adjusting the driving frequency f , a wavelength λ = v0/f

is chosen. In typical experimental situations the frequency is
several kilohertz.
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Figure 8. A sequence of pictures of a drop of water falling from a pipette [20], taken in 1887. For the first time, the sequence of events
leading to satellite formation can be appreciated. The drop is observed to be almost spherical at the instant it is formed. On the right, an
example of contemporary iconography of drop formation, bearing no resemblance to the shapes observed in nature.

Figure 9. Plate I of Rayleigh’s ‘some applications of photography’
(1891) [23] showing the destabilization of a jet of air into water (a)
of a water jet in air (b). Rayleigh notes that the air jet destabilizes
faster than the water jet. Details of the breakup process and the
recoil of initially straight ‘ligaments’ between the drops, sometimes
breaking themselves before they have recoiled (c) and (d).

The parameter most significant to jet decay is the reduced
wavenumber

x = 2πh0/λ. (4)

At a resonance or ‘Rayleigh’ wave number x = xR [17, 18]
perturbations grow fastest, and the distance between the nozzle
and the first drop ‘breakup length’, is the shortest. For x > 1 or
without driving the Rayleigh mode is selected from a spectrum
of tiny initial perturbations by virtue of its dominant growth,
but breakup becomes much more irregular.

The Weber number [38]

We = ρh0v
2
0/γ (5)

Figure 10. Abbot Nollet himself demonstrating how a water jet
disintegrates when it is charged. He notes that (at the location of the
letter C) ‘...the main jet spreads and divides itself in several tiny jets’
(from Abbé Nollet (1749) [33]).

(sometimes denoted by β2) measures the ratio of the kinetic
energy of a drop issuing from the jet relative to its surface
energy. The temporal perturbation on a jet is translated into
space by convection with velocity vj. As perturbations grow
along the jet on a timescale given by (2), (5) measures how
much a disturbance can grow from one swell to the next.
Typical numbers are several hundred. The last parameter is
the Ohnesorge number [39]

Oh = ν
√
ρ/h0γ , (6)

which measures the relative importance of viscosity η = νρ.
For water and a jet diameter of 1 mm it is about 5× 10−3, but
technologically relevant fluids cover a wide range of different
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Figure 11. The breakup of different types of granular jets, among
them sand and lycopodium powder, from [34]. Even in the absence
of surface tension, denser ‘drop’ regions appear spontaneously.

Figure 12. Photographs of a decaying jet [40] for three different
frequencies of excitation. The bottom picture corresponds to
x = 0.683, which is close to the Rayleigh mode. At longer
wavelengths secondary swellings develop (middle picture,
x = 0.25), which cause the jet to break up at twice the frequency of
excitation. At the longest wavelength (top picture, x = 0.075) main
and secondary swellings have become virtually indistinguishable.
Reprinted with permission from Cambridge University Press.

viscosities. For example, in the case of glycerol Oh is increased
to 2, and by mixing both fluids a wide range of different scaling
behaviour can be explored. Finally, if the jet velocity is small
‘dripping’, gravity plays an important role, as measured by the
dimensionless Bond number

Bo = ρgh2
0/γ (7)

So, in the case of purely sinusoidal driving there are
four dimensionless parameters governing jet decay: the driving
amplitude A, the reduced wavenumber x, the Weber number
We and the Ohnesorge number Oh. The range of possible
dynamics in this huge parameter space has never been fully
explored; the most dramatic effect is that of viscosity, i.e.
by changing Oh. Figure 12 shows typical pictures of a
decaying jet of water that is forced at a distinct wavelength.
Increasing Oh significantly, for example by taking a glycerol–
water mixture, the breakup process changes substantially.
After the initial sinusoidal growth, a region develops where
almost spherical drops are connected by thin threads of almost
constant thickness, which now take quite a long time to break
(see figure 13). In general, the thread will still break close
to the swells. If the viscosity is increased further, the threads
become so tenuous before they break at the end, that instead

Figure 13. A photograph of a viscous jet [41] for a reduced
wavenumber of x = 0.268 and Oh = 0.5 . A thread has just broken
at the ends and is contracting into a droplet.

they break at several places in between in what seems to be a
random breakup process.

2.2. Hydrodynamic description

2.2.1. Navier–Stokes equation. The theoretical as well as
the numerical challenge in the study of jets is to solve the full
Navier–Stokes equation in the time-dependent fluid domain,
subject to forcing at the boundary. Even in a fixed domain this
is not a simple problem, but the main challenge here is to find
an accurate description for the fluid boundary. The strength of
the forcing is proportional to the mean curvature, which goes
to infinity as the jet radius goes to zero, making jet breakup a
very singular phenomenon.

The free surface moves with the local velocity; the most
elegant and general way to describe this is to introduce a
function C(r, t) which is defined in three-dimensional space,
and which is constant exactly on the surface of the jet. If v(r, t)
is the three-dimensional velocity field, then the motion of the
interface is described by the kinematic equation

∂tC + v · (∇C) = 0. (8)

The motion of the interface does not depend on the definition
of C, so there is great flexibility to define C according to a
specific numerical technique or to endow it with a specific
physical meaning.

The most important driving force of jet dynamics is the
Laplace pressure, i.e. the pressure jump 1p across a curved
interface, producing an increased pressure inside a convex
surface:

1p = γ
(

1
R1

+
1
R2

)
≡ γ κ. (9)

Here R1 and R2 are the principal radii of curvature, and κ is
(twice) the mean curvature. If n is the outward normal to the
interface, then

κ = −∇δ3 · n, (10)

where ∇ is defined to be restricted to the surface δ3. If the
jet is axisymmetric the surface may be defined by the height
function h(z, t), which gives the local radius of the jet. In this
description, the kinematic equation (8) becomes

∂t h + vz∂h = vr |r=h, (11)

and the mean curvature is

κ = 1
h(1 + h′2)1/2

− h′′

(1 + h′2)3/2
, (12)
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Figure 14. The shape of a drop of water falling from a nozzle at the
first bifurcation [28]; the parameters are Bo = 1.02 and
Oh = 2.2× 10−3. The line is the result of a boundary integral
computation [53]. Reprinted with permission from Cambridge
University Press.

where the prime, as throughout this review, denotes the spatial
derivative. If the jet develops overhangs, the free surface can
of course no longer be written as h(z, t), as it in fact generically
occurs during pinching of a jet of small viscosity (Oh small),
see figures 14 and 52 below.

The interior of the flow is described by the Navier–Stokes
equation [42]

∂tv + (∇v)v = − 1
ρ

∇p + ν1v (13)

for incompressible flow

∇v = 0. (14)

On the free boundary pressure and viscous forces are balanced
by capillary forces:

σ · n = −γ κn|∂3, (15)

where
σ = −pI + η[∇ : v + (∇ : v)T] (16)

is the stress tensor and p is the pressure. With the velocity
known, the interface is moved according to (8). The shape of
the interface then couples back into the flow via the boundary
condition (15).

2.2.2. Small viscosity: irrotational flow. In the limiting
case of vanishing viscosity it is generally believed that little
vorticity is generated at the free boundary [43]. Thus unless
vorticity is introduced from elsewhere, the flow can be treated
as irrotational, i.e. the velocity is given by the potential φ,

v(r, z) = ∇φ(r, z), (17)

which obeys Laplace’s equation

1φ = 0. (18)

Since the Green function of (18) is known, the fluid
motion in the interior can effectively be integrated exactly.
Thus one ends up with an equation for the free surface
alone (a so-called boundary integral method), which can be
implemented numerically with very high accuracy. This
method was developed in [44], and first applied to jet breakup
by [45].

It is convenient to represent the surface in the Lagrangian
form x(ξ, t), where ξ is an arbitrary parametrization. For
a known velocity field, the surface can then be advanced
according to ∂tx(ξ, t) = v. Using Laplace’s formula for the
pressure jump across the interface, Bernoulli’s equation [42]
results in an equation of motion for the potential on the free
surface:

∂tφ(ξ, t) = v2/2 +
γ

ρ
κ on ∂3. (19)

The velocity v on the right-hand side of (19) can be represented
as (17), decomposing into tangential and normal components:

v = (∂nφ)n + (∂sφ)t. (20)

The tangential derivative ∂sφ can be evaluated from the
knowledge of φ on the surface alone, but to compute ∂nφ
Laplace’s equation comes into play. Namely, given (18) it
follows from Green’s second theorem that

2πφ(r) = P.V.

∫

∂3

(
φ(r′)∂n

1
|r− r′|

− ∂n
′φ(r′)

|r− r′|

)
ds ′,

(21)
where both r and r′ lie on the surface. This is an integral
equation which can be solved for ∂nφ once φ is known on ∂3.
Thus (19)–(21) form a closed system by which the velocity
on the surface can be updated, which in turn advances the
interface.

Numerically more efficient implementations of the above
scheme represent the velocity potential by a distribution of
dipoles µ(ξ, t) on the surface [45–47]. The dipole distribution
can then be used directly to calculate the normal component
of the velocity field. All numerical implementations of the
inviscid boundary integral equations suffer from a non-linear
instability on the scale of the grid spacing, investigated for
a model problem by Moore [48]. Therefore, some amount
of artificial smoothing or damping is always needed [49, 50],
typically a redistribution of grid points at every time step. It has
been shown only very recently that the mathematical problem
itself is well posed [51], thus the instability appears to be a
numerical artefact. However, the mathematical result only
applies to zero surface tension, and requires smooth initial data
as well as additional assumptions on the pressure distribution.

A typical computation is shown in figure 14; note the
turnover of the profile at bifurcation, explained by the similarity
description of inviscid pinch-off, cf section 4.3. The boundary
integral formulation allows for high accuracy; [52] followed
pinching solutions through 7 orders of magnitude!
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2.2.3. High viscosity: Stokes flow. We now come to the
opposite case of Stokes flow, for which the rhs of (13) can be
neglected. For the resulting linear equation the velocity and
stress distribution of a point force [54] f(r) = Fδ(r− rp), i.e.
the Green function in an infinite domain can be computed [54]:

v(r) = 1
η

J(r− rp)F, σ(r) = K(r− rp)F, (22)

where

J(r) = 1
8π

[
I
r

+
rr
r3

]
, K(r) = − 3

4π
rrr
r5

. (23)

With this in mind the flow equations can again be reduced to a
boundary integral description, as developed in [55] and [56].

The basic idea is that surface tension can be viewed as
a distribution of point forces over the surface, with F = κn.
This leads to the integral equation

(1 + λ−1)

2
v(x)=−γ

η

∫

∂3

κJ.n dσ ′ + (1−λ−1)

∫

∂3

v.K.n dσ ′,

(24)

where η/λ is the viscosity of the outer fluid. Thus for λ = 1
(fluid of the same viscosity everywhere) the velocity is simply
a convolution of the boundary forcing with J . If for example
λ = ∞ (no fluid in the exterior) the jump in viscosity
introduces a stress discontinuity which is accounted for by
the second integral of (24). This turns (24) into an integral
equation for the velocity on the boundary, which can be used
to advance the interface.

The impressive power of the viscous boundary integral
method is illustrated in figure 15. The shape of the interface
is a double-cone structure, to which we return in section 4.4.
The viscosity of the outer fluid is much larger, so recoil of fluid
necks is slow. As a result, necks break multiple times, and a
complicated nested singularity structure forms. Equation (24),
as it stands, is only valid for the motion of a jet in an unbounded
fluid, disregarding, e.g., the effect of the nozzle. As described
for example in [58], the method can be extended to handle the
no-slip boundary condition at a solid wall, so the nozzle can be
included as well. A boundary integral code was used in [59] to
compute pinching profiles with very high accuracy, for a wide
range of viscosity ratios λ. As an illustration of the resolution
achievable, [60] studied the coalescence of drops, resolving
features down to 10−12 relative to the drop radius.

2.3. Numerics: Navier–Stokes methods

If one cannot resort to boundary integral methods, both the
accurate representation of the free surface as well as the
solution of (13) in a time-varying domain become a significant
challenge. In addition, the fluid may undergo topological
transitions (both breakup and merging), in which case the
identity of a surface changes.

Either the surface is represented directly, for example by
surface markers (‘front tracking’), or the surface is viewed
as a movable object in a higher dimensional space (‘front
capturing’). The main advantage of the latter method is that it
easily deals with topological transitions. For example, one

Figure 15. Time evolution of a cylinder of fluid suspended in
another fluid. The viscosity ratio is λ = 0.0067, and the initial
dimensionless wavenumber x = 0.5 [57]. Snapshots are taken at the
times shown in the middle. Reprinted with permission from
Cambridge University Press.

can use the advection equation (8) with a suitably defined
smooth function C to represent the interface, which can be
multiply connected. On the other hand, by tracking the surface
directly, much higher accuracy can be attained; however when
the topology changes, some amount of ‘surgery’ is required.

Secondly, the fluid occupies a time-dependent domain
3(t). Hence either the computational domain deforms with3
(Lagrangian approach) or the computational grid, occupying
a larger domain, is stationary and the interface sweeps over
it (Eulerian approach). Again, boundary conditions can
be incorporated very reliably and accurately for Lagrangian
schemes, since the computational grid respects the shape of
the boundary. A Eulerian scheme, on the other hand, has
much greater flexibility in representing a complex and multiply
connected fluid domain.

For an overview of existing numerical schemes, see, for
example, [50, 61–67]. Each of the computational philosophies
named above can be implemented in different ways, and any
combination of treating the surface on one hand, and the
fluid motion on the other, is possible. The most accurate
methods are those for which the grid is fitted to3(t), either by
choosing appropriately defined computational elements [64],
or by transforming to a fixed grid [68–70]. The code [64] was
developed with particular emphasis on a detailed description
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Figure 16. Schematic of tessellation (left), and simulations of
dripping (right). The nozzle radius is R = 3.6 mm, the top picture
corresponds to water, the bottom to a 83% glycerol solution.
Reprinted from [73]. Copyright 2002, with permission of John
Wiley and Sons.

of pinch-off, and has been applied to a variety of dripping and
jetting applications [71–75].

Equations (13)–(15) are solved using a Galerkin/finite
difference method [76], decomposing the domain into
elements as illustrated in figure 16. The flow is assumed to be
axisymmetric, and different prescriptions are used in different
parts of the flow, making the discretization highly specific to the
problem at hand. As in an earlier implementation of the same
method [77], the boundary conditions can be incorporated
directly into the residual equations for each boundary element.
Figure 16 shows typical result for dripping at low viscosity
(top) and high viscosity (bottom). As revealed in the closeup,
the interface overturns at low viscosities, while in the opposite
case very long threads are formed.

The most popular front capturing schemes are the volume
of fluid (VOF) [80] and the level set [81, 82] methods, or
combinations thereof [61]. In the former, the interface is
reconstructed from the fraction of each phase that exists within
each computational cell; as a result, volume is conserved
exactly. The level set method uses (8), with a functionC chosen
for computational convenience; typically, it is maintained as
the signed distance from the free-surface. With either method,
there is essentially no limit to the complexity of the free-
surface shape, and breakup and merging events are handled
automatically (which of course does not imply that they
represent physical reality)! A number of well-known problems
such as spurious currents are discussed in [62]. In addition,
there are limits on stability which require the densities of both
phases not to be too dissimilar [83]. An example illustrating
the considerable power of front capturing schemes is that of a
turbulent jet entering a gas atmosphere, as shown in figure 17.
The dimension of the (uniform) mesh is 128× 128× 896, the
calculation time on a 14 processor machine was 3 weeks.

In spite of sophisticated techniques to reconstruct the
surface, the accuracy of front capturing schemes is limited
by the calculation of surface tension forces. The rate of
convergence of these schemes is not well understood, and is
often only linear [62]. For this reason methods have been
developed that represent the surface by marker points [63,84],
so that the curvature can be computed with high accuracy based
on the position of marker points. In addition, adaptive grid
methods have been developed [63, 85], which refine the grid
in the neighbourhood of the free surface. Thus the flow can
be calculated more accurately as well. A number of codes are
open source, such as SURFER [86] or Gerris [87].

Finally, there are numerical implementations which
endow the interface or the fluid itself with some ‘microscopic’
structure. Only on an appropriately coarse-grained scale is
the Navier–Stokes equation with a sharp interface recovered.
Firstly, there are order parameter or Cahn–Hilliard models
[88, 89], which also go by the name of ‘diffuse interface
models’. The two phases are distinguished by different values
of an order parameter, which can be the density ρ, with a
smooth tanh-like profile at the position of the interface. Surface
tension emerges from the coupling between the velocity field
and the order parameter, which results in a forcing concentrated
in the interface region. The value of the surface tension is
related to the free energy functional of the order parameter
[90]. Evidently the resolution of this method is limited by the
thickness of the interface, which in present implementations is
much thicker than its true physical value of a few angstrom
for a liquid–gas interface [90]. Secondly, lattice gas [91]
and lattice Boltzmann (LB) methods [92] have been adopted
to free surfaces as well [67, 93]. Since the strength of
these methods lies in their flexibility to describe complex
boundary conditions, they are probably best compared to
front capturing methods. However, we are not aware of
LB methods having been applied to complex free-surface
flows yet.

2.4. Long-wavelength descriptions

Here we describe methods which have been used successfully
to describe free surfaces for the case that perturbations have
a wavelength much longer than the radial extension. Results
are often highly quantitative, and play an important role in
cases where full Navier–Stokes simulations are prohibitively
expensive [75]. However, the greatest significance of long-
wavelength models lies in the fact that they often capture the
exact form of the solution near breakup. They thus form
the basis for most analytical descriptions of jet breakup, see
section 4.

The first two methods are applicable if the fluid motion is
confined mainly to the inner (jet) fluid. Either the velocity field
is represented directly by expanding in the radial variable, or it
is exhausted in the radial direction by a set of basis functions.
Slender-body analysis is widely used if the jet is dynamically
inactive and the focus is on the description of the exterior
motion. In that case one aims to represent the motion by a
distribution of point singularities along the axis.
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Figure 17. A numerical simulation of a turbulent jet of liquid (ρliq = 696 kg m−3, ηliq = 1.2× 10−3 kg (ms)−1) entering a gas atmosphere
(ρgas = 25 kg m−3, ηgas = 10−5 kg (ms)−1) [78]. The surface tension is γ = 0.06 N m−1, the jet speed is vnozzle = 100 m s−1, the turbulence
intensity [79] is 0.05.

2.4.1. Radial expansion. The essential idea of this method
goes back to Reynolds’ lubrication theory [94]: if variations
along the jet are slow, the flow field in the transversal direction
can be described by a ‘simple’ function. The two main
advantages are that the effective description becomes one-
dimensional, and that the flow field no longer has to be
solved over a time-varying domain. Detailed comparisons with
experiments and simulations have shown that one-dimensional
descriptions often are surprisingly accurate, even if the long-
wavelength assumption is not well verified [95–97].

One-dimensional descriptions of jets and fibres have been
used for a long time, elements of it going back to Trouton [98]
and Weber [38]. Matovich and Pearson [99–101] developed
equations for steady fibre spinning. In two pioneering papers,
Markova and Shkadov [102] and Lee [103] developed one-
dimensional dynamical equations for inviscid flow, see also
[104]. They studied the non-linear dynamics of jet breakup
numerically, using Fourier [102] and finite difference [103]
methods. Unfortunately, the resulting models suffer from
unphysical singularities at which the slope of the profile goes
to infinity [105]. Viscosity was included by Green [106], but
using an inherently one-dimensional description known as the
Cosserat equations [107,108]. Entov et al [109] and Renardy
and Markovich [110,111] included memory effects appropriate
for the description of polymers, while Entov and Yarin [112–
114] and Dewynne et al [115, 116] extended to the case of
curved centrelines.

Reynolds’ idea amounts to saying that a typical radial
length scale 4r of a solution one hopes to describe is much
smaller that its longitudinal scale 4z:

4r = ε4z, (25)

where ε is a small number. Thus, if one expands the
hydrodynamic fields in the radial direction:

vz(r, z, t) = v0(z, t) + v2(z, t)(εr)
2 + · · · ,

vr(r, z, t) = −v′0(z, t)
εr

2
− v′2(z, t)

(εr)3

4
− · · · ,

p(r, z, t) = p0(z, t) + p2(z, t)(εr)
2 + · · · ,

(26)

the higher-order terms will be of decreasing size. When
studying the behaviour near breakup, we will discover that

ε is to be identified with the square root of the time distance
from the singularity, thus the slenderness expansion captures
precisely the contributions to the Navier–Stokes equation
which are relevant close to the singularity.

The prescription (25) is not yet sufficient to define a long-
wavelength description uniquely, to that end a choice for the
length scales 4z as well as a time scale τ has to be made.
Physically, each choice corresponds to a balance of terms in
the Navier–Stokes equation, which will enter the description
at leading order. Which balance is appropriate will depend on
the character of the solution to be expected for a given set of
physical parameters. The balance that will prove most useful
is one in which surface tension, inertial and viscous forces all
come in at leading order.

First, it is useful to introduce a reference length and a time
scale which only depends on the physical parameters of the
fluid, and which is thus intrinsic to the fluid motion [119]:

4ν = ν2ρ

γ
, tν = ν3ρ2

γ 2
. (27)

Parameter values for commonly used fluids are given in table 1.
Naively one might think that values of 4ν and tν , being intrinsic,
might be associated with some microscopic scale of the fluid.
However, this intuition is spectacularly wrong, as 4ν and tν
vary over 11 and 16 orders of magnitude, respectively! Now
if, in addition to (25), one equates estimates of the Laplace
pressure γ /(hρ), inertial force ∂t vz and viscous force ν1vz,
one arrives at

4z ∼ ε, 4r ∼ ε2, τ ∼ ε2. (28)

If the typical scales of a solution behave according to (28),
surface tension, inertial and viscous forces are of the same
order.

Now the procedure to derive the leading-order equation,
described in detail in [120], is fairly straightforward: all
quantities are made dimensionless using the scales (28),
and the expansion (26) is inserted into the Navier–Stokes
equation (13), (14) for incompressible fluid motion. The
kinematic boundary condition (11) gives, using the original
dimensional variables,

∂t h
2 + (vh2)′ = 0, (29)
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Table 1. The fluid parameters for water, glycerol, mercury and golden syrup. The values are quoted from [117, 118]. The internal scales 4ν
and tν are calculated from the kinematic viscosity ν and from the ratio of surface tension γ and density ρ.

Mercury Water Glycerol Golden syrup

ν (m2 s−1) 1.2× 10−7 10−6 1.18× 10−3 0.051
γ /ρ (m3 s−2) 3.47× 10−5 7.29× 10−5 5.3× 10−5 5.6× 10−5

4ν = ρν2/γ (m) 4.2× 10−10 1.38× 10−8 0.0279 47
tν = ν3ρ2/γ 2 (s) 1.4× 10−12 1.91× 0−10 0.652 4.3× 104

where we replaced v0 ≡ v for neatness. Clearly, (29) is
the conservation law for the volume πh2 dz contained in a
slice of fluid, approximating the velocity field as a plug flow:
vz(r, z, t) ≈ v(z, t). From the z-component of (13), making
use of the two equations contained in the boundary condition
(15), one obtains

∂t v + vv′ = −γ κ ′/ρ + 3ν
(v′h2)′

h2
(30)

to leading order in ε. Also to leading order, the mean curvature
κ is

κ = 1
h

. (31)

The structure of (30) is best motivated by considering
the force balance on a slice of fluid which carries momentum
m = h2v per unit length, disregarding the common factor ofπ .
A more systematic treatment of the slice concept is found in the
following subsection. Namely, the integrated form of (30) is

∂t (h
2v) + (h2v2)′ = −γ

ρ
κ ′h2 + 3ν(h2v′)′, (32)

where the left-hand side is the total time derivative of m. The
first term on the right comes from the capillary forcing on the
slice, the second term is the viscous forcing. The prefactor
comes from the fact that the viscous contribution to the axial
stress σzz in an axisymmetric extensional flow is [98] 3ηv′,
where 3η is called the Trouton viscosity [98]. In the analogous
case of a plane sheet, Taylor [121]6 shows that the effective
viscosity is 4η.

The set of equations (29)–(31) is a coupled system
of equations for h and leading coefficient v0 of the radial
expansion (26). Apart from the fact that the spatial dimension
has been reduced to one, the motion of the free surface is
now given explicitly by equation (29). The system forms the
basis for the similarity description of jet decay near the point
of breakup, as described in detail in section 4. However, as
evolution equations (29)–(31) are useless, since the second,
longitudinal curvature term of (12) is not contained in (31).
As a result (see section 3), the system is prone to instability at
zero wavelength and is thus ill-posed.

This can be remedied [95] by replacing (31) by the full
expression (12), which gives for the energy balance over a
length L of the jet:

∂t (Ekin + ES) = D + boundary terms. (33)

Here
Ekin = π

2
ρ

∫

L

h2v2 dz (34)

6 A fact pointed out to us by Howard Stone.

is the kinetic energy,

ES = 2πγ
∫

L

h(1 + h′2)1/2 dz (35)

is the exact form of the surface energy and D is the (negative
definite) rate of energy dissipation

D = −3πνρ
∫

L

(hv′)2 dz. (36)

Thus in the long-time limit the system will tend to a state in
which the flow ceases and which minimizes the surface area
(i.e. spherical drops); these equilibrium states are reproduced
correctly by (29) and (30) iff the full curvature (12) is taken
into account.

Indeed, the system (29), (30), (12) has been used
with great success to describe dripping and jetting away
from the singularity [95–97, 122, 123]. In [96] a detailed
comparison with full Navier–Stokes simulations was carried
out, demonstrating excellent agreement over a wide range
of parameters. A comparison with experiment is shown in
figure 18 for a dripping faucet, adding the acceleration of
gravity g to the rhs of (30). Indeed, a number of detailed
studies of the bifurcation diagram and the chaotic states of a
dripping faucet [97, 122, 124, 125] are based largely on this
one-dimensional description, a full simulation being much too
costly.

The method described above can be pursued to higher
order in ε, (cf [126,127]), continuing the radial expansion (26)
to higher powers in r . The scheme of Garcia and Castellanos
[127] is particularly interesting, since it leads to systems
of equations in which the non-linear couplings between the
variables h, v0, v2, . . . (cf (26)) are kept. In principle, this
could lead to a systematic improvement of the description of
non-linear jet dynamics, but this line of research has not been
followed much, mainly because the resulting systems become
very unwieldy, and contain rapidly increasing orders in the
spatial derivatives.

2.4.2. Galerkin method. An alternative approach to the radial
expansion method described above is the Galerkin method
developed in [120], based on ideas by Dupont [128]. In
this approach one represents the velocity field as a series of
divergence-free basis functions w(2i,z̄)(r, z), i = 0, . . . , n, each
of which represents a slice of fluid at position z̄:

v(r, z, t) =
∞∑

i=0

∫ ∞

−∞
v(i)(z̄, t)w(i,z̄)(r, z) dz̄. (37)
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Figure 18. Period-2 dripping at Oh = 0.13, Bo = 0.33, and
We = 0.232 [97]. (Top) simulation of (29),(30), (bottom)
experiment. Reprinted with permission from [97], copyright 2006
by the American Institute of Physics.

Multiplying the Navier–Stokes equation by any of the basis
functions w(r, z) and averaging, one obtains

ρ

∫

V

[∂tv + (∇)v]w d3x

= −γ
∫

O

κ(nw)d2s − 2η
∫

V

Dij (v)Dij (w)d3x (38)

where
Dij (v) = 1

2 (∂j vi + ∂iv0) (39)

is the deformation rate tensor.
In the simplest approximation, in which the velocity is

represented by a plug flow, one has

w(r, z) := w(0,z̄)(r, z) =
(
− r

2 δ
′(z− z̄)

δ(z− z̄)

)

. (40)

Putting v(z, t) := v(0)(z, t) one obtains

ρ[h2v̇ − 1
8 (h4v̇)′ + h2vv′ + 1

16 (h4v′2)′ − 1
8 (h4vv′′)′]

= −γh2κ ′ + η[3(h2v′)′ − 1
8 (h4v′′)′′], (41)

where the dot denotes a time derivative and primes spatial
derivatives. Equation (41) replaces (30), obtained from the
radial expansion method.

Equations (29), (41) are identical to the ‘Cosserat’
equations as given in [129], based directly on one-dimensional

fields [106–108], to which mechanical and thermodynamic
principles are applied. The above approach establishes the
connection to the pointwise description of hydrodynamics.
The great advantage of (41) is that it builds in the full curvature
term (12) in a natural fashion. Its precise structure is somewhat
arbitrary since it depends on the choice of basis function
w(r, z). If one orders the terms in (41) according to the
slenderness parameter ε, one recovers (30).

2.4.3. Slender-body approximation. Slender-body theory
was first developed to describe the inviscid flow around bodies
[130], its origins dating back to the 1920s, as reviewed in [131].
Another application is to compute the electric field around
an elongated conducting body [132], as used in [133, 134]
and in section 4.7.2. Namely, from the point of view of
the exterior field, the surface charge can be thought to be
concentrated along the centreline of the body. The strength
of the distribution has to be found self-consistently, by solving
an integral equation. For free-surface problems, in particular,
this represents a significant advance, since the distribution has
to be found in a fixed domain only, rather than on the unknown
surface.

For example in the case of a fluid jet in an external
electric field, described in detail in section 4.7, one needs
to know the electric field E on the surface (cf (255)). The
resulting equations and their approximations are described in
some detail in [133]. Below we discuss the closely related
case of inviscid, irrotational flow around a cavity. In the
limit of highly viscous flow around a bubble [135, 136] or an
effectively inviscid fluid [137] the slender-body approximation
leads to integral equations for a charge and a dipole distribution
[135]. The integrals are easily localized [138] to find a simple
equation for the free surface shape h(z, t) alone, first given by
Taylor [139].

The inviscid, irrotational flow (17), (18) outside a cavity
of length 2L can be written as

φ =
∫ L

−L

C(ξ, t) dξ
√

(z− ξ)2 + r2
, (42)

where C(ξ, t) is a line distribution of sources. An equation of
motion for C is furnished by Bernoulli’s equation (19), but for
the exterior flow and in a Eulerian frame of reference:

∂tφ + v2/2|r=h = γ κ − p0, (43)

where p0 is the pressure inside the cavity. The equation
of motion for h(z, t) is the kinematic equation (11). The
expression for the velocity field is obtained from differentiating
(42) and putting r = h(z, t).

So far, the description is exact, except perhaps near the
ends z = ±L of the cavity [140]. To simplify the description
for a slender geometry, one can use the fact that vr , vz

and thus neglect the axial velocity vz. The integral giving
the radial velocity is local: |ξ − z| ! h, thus in a slender
description C(ξ, t) ≈ C(z, t) and L → ∞. With these
approximations, the ξ -integration can be performed exactly,
giving vr ≈ −2C(z, t)/h(z, t). Thus (11) simplifies to
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ȧ(z, t) ≈ −4C(z, t), where a = h2 and the dot denotes the
time derivative.

Finally, using the same approximations as above, (43)
turns into an equation of motion for C in the slender case:

∫ L

−L

ä(ξ, t) dξ
√

(z− ξ)2 + a(z, t)
= ȧ2

2a
− 4γ
ρ
κ +

4p0

ρ
, (44)

first given in [141]. Slender-body descriptions similar to (44)
are common in the literature [130,142], but usually the integral
is transformed further, using slenderness. In this marginal
case (also encountered in the electrostatic analogue [133]) one
finds a logarithmic dependence on h [138], and convergence is
exceedingly slow. In fact, the usual expansion in logarithmic
terms [130] does not capture the leading asymptotic of pinch-
off, as we discuss in section 4.3. However, a linear stability
analysis reveals that (44) is ill-posed as it stands. This can
be fixed by adding a small damping to the right-hand side of
(44) [141].

3. Physical mechanisms and small perturbations

Here we explain the reason why the circular jet geometry is
rendered unstable by capillarity, as well as the characteristic
time and length scales associated with this transition from
cylinder to drops. We also discuss various phenomena
influencing jet decay apart from capillarity. This is achieved
using the powerful tool of linear stability analysis, pioneered
by Rayleigh [17]. As we will show in the next subsection, any
perturbation of sufficiently long wavelength will result in a gain
in surface energy, so the perturbation grows. Rayleigh [10,17]
was the first to point out the crucial significance of the most
unstable wavelength, which is only found by studying the
dynamics, as we will do throughout this section. Namely,
starting from a random initial perturbation, the disturbance
amplitudes on a jet will eventually be dominated by the mode
with the largest growth rate. This sets the preferred wavelength
of breakup, and thus the drop size, without introducing any
length scale from the outside. Most experimental studies,
however, consider the response to a stimulus at a given
wavelength, thus avoiding the ingredient of randomness. Few
studies have looked at random breakup caused by, for instance,
white-noise perturbation at the nozzle, or turbulence in the
liquid bulk and tried to characterize the width of the resulting
drop distribution [143, 144], despite the key role played by
these ingredients in the quality of sprays (see [32], section 5
and, e.g. figure 91).

3.1. Capillarity and the circular geometry: the Plateau
argument

The physical meaning of surface tension is that of an energy
per unit area, so if the surface area increases by δA, the surface
energy changes by

δE = γ δA. (45)

From this statement the formula (35) for the capillary forcing
can be derived [42]. One may thus ask whether some particular
distortions of a liquid cylinder around its circular and straight

initial shape (at constant volume) will lower the net surface
area. In any such case small perturbation or noise will drive
the system towards this lower energy state.

Sinusoidal undulations of the jet centreline will not affect
its net surface area if its radius remains constant. On the other
hand, modulations of the jet radius may change its surface
energy. The perturbation

h(z,ϕ) = h0 + ε cos(kz) cos(mϕ), (46)

where k is the longitudinal wavenumber and ϕ the azimuthal
angle, can be viewed as a Fourier mode of a given
initial condition h(z,ϕ). The azimuthal modulations simply
correspond to a corrugation of the jet’s mantle, so they always
increase the surface area. Thus all azimuthal modes m > 0 are
stable [145] and we proceed with the discussion for m = 0,
for which the surface energy is given by (35).

The distortions of the jet radius in (46) are such that the
corresponding jet portion keeps its volume

V =
∫

L

πh2 dz = V init = πh2
0

∫

L

dz (47)

constant, which means the mean radius h̄ has to adjust itself to
a new value. This condition on (47) results in

h̄ = h0 −
ε2

4h0
, (48)

and thus a smaller mean radius h̄ relative to the unperturbed
state.

Considering now small perturbations ε . 1, and thus
h′ . 1, the difference 1E = ES − E0 in surface energy
relative to the initial state E0 = 2πh0γ

∫
dz is computed

using (35)
1E

E0
= ε2

4h2
0

[(kh0)
2 − 1]. (49)

All modes whose wavelengths λ = 2π/k are larger than
the perimeter of the jet have a negative energy, and are thus
potentially unstable, as concluded by Plateau [16].

3.2. Capillary instability

The above thermodynamic description does not reveal which
mode is the most unstable in the range 0 < kh0 < 1 nor at
which speed the instability develops. To this end, one has to
consider the equations of motion.

3.2.1. Dynamics and mode selection. We first consider
motions driven by capillarity only, the jet deforming in a
passive environment. The flow in the bulk of the jet is taken
as incompressible (cf (14)) and it is convenient to work in a
reference frame moving at the jet velocity so that v0 = 0. The
pressure in the jet is initially uniform, and equal to the Laplace
pressure (9), i.e. p0 = γ /h0. We write the velocity v and
pressure p fields as their initial value plus a small perturbation:

v = v0 + δv, p = p0 + δp, (50)
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and insert into the Navier–Stokes equations. Disregarding
quadratic terms, this linearization procedure allows for simple
quadratures and the recourse to Fourier analysis.

Combining (13) and (14) implies that

∇2p = 0 (51)

in a linear approximation. In view of the discussion in
section 3.1, we look for varicose, axisymmetric perturbations
of the form δv(r, z) and δp(r, z). We begin with the inviscid
approximation ν = 0. Writing the perturbed pressure as

δp = δp̄F (r) cos(kz), (52)

(51) implies that F(r) obeys

∂2F

∂2r
+

1
r

∂F

∂r
− k2F = 0. (53)

The solution is the Kelvin functionF(r) = I0(kr) [146], which
has the virtue of being non-singular at r = 0.

At the jet surface p0 + δp equals the Laplace pressure
(9), and thus inserting (46) into (12) one obtains to leading
order in ε

δp(r = h0, z) = − γ
h2

0

[1− (kh0)
2]I0(kh0)ε cos(kz). (54)

The problem is closed by relating the amplitude of the pressure
perturbation δp̄ to the interface displacement ε Namely, the
linearized form of (11) is

∂h

∂t
= δvr(r = h), (55)

and the radial velocity and the pressure are linked by the
radial component of the (linearized) Euler equation (i.e. (13)
with ν = 0):

∂δvr

∂t
= − 1

ρ

∂p

∂r
. (56)

Making use of δp = δp̄I0(kr) cos(kz) and looking for a
time dependence of the perturbation amplitude of the form
ε(t) = ε0e−iωt , one finds that [147]

ω2 = − γ

ρh3
0

(kh0)
[
1− (kh0)

2] I1(kh0)

I0(kh0)
. (57)

The characteristic timescale of (57) is set by (2), representing
a balance of inertia and surface tension. The instability is
caused by the fact that the Laplace pressure increases in
constricted regions, driving out the fluid and thus reducing
the radius even more. The above dispersion relation has been
successfully checked experimentally (figure 19). It is worth
remarking that highly accurate measurements of linear jet
stability are surprisingly difficult, even by modern standards
[148–150]. First, a number of other effects govern linear
growth, such as fluid viscosity and the external medium (e.g.
air). Second, parameters like the jet diameter and its speed are
difficult to determine reliably on account of the complicated
hydrodynamics near the nozzle opening, leading to effects
like jet contraction [35]. A number of optical techniques
[151–153], using light beams and sheets, yield more qualitative

Figure 19. Dimensionless growth rate −iω(k)τ of sinusoidal
perturbations on a cylinder as a function of the dimensionless wave
number kh0. The solid line represents Rayleigh’s theory for inviscid
flow [120, 159]. Reprinted with permission from [159], copyright
1975 by the American Institute of Physics.

information on the number and size of a potentially large
number of drops. The above dispersion relation ω(k) is
consistent with (49); for kh0 < 1 we have ω(k)2 < 0, and
thus an exponential growth of the initial disturbance. The most
amplified wavenumber km (the Rayleigh mode) in (57) is

kmh0 ≈ 0.7 (58)

and its associated time of growth τ (km)−1 = Re[−iω(km)] is

τ (km) ≈ 3

√
ρh3

0

γ
. (59)

By letting a jet issue from an elliptical orifice, a non-
axisymmetric stable mode with m = 2 is excited. By recording
the wavelength of the oscillation of the jet’s eccentricity (at

a frequency proportional to
√
γ /ρh3

0), one can measure the
surface tension [154–156].

3.2.2. Long-wave description. Since the most unstable
wavelength is about 9h0, the long-wavelength model (29), (30)
should describe the linear instability well, provided the full
curvature (12) is kept. The latter is necessary to describe the
cut-off at short wavelengths, so for ν = 0 one obtains from (30)

∂v

∂t
= −γ

ρ

(
1
h
− h′′

)′
. (60)

Linear stability analysis, using the ansatz

h(z, t) = h0 + ε(t) cos(kz) with ε(t) = ε0e−iωt (61)

gives [38]

ω2 = −1
2
γ

ρh3
0

[(kh0)
2 − (kh0)

4], (62)

which coincides with an expansion of (57) for small k. As seen
in figure 20, (62) not only retains all the relevant facets of the
problem, such as the cut-off at kh0 = 1, but also fits the exact
relationship (57) quantitatively, as seen in figure 20. The great
advantage of the long-wave description is that it is simple and
transparent, so additional ingredients can be incorporated into
the picture in a straightforward way, as we shall see below.
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Figure 20. A comparison between dispersion relations −ω2(k)τ 2

for inviscid flow, as function of kh0. There is excellent agreement
between the exact formula (57) for a fluid jet and the
long-wavelength form (62) (top curves), as well as the analogous
formulae for a hollow jet (equations (69) and (77), bottom curves).

3.3. Weakly non-linear theories

To obtain a glimpse of non-linear jet behaviour such as the
formation of satellite drops, one can attempt to carry the
perturbation theory to higher order, by including terms of
second and third order in ε. As reviewed in detail in [120],
this program has so far only been worked out in the inviscid
case. The ansatz for the surface perturbations is [157–160]

h(z, t) = h + ε0e−iωt cos(kz) + ε2
0h2(z, t)

+ ε3
0h3(z, t) + O(ε4

0), (63)

and a corresponding expression for the velocity potential (17).
Successive approximations are obtained in a perturbative

fashion, leading to higher harmonics at each order. However
at third order another contribution to the fundamental is
produced,

h3(z, t) = A33(t) cos(3kz) + A31(t) cos(kz), (64)

leading to secular terms as a result of resonance between the
first and the third order. This complication has to be dealt with
by introducing new length and time scales into the problem,
either by the method of strained coordinates [157, 161] or the
method of multiple time scales [158, 162].

The appearance of A31 also implies that a perturbation
of finite amplitude introduces a small correction in the cut-
off wavenumber kc below which perturbations grow. A
further complication arises in the calculation of kc, since
the characteristic timescale near cut-off diverges, leading to
additional secular terms. The cut-off wavenumber was first
calculated correctly in [158], with the result

kch0 = 1 + 3
4ε

2
0 . (65)

Thus at finite amplitude shorter wavelengths lead to instability,
which would be stable according to (49). The theoretical
prediction (65) has been confirmed in [120], but in practice
the correction is too small to be seen experimentally. These

subtleties aside, [159] reports some success estimating the
size of main and satellite drops using third-order perturbation
theory.

3.4. A quiescent external medium

The effect of an inertial surrounding medium on the instability
development can be estimated along lines very similar to those
of section 3.2. Let ρa be the density of an incompressible and
inviscid medium surrounding the jet, initially at rest. For the
instability to grow, surface tension has not only to move fluid
particles of the central jet along its axis to empty the constricted
sections and fill the troughs, but now also to push the outer fluid
away from the growing crests and bring it to fill the gap in the
thinning regions.

There are now two pressure fields, p for the central jet and
pa for the ambient fluid which are both harmonic as in (51),
their difference at the jet interface r = h being equal to the
Laplace pressure jump (9): [p−pa]r=h = 1p. In the inviscid
limit (ν = νa = 0), the perturbed pressure fields are

δp = δp̄ cos(kz)I0(kr) (66)

δpa = δp̄a cos(kz)K0(kr), (67)

with I0 and K0 being modified Bessel functions, non-singular
in r = 0 and decaying at large r , respectively. Continuity of the
displacements at the interface in r = h leads to the dispersion
relation
[

1 +
ρa

ρ

K0(kh0)I1(kh0)

K1(kh0)I0(kh0)

]
ω2

= − γ

ρh3
0

(kh0)
[
1− (kh0)

2] I1(kh0)

I0(kh0)
. (68)

As shown in figure 20, the presence of an external medium
slows down the instability and shifts the most amplified
wavenumber towards a somewhat smaller k compared with
the jet without an external medium. However, the cut-off
wavenumber at kh0 = 1 is not altered by an outer fluid, whose
presence only shows up in the kinematics of the process. The
original dispersion equation (57) is recovered whenρa/ρ → 0,
and the case of a hollow jet, obtained for ρa/ρ → ∞ is
characterized by

ω2 = − γ

ρah
3
0

(kh0)
[
1− (kh0)

2] K1(kh0)

K0(kh0)
, (69)

a result also known from Rayleigh [163]. The breakup of a
hollow circular soap film is a beautiful illustration of the case
ρ = ρa (figure 21), a limit also relevant to the formation of
spherical shells [164], and microfluidic encapsulation [165].

3.4.1. Long-wave description and ansatz. The above
dispersion relations can, once more, be approached by a
long-wave approximation leading to transparent and tractable
results. The idea is to couple the response of the jet and of the
ambient medium, each being described by a one-dimensional
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Figure 21. Blowing on a soap film inflates it in the form of a hollow
tube which destabilizes into a train of soap bubbles. The wavelength
is consistently given by the tube radius.

dynamics along z and along r , respectively. For the jet, one
has to add the contribution from the outer pressure to (60):
∂vr

∂t
= − 1

ρ

∂p

∂z
, with p = pa(r = h) + γ

(
1
h
− h′′

)
.

(70)

The outer fluid is expanding and contracting radially in
response to the interface deformation:

∂vr

∂t
= − 1

ρa

∂pa

∂r
, (71)

1
r

∂(rvr)

∂r
= 0. (72)

From (72), using u(r = h) = ḣ, one finds

vr = hḣ

r
(73)

which, inserted into (71), gives

hḧ

r
= − 1

ρa

∂pa

∂r
, (74)

only keeping terms linear in the perturbation.
This axisymmetric description is valid for z distances

along the jet where the radial velocity can be considered as
constant with respect to z, that is for distances short compared
with 1/k when the interface is distorted by a wavenumber
k. The harmonicity of the pressure field also guarantees that
axial and radial length scales are comparable, i.e. the pressure
is essentially constant (taken equal to 0) at r∞ = h + 1/k.
Integration of (74) and using (70) gives

p = ρahḧ ln
(

1 +
1
kh

)
+ γ

(
1
h
− h′′

)
(75)

and thus the dispersion relation
[

1 +
1
2
ρa

ρ
ln

(
1 +

1
kh0

)
(kh0)

2
]
ω2

= −1
2
γ

ρh3
0

[
(kh0)

2 − (kh0)
4] . (76)

The dispersion relation for the fluid jet (62) is recovered for
ρa/ρ → 0, and that of the hollow jet (ρa/ρ → ∞) reads,
within the same approximation

ω2 = − γ

ρah
3
0

1− (kh0)
2

ln
(

1 +
1

kh0

) . (77)

Note the very slow logarithmic fall-off of the amplification rate
around k = 0, suggesting the existence of nearly uniformly
collapsing modes of a hollow cavity, cf section 4.4.2. Note
finally, as seen in figure 20, that the maximal growth rate for a
hollow jet in a fluid is more than five times larger than that of
a jet of the same fluid without exterior fluid.

3.5. Viscous slowing

Viscous stresses affect the dynamics of jet instabilities, and
their dynamics only. Indeed, the influence of viscosity η shows
up solely in the presence of motion since they are proportional
to rates of deformation, as seen in (16). Viscosity therefore
does not affect the marginal stability conditions ω(k) = 0,
which do not involve motion.

In addition to the jet radius h0, a new length scale comes
into play, namely the ‘penetration depth’

δ =
√
ν

ω
, (78)

set by the Ohnesorge number (6). This length is analogous to
the persistency length of vorticity ω = ∇×u in a viscous fluid
sheared at a rate ω. The dispersion relation for a viscous jet
thus involves the additional dimensionless group kδ, and (57)
turns into the general form

ω2 = γ

ρh3
0

f (kh0, kδ). (79)

The first calculation of f is often attributed to Chandrasekhar
[145], but is in fact contained (in a more general form including
azimuthal perturbation) in Rayleigh’s paper of 1892 [18].
The exponential growth of disturbances on jets of different
viscosities was measured in [41, 166]. The resulting growth
rates agree well with the theoretical dispersion relation over
the entire range of unstable wavenumbers.

Since δ depends onω, the expression (79) is only implicit,
and thus not very useful unless solved numerically. More
tractable expressions are found in the limit of very large
viscosity (Oh , 1), using the Stokes equations as done by
Rayleigh [18] without an external fluid:

−iω = γ

2h0η

1− (kh0)
2

1 + (kh0)2[1− (I0(kh0)/I1(kh0))2]
. (80)
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Tomotika [167] generalized (80) to arbitrary viscosity ratios
λ = η/ηa. In the limit of λ = 0 (hollow jet) the result is

−iω = γ

2h0ηa

1− (kh0)
2

1 + (kh0)2[1− (K0(kh0)/K1(kh0))2]
. (81)

Stone and Brenner [168] gave an elegant and direct derivation
for the case λ = 1 and find

−iω = γ

ηh0

(
I1(kh0)K1(kh0) +

kh0

2
[I1(kh0)K0(kh0)

−I0(kh0)K1(kh0)]
)

. (82)

Note that these dispersion equations involve ω and not ω2,
since in the inertia-less limit accelerations ∂tv drop out of the
description. Modes are linearly damped or amplified, but the
jet does not sustain waves in this limit.

Finally, [169, 170] considered the case of an array of
parallel viscous thread inside a matrix of viscous fluid (the
number of threads varying between 2 and infinity). The most
unstable modes are either in-phase or out-of-phase between
two adjacent threads, depending on the viscosity ratio and the
distance between the threads. In the case of many threads,
complicated combinations between in-phase and out-of-phase
situations are possible.

3.5.1. Long-wave description and ansatz. The linearized
version of (30) around v = 0 and h = h0 is

∂v

∂t
= − 1

ρ

∂p

∂z
+ 3ν

∂2v

∂z2
, with p = γ

(
1
h
− h′′

)
. (83)

The ansatz (61) yields a dispersion relation analogous to (62),
which accounts for viscosity:

ω2 = −1
2
γ

ρh3
0

[(kh0)
2 − (kh0)

4] + (−iω)
3ν
h2

0

(kh0)
2. (84)

As expected, the unstable range of k is unaffected by viscosity,
and (62) is recovered for ν = 0. In the opposite limit
Oh→∞, one has (see also [145])

− iω = 1
6τv

[1− (kh0)
2] with τv = ηh0

γ
. (85)

The ratio of the viscous timescale τv to its inertial counterpart

τ =
√
ρh3

0/γ is precisely the Ohnesorge number (6),
illustrating the slowing down of the instability by viscosity
when Oh is large.

The strongly viscous limit (85) correctly predicts that the
instability selects longer wavelengths at larger Oh, but its
form is somewhat misleading since it predicts that the most
amplified wavenumber is k = 0. The correct form, obtained
by solving (84) is

(−iω)τ =
√

1
2 (x2 − x4) + 9

4Oh2x4 − 3
2Ohx2

with x = kh0. (86)

Translational invariance is no longer broken (ω(k = 0) = 0),
and the most amplified wavenumber is

kmh0 = 1
√

2 + 3
√

2Oh
, (87)
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Figure 22. Dispersion curve −iω(k)τ of equation (86) for
increasing Ohnesorge number Oh−1 = τv/τ = 100, 5, 1, 0.2, 0.05.

Figure 23. Dimensionless growth rate −iω(k)τv of sinusoidal
perturbations on a viscous cylinder for Oh = 0.58 as a function of
the dimensionless wave number kh0. The solid line represents
Rayleigh’s and Chandrasekhar’s theory [18, 145, 166]. Reprinted
with permission from Cambridge University Press.

going to zero as 1/
√

Oh with the associated growth rate

− iω(km)τ = 1

2
√

2 + 6Oh
. (88)

Figure 22 shows the deformation of the dispersion curve as
the Ohnesorge number is varied, and figure 23 presents a
comparison with experiments.

The case of an inviscid jet immersed in another viscous
fluid can be treated along the same lines as in section 3.4, still
assuming that the inner and outer media are connected to each
other through the pressure field only (if the inner jet is viscous,
shear is generated, a case considered below). To compute the
pressure p in the jet, a contribution from the viscous stress has
to be added to (70):

p = pa(r = h) + γ
(

1
h
− h′′

)
− 2ηa

∂vr

∂r
. (89)

For a purely radial and incompressible velocity field vr(r, t) the
viscous term cancels exactly (which is also true in the spherical
case), so the pressure is given by (75), and the dispersion
relation is similar to the one found before:[

1 +
1
2
ρa

ρ
ln

(
1 +

1
kh0

)
(kh0)

2
]
ω2

= −1
2
γ

ρh3
0

[(kh0)
2 − (kh0)

4] + (−iω)
ηa

ρh2
0

(kh0)
2, (90)

incorporating all the limits and behaviours discussed above.
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Figure 24. Capillary instability of cylindrical interfaces: (a) liquid jet, (b) liquid film on a fibre, (c) liquid film in a tube (adapted

from [171]). The instability time τ equals
√
ρh3

0/γ for a solid inviscid jet of radius h0, and ηh4
0(γ e3

0) for a thin film of thickness e0 deposited
on a fibre of radius h0.

Figure 25. Spider web featuring condensed morning dew droplets.

3.5.2. Viscous films covering cylindrical solid bodies.
The instability of a viscous liquid film coating a fibre is
a particularly straightforward application of the long-wave
description, illustrated by droplets of dew forming on spider
webs on humid mornings (see figure 25). If the film coating the
fibre is very thin, the longitudinal motion of the liquid driven
by the Laplace pressure is likely to be affected by viscosity
because of the no-slip condition at the fibre surface. For a
fibre of radius h0 and a film of thickness e, the corresponding
lubrication approximation in the film becomes [94, 172]

η
∂2v

∂r2
= ∂p

∂z
, (91)

for h0 < r < h0 + e and assuming e/h0 . 1. Inertia has
been neglected in (91), as appropriate for a very thin film.
The pressure is the usual Laplace pressure, and the motion at
the film surface is stress free ([∂v/∂r]r=h0+e = 0). Taking
e(z, t) = e0 + ε0e−iωt cos(kz), the mass balance reads

− 2πh0
∂e(z, t)

∂t
= ∂q(z, t)

∂z
, (92)

where q(z, t) = 2π
∫ h0+e

h0
rv(z, r) dr is the net flow rate in the

film. Now elementary quadratures lead to

− iω = γ

η

e3
0

3h4
0

(kh0)
2[1− (kh0)

2], (93)

hence providing the dispersion relation. The most
amplified wavenumber is related to the fibre radius through
kmh0 = 1/

√
2. The growth of the instability is all the more

slow when the film is thin, and fast when the fibre radius is

small. The same physics holds for a thin film coating a hollow
solid tube [171], the rigorous treatment [173] featuring all the
necessary Bessel functions, and accounting for inertia as well.
The three different cases described above are summarized in
figure 24.

3.6. Absolute, convective and temporal instability

So far we have been analysing situations where a perturbation
is imprinted on the system in a spatially uniform way, as
described for example by (61); our temporal analysis applies to
perturbations growing uniformly in space. In the case of jets,
a more common situation is one in which the perturbation is
applied at the nozzle only, and perturbations grow in a frame of
reference convected with the jet speed v0, see figure 13. One
thus says that the jet is ‘convectively unstable’. In the case
of dripping, i.e. in a situation where gravity is important, a
periodic train of disturbances is generated at the nozzle, which
propagates away from it. As v0 is increased, a transition to
‘jetting’ occurs, in which perturbations only grow convectively,
cf figure 26. The dripping regime is an example of an ‘absolute’
instability.

3.6.1. Spatial growth. The first problem is to calculate the
growth rate of perturbations along the jet, which amounts to
passing to a frame of reference z = v0t that is convected
with the jet [174]. In the temporal problem, we considered
perturbations of the form

h(z, t) = h0 + ε0ei(kz−ωt), (94)

which is now to be interpreted in the convected frame of
reference. If one transforms back to a stationary frame
of reference, replacing z by z + v0t , one recovers (94) if
one replaces ω by ω − kv0. By making the corresponding
replacement in the above dispersion relations and keeping ω
real and equal to the excitation frequency, one is looking for
solutions that do not grow at a fixed point in space. Instead,
solutions are now expected to correspond to complex k-values.
In the context of shear flows, this idea is also known as the
Gaster transformation [175].

This analysis was performed in [174] for the dispersion
relation (57) of an inviscid jet and in [177] for the general
dispersion relation (79). By solving the resulting equation
numerically for a given ω = 2πf , where f is the excitation
frequency at the nozzle (cf (3)), one finds Im(kconv). This gives
the rate at which perturbations grow in space, which depend on
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Figure 26. The transition from dripping to jetting for water issuing
from a tube of radius h0 = 1.08 mm. (a) We = 0.031 (dripping),
(b) We = 0.86 (chaotic dripping), (c) We = 1.15 (jetting). (Adapted
from [176], with permission from Cambridge University Press.)

the jet speed, and thus on We. The temporal stability theory,
on the other hand, is employed by computing the growth rate
Im(ωtemp) for a given k = 2πv0/f . The results agree only for
large jet speeds, i.e. Im(ωtemp) = v0Im(kconv)+O(We−1) [174].
This is to be expected, since for large We the spatial structure
of disturbances growing along the jet is almost uniform, and
thus well described by a temporal theory. Indeed, for most
experimental values of We the corrections due to a finite jet
speed are small, so it is justified to use the much simpler
temporal theory.

3.6.2. Bubbling and dripping. The second problem is to
investigate the existence of absolutely unstable states, for
which perturbations grow at a fixed point in space. For a
substantial continuous portion of the jet to form near the nozzle,
the transit time λ/v0 over a distance given by an unstable
wavelength λ (such that 2πh0/λ < 1) should be shorter than
the breakup time τ (cf (2)). Since λ itself is proportional to
the jet radius h0, this condition gives a critical Weber number
Wec (below which the jet is absolutely unstable) which is of
order 1. A more formal calculation can also be performed by
analysing the spatial dispersion relations as described above
[177]. Namely, for a localized perturbation to be stationary,
the group velocity must vanish, and Im(ω) must verify the
condition for temporal growth [178]:

∂ω

∂k
= 0 and Im(ω) > 0. (95)

The calculation shows that absolute instability occurs
for We < 3.15 [180, 181], a value that decreases further if
viscosity is added [177], in agreement with the above heuristic
argument. This result is thus of little relevance in practice,
since gravity will be important relative to inertial effects,
and the absolutely unstable state will rather take the form
of ‘dripping’, see below. A more interesting case is that of
a two-fluid system [179, 182–188], for example a drop of
small viscosity liquid being dragged out by a more viscous
liquid, as shown in figure 27(a). Another example is selective

Figure 27. A coflowing liquid stream, driven by the outer
fluid [179]. (a) device geometry, (b) dripping regime, (c) jetting,
kepping the inner flow rate qin constant, but increasing qout;
ηin/ηout = 0.1. (d) widening jet, obtained by increasing qin.
Reprinted with permission from [179]. Copyright 2007 by the
American Physical Society.

withdrawal [189–192], discussed in section 4.7.3. The inner
fluid is supplied slowly through a capillary. At low flow rates,
bubbling occurs (cf figure 27(b)), corresponding to an absolute
instability. As the flow rate increases, there is a transition from
bubbling to jetting (cf figure 27(c)), the jet being convectively
unstable. At higher flow rates of the inner fluid, another kind
of dripping is observed (cf figure 27(d)).

In a recent series of papers [185–187], the transition
shown in figure 27 was investigated using (95), on the basis
of the dispersion relations for two-fluid systems derived in the
previous sections. For a finite viscosity and density of the inner
fluid (or gas), a transition occurs at a finite velocity of the outer
fluid. The limit of a ‘hollow’ jet inside a liquid is however quite
singular [187]: in the limit of vanishing viscosity and density,
the system is always absolutely unstable.

If gravity is taken into account, the transition to jetting
takes place at a Weber number that depends on two parameters:
Wec(Bo, Oh). As illustrated in figure 26, the calculation
is complicated by the fact that there is more than a single
absolutely unstable state, for example a chaotic regime that
lies between periodic dripping and jetting [122]. Recently, yet
another ‘global’ mode has been discovered, which consists of
elongated bulges growing at the nozzle, but which do not lead
to breakup as the bulges are convected downstream [193].

Clanet and Lasheras [176] use a phenomenological
description to calculate Wec in the limit Oh → 0. For
the long-wavelength case, in which azimuthal curvature is
negligible, it is cleverly observed in [193] that the three-
dimensional parameter space (We, Oh, Bo) is described by
just two dimensionless parameters

u0 =
(

1
3νg

)1/3

v0 and a0 =
(

9ν2g2ρ3

γ 3

)2/3

h2
0.

(96)
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Figure 28. A pipette dipping into still water is rapidly removed vertically, producing a liquid ligament from the elongation of the bridge
between the liquid and the pipette end. When the motion is fast enough, the ligament stretches while remaining smooth. As soon as the
stretching stops, because the ligament is no longer connected to the liquid bath, it breaks into drops.

A numerical search for a global instability yields the empirical
formula a0 = 1/(40u

5/2
0 ) for the boundary between stable and

unstable regions. In terms of the usual parameters, this yields

Wec = 0.034(BoOh)−6/15, (97)

a result which agrees well with experiments in [176, 193].

3.7. Longitudinal stretch

Stretching alters the development of capillary instabilities
dramatically. For the rarer case of compression,
see section 3.7.4. By stretching we mean an extensional
motion in, for instance, the longitudinal direction of a jet. The
phenomenon was recognized early by Taylor, who was able
to produce appreciably elongated drops by immersing them
into an extensional flow at the stagnation point of a ‘four roll
mill’ [194]. Instability, however, sets in as soon as the stretch
is turned off, demonstrating the interplay between substrate
deformation and the development of instability (see [195]
for a review). Tomotika (1936) [196] first demonstrated the
damping role of stretching for a viscous elongating cylinder.
For example, it is a common experience that a thread of honey
is elongated by gravity to a very small radius before breaking
(if it ever does, a question to which we shall come back
below). Even inviscid fluids can be elongated to long ligaments
provided the stretch is strong enough, as shown in figure 28.

3.7.1. Core thinning and wavenumber stretching. We first
consider a rate of stretch σ which is constant in time and
uniform along the jet. The distance between two material
points δz(t) in the z direction thus increases exponentially as
δz(t) = δz(0)eσ t since their axial velocity v0(z) differs by an
amount σδz. Thus by mass conservation, the radius of the jet
h0(t) decays in time. Therefore, the basic state describing the
stretched jet about an arbitrary origin in z = 0 is

v0(z) = σz, (98)

h0(t) = h0(0)e−σ t/2. (99)

The stability of this solution is investigated by considering the
(inviscid) dynamics of small velocity and radius perturbations
v and r , which reads

∂t r +
σ

2
r +

h0

2
∂zv = 0, (100)

∂t v + σv = −γ
ρ

(
− 1

h2
0

∂zr − ∂3
z r

)
. (101)

Combining (100) and (101) leads to an evolution equation for
the perturbation of the radius r(z, t) along the jet

∂2
t r + 2σ∂t r +

3
4
σ 2r − γ

2ρh3
0

(
−h2

0∂
2
z r − h4

0∂
4
z r

)
= 0, (102)

thereby generalizing the result of section 3.2.2 to the stretched
case. Equation (102) is the characteristic equation of an over-
damped oscillator because of the stretching term, with a source
term depending on the shape of the radius undulations via its
spatial derivatives, through the Laplace pressure. Since the
radius of the basic state is itself time dependent, we rescale
time by

√
2ρh0(0)3/γ , wavenumbers by x = kh0(0), and

look for solutions of the form r(z, t) = ε(t)eikz to get

∂2
t ε + 2σ∂tε + 3

4σ
2ε − (x2 − x4e−3σ t )e−

3
2 σ tε = 0, (103)

which is a modified form of (62), with stretch. The exponential
factors proportional to eσ t in (103) signal a fundamental
ingredient, first noticed by Tomotika (1936) in the same context
[196], and later used in other areas with the same meaning (see,
e.g. Saffman (1974) [197], Zeldovich et al (1980) [198]):
if fluid elements are stretched by the base flow, so are the
radius modulations. Equation (103) incorporates this effect
through the stretching of the wavenumbers where an initial
wavenumber k becomes

k → ke−σ t (104)

in the course of time.
It is interesting to follow the fate of one mode’s amplitude

in the course of time, as illustrated by figure 29: for a mode
lying in the initially unstable range (x = kh0 < 1) the
early time (σ t . 1) unstable branch of ε is proportional

to e(−σ+
√
σ 2/4+x2−x4)t and actually leads to an amplification

provided the stretching rate is not too strong, that is, for the
initially most amplified mode km = 1/

√
2 when σ < 1/

√
3.

The long-time (γ t , 1) form of ε(t)/ε(0) is always dominated
by the stretching, decaying as e−σ t/2, thereby following the
stretching induced rate of approach of the marginal stability
condition at k = 0, which itself follows the thinning rate of
the base jet radius h0 ∼ e−σ t/2.

To add viscosity, as well as other effects like a time-
dependent stretching rate to this analysis, we make the
simplifying assumption that the perturbation grows on a quasi-
stationary base solution, so previously calculated growth rates
can be taken from earlier sections. The effect of stretching
is in the increasing wavelength of a given perturbation, and a
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Figure 29. Temporal evolution of the amplitude ε(t)/ε(0) according
to equation (103) for σ = 0.2 (weak stretching, continuous line) and
σ = 0.8 (strong stretching, dashed line), with kh0 = 1/

√
2. The

straight lines are the short time growth, and long-time relaxation
limit behaviours for σ = 0.2. Time t is in units of σ−1.

contraction of the perturbation amplitude resulting from mass
conservation. Namely, the radius modulation r(z, t) on the
base state h0(t) follows from

r(t + δt) = [h0 + r(t)]e−σδt/2 − h0e−σδt/2 + [−iω(k)]r(t)δt,

(105)

where −iω(k) is the growth rate as calculated from any of the
dispersion relations (e.g. (85) or (86)) described in the previous
sections. Of course, k has to be calculated according to (104)
to account for wavenumber stretching. By taking the limit
δt → 0, (105) turns into

d ln(r)

dt
= −1

2
σ + [−iω(k)], (106)

illustrating the competing role of stretching and capillary
destabilization. Since d ln(h0)/dt = −σ/2, the relative
growth takes the even simpler form [196]

d
dt

ln
(

r

h0

)
= −iω(k). (107)

The above analysis is readily generalized to a
time-dependent stretching rate σ (t), which occurs when
longitudinal distances along the jet only grow as a power law
of time. This is encountered in some impact and entrainment
problems (see section 5.1), or when the jet accelerates by
free fall. Equation (99) for the stretching jet then has to be
replaced by

h0(t) = h0(0) exp
(
−1

2

∫ t

0
σ (t ′) dt ′

)
. (108)

3.7.2. Integrated gain. To answer the question which of
the initial Fourier modes k0 of the jet radius will be the
most amplified after a given time t , we insert the current rate
−iω(k0, t) into (107). The net gain of the amplitude growth
s(k0, t) for wavenumber k0 is thus

s(k0, t) = ln
(

r(k0, t)

h0(t)

) ∣∣∣∣
t

0
=

∫ t

0
{−iω(k0, t

′)} dt ′. (109)

Figure 30. A viscous thread (honey) is falling downwards by its
own weight. Will the thread remain intact? (Courtesy of Céleste
Villermaux.)

The most amplified wavenumber kopt(t) at time t is thus the
one for which

∂s(k0, t)

∂k0
= 0, (110)

giving maximal gain s(kopt(t)). The approach implicitly
assumes that the initial disturbance spectrum is broad, and
flat in k0, and that the only relevant effect is that of transient
amplification, regardless of initial conditions. This strategy
was adopted in [199] for an inviscid jet with v0 = Kz/(1+Kt)

and h0(t) = h0(0)/
√

1 + Kt , corresponding to a linear axial
velocity field. Using the full inviscid dispersion equation (57),
[199] found an optimal wavenumber increasing in time, with
an associated gain increasing algebraically: stretching damps
growth. An alternative approach, where the initial roughness
sets the future of the jet disturbances, and thus the drop size
distribution, is given in section 5.

3.7.3. Honey, why are you so thin? The aim is to understand
a simple and practical problem: why is it that a (very) viscous
thread falling under its own weight (cf figure 30) seems to thin
forever as it falls, with no sign of destabilization? The case
of gravitational stretching at small to moderate viscosities was
considered in [200, 201], with reasonable agreement between
experiment and numerical simulations. However, how viscous
does the fluid need to be for a long thread to form? In particular,
their surprising stability allows liquid threads to behave like
a piece of rope: once it hits a solid surface, it buckles and
performs a coiling motion [202,203]. The resulting motion can
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be remarkably complex and exhibits multiple coexisting states
[204, 205]. If the substrate is moving, even more transitions
between different states are possible [206].

Even at high viscosities, inertia will quickly be dominant
as the fluid falls [193], so the thread is well described by
Mariotte’s free fall solution (1), thus defining a constant
elongation rate

σ = g

u0
. (111)

Using mass conservation, one finds for the shape of a steady
stream of fluid (in units of the nozzle radius h0):

h(z) =
[

z0

z + z0

]1/4

, z0 =
v2

0

2h0
. (112)

An element of volume δV = h0(0)2δz(0) = h0(t)
2δz(t)

elongates in the course of time and space, so that an initial
disturbance wavelength behaves as λ(z) = λ0/h2(z).

Thus, using the long-wave end of the dispersion
relation (62), one finds from (109)

s(λ0, z) =
∫ z

0

−iω(k0, z
′)

h2
dz′ ∝ exp

{

8π
√

2
z0

λ0

(
z

z0

)1/8
}

,

(113)

in agreement with [207]. Thus although growth of
perturbations is slowed as compared with the usual exponential
behaviour, (113) evidently is not enough to explain
observations, since it contains no viscosity dependence. In
reality, the complete amplification history of a given mode
k0 of the thread has to be taken into account, including its
early stages, where the dispersion curve still has significant
dependence on the viscosity parameter Oh. Once this is
accomplished, the total growth has to be optimized over
all possible initial wavelengths λ0 assuming a white-noise
spectrum [208].

Let us only note that the ability to form very thin structures
by means of stretch is encountered in some other natural
processes: in particular, thin strands of volcanic glass drawn
out from molten lava have long been called Pele’s hair, named
after Pele, the Hawaiian goddess of volcanoes (figure 31). A
single strand, with a diameter of less than 0.5 mm, may be
as long as 2 m. The strands are formed by the stretching
or blowing-out of molten basaltic glass from lava (a highly
viscous fluid), usually from lava fountains, lava cascades and
vigorous lava flows. Pele’s hair is often carried high into the
air during fountaining, and wind can blow the glass threads
several tens of kilometres from a vent. The phenomenon lacks
a quantitative description [209].

3.7.4. Kinematic gathering. In addition to stretching, jets
may also be subjected to axial compression. Let the exit
velocity at a nozzle be modulated according to

v(z = 0, τ ) = v0(1 + ε sin(ωτ )), (114)

where ε is now a number of order unity (in contrast to the
case where the goal is to excite a particular capillary mode to
measure its growth rate, and where ε is small). For simplicity

Figure 31. Images of ‘Pele’s hair’, named after Pele, the Hawaiian
goddess of fire. These thin filaments of stretched basaltic glass form
during times of high fire-fountaining, often in the presence of strong
winds. (Top) The example shown here erupted from Kilauea on the
Big Island of Hawaii. Courtesy of D W Peterson, USGS. (Bottom)
A view showing how thin these hairs can become.

we neglect viscous or surface tension forcing as well as body
forces, i.e.

∂v

∂t
+ v
∂v

∂z
= 0. (115)

An element of volume π/4h2
040 with 40 = v(z = 0, τ )1t

released at time τ will thus be kinematically stretched or
compressed depending on the sign of (∂v/∂t)τ . Its length
4(t) is given by

4(t) = 40 + (v(0, τ )− v(0, τ +1t))[t − τ ]

=
(

v(0, τ )− ∂v
∂t

∣∣∣∣
τ

[t − τ ]
)
1t, (116)

so that, by volume conservation, its radius evolves according to
(

h0

h(t)

)2

= 1− 1
v

∂v

∂t

∣∣∣∣
τ

[t − τ ]. (117)

There are, depending on the phase of v(0, τ ), two distinct
behaviours:

• If (∂v/∂t)τ < 0, then, for t →∞,
(

h0

h(t)

)2

∼ − 1
v

∂v

∂t

∣∣∣∣
τ

t (118)

and therefore the radius decays as h(t) ∼ t−1/2 while it is
advected to the downstream position z(t) = v(0, τ )[t−τ ].

• If (∂v/∂t)τ > 0, then the jet radius blows up in finite time
t6 such that

t6 − τ = v

∂v/∂t

∣∣∣∣
τ

, (119)
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Figure 32. Kinematic gatherings (shocks) formed by a pulsatile axial velocity at the jet exit v(z = 0, τ ) = v0(1 + ε sin(ωτ )). Pure
kinematics anticipates that the jet’s cross-section blows up in finite time, i.e. at a finite distance from the exit. Surface tension bounds the
blow-up forming a finite extent radial sheet. (Adapted from [210].)

corresponding to a downstream position z6 = v(0, τ )
[t6 − τ ]. Thus the spatial radius profile h(z) is

h(z)

h0
= 1√

1− z/z6
. (120)

as seen in figure 32.

Experiments and analysis by Meier et al (1992) [210] (see
figure 32) fit nicely and the singularity (120) leads to the
formation of a liquid sheet. However, surface tension bounds
the blow-up so that crowns are formed, strongly reminiscent of
crowns formed by the impact of drops onto a thin liquid layer
[211–213].

3.8. Shear at the interface

We now turn to the effect of what in practice is an important
ingredient of jet instability, namely a velocity difference
between the jet and its surroundings, producing shear at the
jet interface. Indeed, the disintegration and dispersion of
a liquid volume by a gas stream is a phenomenon which
encompasses many natural and industrial processes. The
entrainment of spume droplets by the wind over the ocean,
the generation of pharmaceutical sprays or the atomization
of liquid propellants in combustion engines are among the
obvious examples [215, 216].

The interface separating two initially parallel streams
having different velocities v1 and v2 is naturally unstable: this is
the Kelvin–Helmholtz paradigm. The mode selection involves
properties of the interface between the streams like its surface
tension or the details of the velocity profiles. Both of these
ingredients are important in practice, as demonstrated in this
section.

A way to produce a shear between the jet and the
surrounding air is to blow through an injector built around the
jet nozzle. The method implies the formation of boundary
layers at the wall of the conveying channels resulting in
thickened velocity profiles at their merging location. In
addition to the two boundary layer thicknesses δ2 and δ1 of
each stream (see figure 33), another length scale is set by the
ratio of surface tension to inertia

γ

ρ2(1v)2
. (121)

Figure 33. Following Rayleigh (1880) [214], the piecewise linear
velocity profile as a paradigm for inflectional instabilities.

Here1v = v2−v1 is the relative velocity and ρ2 is the density
of, say, the light stream.

3.8.1. Sharp discontinuity: the Kelvin–Helmholtz limit. Let
us consider first a velocity discontinuity, corresponding to
vanishingly small vorticity thickness (δ1 = δ2 = 0). The
two potential flows of the jet and its surrounding have constant
velocities v1 and v2, and densities ρ1 and ρ2, respectively, in
a planar geometry. Taking the displacement of the interface
proportional to eikx−iωt , the dispersion relation, in the absence
of gravity is [145, 217–219]

−iω = −ik
ρ1v1 + ρ2v2

ρ1 + ρ2

± k

ρ1 + ρ2

√
ρ1ρ2(v2 − v1)2 − (ρ1 + ρ2)γ k, (122)

where the real part of ω corresponds to the advection of
a plane wave by the mean flow. Note that the effect of
shear is always destabilizing. Assuming a spatially uniform
perturbation (k real), the temporal growth rate Re[−iω] is
proportional to k for small wavenumbers, and surface tension
is stabilizing at large k i.e. for

k > kc = ρ1ρ2

ρ1 + ρ2

(v2 − v1)
2

γ
. (123)

For, say, a liquid–gas interface (ρ1 , ρ2), with a large velocity
difference (v2 , v1), the most amplified mode and group
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velocity are

km = 2
3
ρ2v

2
2

γ
and

∂

∂k
(Im[−iω]) = v1 +

ρ2

ρ1
v2.

(124)

In the case of jets, the analysis has to be performed in
a cylindrical geometry, including the destabilizing capillary
term coming from the radial curvature. Setting ρ ≡ ρ1,
ρa ≡ ρ2 and v2 = 0, v1 ≡ v0, one has

(ω − kv0)
2 +
ρa

ρ
ω2 I1(kh0)K0(kh0)

I0(kh0)K1(kh0)

= − γ

ρh3
0

(kh0)[1− (kh0)
2]

I1(kh0)

I0(kh0)
, (125)

where viscous corrections can also be incorporated [220].
The long-wavelength version of (125) follows easily along

the lines of section 3.4, but accounting for the additional drift
term v0∂zv:

∂v

∂t
+ v0

∂v

∂z
= − 1

ρ

∂p

∂z
. (126)

This leads to a dispersion relation similar to (76), but with a
Doppler shift which makes the velocity difference v0 always
destabilizing for non-zero ρa:

(ω − kv0)
2 +

1
2
ρa

ρ
ln

(
1 +

1
kh0

)
(kh0)

2ω2

= −1
2
γ

ρh3
0

[(kh0)
2 − (kh0)

4]. (127)

The dispersion relation (127) describes plane waves ω =
kv0 advected by the flow. In the absence of an external medium,
they are subject to capillary destabilization only, but are now
unstable for

k <
ρav02
γ

. (128)

Thus in the limit kh0 , 1, so that ln(1 + 1/kh0) ≈ 1/kh0,
perturbations are unstable for

We =
ρav

2
0h0

γ
, 1. (129)

This means that the capillary instability is overpowered in the
high Weber number limit. In the opposite limit of Wea . 1,
the usual cut-off at kh0 = 1 holds, and the external shear is
only a small correction.

However, the above results apply only in the rare situations
where a sharp velocity discontinuity is a good description. It
may be relevant to the initial destabilization of high-speed jets
issuing into a quiescent environment from a nozzle at very high
Reynolds number (see figures 34 and 35 as well as [221]). It
is also found to be a good model for the flapping instability of
liquid sheets formed by the impact of a jet on a solid surface,
or from a fan spray nozzle [222–226], for which the boundary
layers have no time to form. However, for a large class of
other systems, the boundary layer thickness has to be taken
into account.

Figure 34. A fast water jet issuing into air. Photographs by Hoyt
and Taylor [221]. Reprinted with permission from Cambridge
University Press.

Figure 35. The intricate forest of liquid ligaments and drops in a
flow similar to that of figure 34 revealed by numerical
simulations [78]. Courtesy of A Berlemont.

3.8.2. Smooth crossover: the Rayleigh limit. Rayleigh (1880)
[214,219] first showed that a uniform layer of vorticity of finite
thickness δ selects a mode of maximum growth km ∼ 1/δ.
He also showed that the instability of an inflectional profile,
relevant to jet stability (cf figure 33) is of purely inviscid origin.
It was quantified later (see, e.g. [227]), how viscosity weakens
the growth rate at very low Reynolds number.

One of the subtleties of the present problem is that
it incorporates two phases, with different densities and
viscosities and thus, a priori, different vorticity thicknesses.
Let us consider the limit of a fast gas phase shearing, through a
thick layer of vorticity δ, a nearly quiescent liquid (v2 , v1 and
ρ2/ρ1 = O(10−3). This is the limit in which ‘air blast sprays’
are formed. A very short time after the streams have met,
the overall velocity profile can be approximated as sketched
in figure 33. From the continuity of viscous stress across the
interface [228] we obtain

η2
v2 − vi

δ
= η1

vi − v1

δ1
, (130)

withη1 andη2 the viscosities of each phase andvi the velocity at
the interface. In this parallel stream approximation, the liquid
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layer can only grow by viscous diffusion so that δ1 ∼
√
ν1t .

Let the Reynolds number based on the gas shear layer thickness

Reδ = u2δ

ν2
(131)

be larger than the value of≈100 below which the damping role
of viscosity becomes effective [227, 229].

For the liquid shear layer, on the other hand, it takes
some time to reach this condition. The growth rate of the
inflectional profile neglecting the contribution of the liquid
layer (i.e. setting δ1 = 0) is (ρ2/ρ1)(v2/δ) (see below). Hence
the instability based on the gas profile alone has, by the time
the liquid layer has grown appreciably, developed within

10
δ2

ν2

ρ2

ρ1

u2

δ
≈ 5 turnover times. (132)

This safely justifies the approximation δ1 = 0. The piecewise
linear profile shown in figure 33 is but a caricature of an actual
velocity profile, but is known, in single phase flows, to capture
all the essential physics (wavenumber cut-off, growth rate) of
the instability [230]. The obvious advantage of the simplified
profile is that it yields transparent analytical expressions.

Using dimensionless variables κ = kδ and 3 = ωδ/

(v2 − v1), the dispersion relation becomes [231]

e−2κ =
[

1− 2
(
3 + κ

v2/v1

v2/v1 − 1

)]

×
1 +

(
ρ1

ρ2
+ 1

) (
3 +

κ

v2/v1 − 1

)
− κ3

Weδ

(
3 +

κ

v2/v1−1

)−1

1+
(
ρ1

ρ2
−1

) (
3 +

κ

v2/v1−1

)
− κ3

Weδ

(
3 +

κ

v2/v1 − 1

)−1 ,

(133)

where

Weδ = ρ2(v2 − v1)
2δ

γ
(134)

is the Weber number based on the gas shear layer thickness δ.
The dispersion relation (133) contains the effect of both

a finite size of the boundary layer and of surface tension. In
the large Weber number limit, factors containing 1/Weδ are
negligible and the stability properties of the layer amount to
an extension of Rayleigh’s theory, but incorporating density
differences [231, 232]. Thus in the reference frame moving at
the average velocity (v1 + v2)/2 (133) becomes

e−2κ = [1− (23∗ + κ)]
1 +

ρ1

ρ2
+ 1

2 (23∗ − κ)

1 +

ρ1

ρ2
− 1

2
(23∗ − κ)

(135)

with

3∗ = 3− κ (v2 + v1)/2
v2 − v1

. (136)

Setting ω = ωr + iωi , the temporal stability analysis
of (136) displays a growth rate ωi (k) tangent to the
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Figure 36. Dispersion relation Re[−iωi (k)] as given by (136),
shown as a function of kδ for three different density ratios
ρa/ρ = 1, 0.1, 0.01.

velocity discontinuity dependence at small k (i.e. ωi (k) ∼
k(ρ2/ρ1)

1/2(v2−v1), see (122)) and an overall bell-shape with
a cut-off at kc = 2(ρ2/ρ1)

1/2/δ, as seen in figure 36. The
most amplified wavenumber and the associated growth rate
now depend on δ and read (for v2 , v1)

km 0 1.5
(
ρ2

ρ1

)1/2 1
δ
, ωi (km) 0 ρ2

ρ1

v2

δ
. (137)

The group velocity at km is very well represented by the
convection velocity as estimated from the stress continuity at
the interface [233, 234]

∂ωr

∂k

∣∣∣∣
km

0
√
ρ1 v1 +

√
ρ2 v2√

ρ1 +
√
ρ2

. (138)

Using the method of section 3.6.1, the above temporal
analysis can be transformed to the case of spatial growth,
which is legitimate if the momentum ratio between the streams

M = ρ2v
2
2

ρ1v
2
1

(139)

is large enough (see [231, 232] for a discussion). At a
fixed spatial location, the passage frequency f of unstable
disturbance waves at the interface is thus

f ∼ km(∂ωr/∂k)km
∼ u2/δ, (140)

as seen clearly in the measurements in [232, 235], reported in
figure 39. This effectively demonstrates the relevance of the
above description for the destabilization of jets by a fast gas
stream.

3.8.3. Transition between the two limit cases. The numerical
solution of the complete dispersion equation (133) shows, as
expected, a transition from the results for a thin vorticity layer
(Weδ . 1) to a thick vorticity layer (Weδ , 1). As predicted,
the selected wavenumber is km = 2/3 ρ2v

2
2/σ for small Weδ ,

and tends to km = 1.5(ρ1/ρ2)
1/2/δ at large Weδ . The group
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Figure 37. Transition from a thin shear layer to a thick shear layer
as a function of the Weber number Weδ for v2/v1 = 20, using the
parameters of an air/water interface; ◦, group velocity; 12, most
unstable wavenumber; - - - -, transition value of (ρ2/ρ1)

1/2.

velocity ∂ωr/∂k jumps from nearly v1 to the value given in
(138) when the Weber number increases, after a discontinuous
transition (see figure 37); this transition occurs for

Weδ ∼
(
ρ2

ρ1

)1/2

. (141)

Even in the presence of surface tension, the shear does not
affect the layer for wavelengths shorter than δ(ρ1/ρ2)

1/2. The
Rayleigh mode selection thus overcomes the selection of the
Kelvin–Helmholtz mode as long as γ /ρ2v

2
2 < δ(ρ1/ρ2)

1/2,
resulting in (141) above [231].

Note finally that, if the liquid phase is a jet of radius h0,
the shear instability overcomes the capillary instability of the
jet itself as soon as its growth rate (v2/δ)(ρ2/ρ1) is larger than

the capillary growth rate
√
σ/ρ1h

3
0. This is equivalent to

Weδ ,
ρ1

ρ2

(
δ

h0

)3

, (142)

a condition fulfilled for example in the experiment shown in
figure 38.

The above scenario, based on the instability of an
inflectional profile, was first suggested in [231]. Viscous
corrections were considered in [237] and used in [236]
to compute the breakup of a liquid jet in air. Even for
moderate jet speeds, significant deviations from Rayleigh’s
analysis are found [148, 238], since the shear generated
by the surrounding air enhances destabilization. Such an
analysis was first carried out by Weber [38], using the
Kelvin–Helmholtz approximation, which is irrelevant in this
context (cf section 3.8.1). Later, Sterling and Sleicher [238]
included the effect of viscosity on the shear profile, whose
finite thickness reduces the aerodynamic effects. However,
to achieve quantitative agreement with theory, an empirical

Figure 38. Destabilization of a slow water jet (h0 ≈ 4 mm) by a fast
coaxial air stream [232] (v1 = 0.6 m s−1, v2 = 35 m s−1). The
wavelength of the primary axisymmetric undulation is governed
by (137).

correction factor had to be introduced. The origin of this
correction has finally been explained in [236], by including
a full self-consistent account of the air boundary layer (see
figure 39 and also section 3.12).

These studies have led to a fully quantitative explanation
of the observed growth rates and mode selection of a liquid jet
in relative motion to a gas phase. They have been a crucial
step in understanding the subsequent atomization of the liquid
discussed in section 5.

3.9. Charged jets

New phenomena arise when the jet contains electric charges,
which can be achieved by letting the jet fall into a bucket
maintained at a given potential, while an electrode upstream
of the jet orifice is set at a different potential. This was
demonstrated in the 18th century by Abbé Nollet (1749) [33],
cf figure 10. If the liquid is not too conductive, the charges have
time to migrate, by electrostatic repulsion, to the jet’s surface
before reaching the counter-electrode at the bucket, inducing
new instabilities of the interface.

3.9.1. Electrostatic repulsion. Let a jet be superficially
charged at potential V0 with a charge (positive or negative) per
unit area σ0 = V0 ε0/h0. The repulsion between the charges
tends to push the interface outwards, therefore counteracting
the cohesive action of capillarity. If the charges are confined
to the jet surface, a direct application of Gauss’ theorem
(∇ · E = ρe/ε0, where ρe is the charge volume density) shows
that the field E is zero inside the jet, since there are no charges
in the liquid bulk. Outside of the (unperturbed) jet (i.e. for
r > h0), the field is radial:

E = σ0

ε0

h0

r
er , (143)

corresponding to a potential V (E = −∇V )

V = V0 −
σ0h0

ε0
ln

(
r

h0

)
, (144)

where ε0 is the permittivity of free space.
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Figure 39. (Left) Passage frequency f of the optimal disturbance of the interface as a function of frequency, compared with the prediction
of (140). Here uc stands for the group velocity in (138). Measurements are from [232,235]. (Right) Dimensionless growth rates3i = ωτ of
perturbations growing on a liquid jet issuing into air as a function of the jet speed U . The wavelength is close to the optimum value.
Experimental data are from [148], theory according to [236].

To investigate stability, we consider the general (not
necessarily axisymmetric) perturbation (46), ensuring mass
conservation by requiring (48). Since charges are confined
to the surface, Laplace’s equation ∇2V = 0 holds inside and
outside the jet. Assuming, in addition, that the charges are
sufficiently mobile along the surface to make the interface an
equipotential, one finds that

V (r < h) = V0, (145)

V (r > h) = V0 −
σ0h0

ε0
ln

(
r

h0

)

+
σ0ε

ε0

Km(kr)

Km(kh0)
cos(mϕ) cos(kz). (146)

To this perturbed potential corresponds a perturbed surface
density such that

σ1 = − ε0
∂V

∂r

∣∣∣∣
R=h

= ε0V0

h0

(
1− ε

h0

[
1 + kh0

K ′
m(kh0)

Km(kh0)

]
cos(mϕ) cos(kz)

)
.

(147)

The corresponding electrostatic contribution Ee to the
potential energy of the jet is (with a sign opposite that of the
surface energy (35), since electrostatic forces are repulsive)

Ee = −1
2
V0

∫
σ1[h0 + ε cos(mϕ) cos(kz)] dϕ dz. (148)

The electric potential energy reckoned from equilibrium is
[241, 242]

1Ee = π

4
ε0V

2
0

(
ε

h0

)2 [
1 + kh0

K ′
m(kh0)

Km(kh0)

]
, (149)

which is negative, indicating the possible existence of an
instability, for all values of m > 0. For m = 0, a range of stable
wavenumbers exists for 0 < kh0 ! 0.6. This stabilizing role
of surface charges on the varicose mode at long wavelength
was first noticed by Rayleigh [242].

3.9.2. Dispersion equations. The full dispersion equation,
incorporating the effect of surface tension, is obtained along
the same lines as in section 3.2 (see, e.g. [241, 243–245], and
the review [246]):

ω2 = − γ

ρh3
0

(kh0)
I ′m(kh0)

Im(kh0)

×
[

1−m2 − (kh0)
2 − -

(
1 + kh0

K ′
m(kh0)

Km(kh0)

)]
. (150)

The parameter

- =
ε0V

2
0

γh0
=
σ 2

0 /ε0

γ /h0
(151)

represents the relative importance of electric to surface tension
energy, or, equivalently, the ratio of the electrostatic pressure
σ 2

0 /ε0 to the capillary pressure γ /h0. A corresponding long-
wavelength description is found in [247, 248], while Huebner
and Chou [241] give an elegant energetic derivation.

In the spherical geometry relevant to isolated drops,
Rayleigh [242] has shown by the same energetic arguments
as above that there is a critical value of this ratio above which
a cohesive drop cannot sustain its charge anymore and has
to destabilise. The drop undergoes an oblate transformation
(shown in figure 40) and the formation of thin, elongated jets
(‘Rayleigh jets’), which are discussed in detail in section 4.7.
A much more detailed bifurcation analysis of charged drops
was performed in [249].

The dispersion relation (150) of the varicose mode m = 0
is shown in figure 41. It displays, as soon as - > 1, an
enhanced rate of instability compared with that of the pure
capillary destabilization, and a range of unstable wavenumbers
extended to values of kh0 larger than 1. Also of interest by
contrast to the pure capillary destabilization, for which all
non-axisymmetric modes are stable, is the case m = 1. The
initial destabilization of the jet in figure 40 is more of the
m = 2 type, squeezing the jet into a dumbbell shape, clearly
demonstrating the destabilizing character of electric repulsion,
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Figure 40. (Left) Instantaneous realization of the electrostatic disruption of room-temperature paraffinic white oil. The oil is issuing at
5 ml s−1 from a circular orifice (h0 = 0.5 mm) after having been negatively charged to a mean charge density of 0.15 Cb m−3. The liquid is
charged by a submerged electrode, which is positioned immediately upstream of the grounded orifice through which the fluid issues. In the
absence of charge injection the liquid would exit as a glassy smooth cylindrical stream. The elegant filamentary structure and subsequent
droplet development is purely electrostatic. No mechanical or aerodynamic forces are involved. Reprinted with permission from [239],
copyright 2000 by the American Institute of Physics. (Right) High-speed imaging of the disintegration of a levitated droplet charged to the
Rayleigh limit. The droplet (radius, 24 µm) is imaged at 1t values (in µs) of: a, 140; b, 150; c, 155; d, 160; e, 180 and f, 210. The droplet
changes from a sphere to an ellipsoid (a), tips appear at the poles (b) and a fine jet of liquid is ejected from each tip (c); the jets disintegrate
(d) and the elliptical droplet re-assumes a spherical shape (e), (f). Scale bar, 100 µm. Reprinted from [240], copyright 2003, with
permission from Nature Publishing Group.
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Figure 41. Stability curve −iωτ versus kh0. Destabilizing effect of
surface charges with - = 2 on the varicose mode m = 0 in
equation (150). The neutral jet dispersion curve is shown for
comparison.

which may even lead to ‘jet splitting’ in some cases (see [250]
and references therein).

The stability of a charged jet in an external electric field
is of the utmost importance for applications. If the jet breaks
up into droplets, one speaks of ‘electrospraying’. Another
possibility is the whipping mode shown in figure 42, on which
the ‘electrospinning’ technique of producing polymer fibres is
based [251–253], for example to make fabrics. The stability of
a cylindrical jet, reviewed in [247,254], now depends not only
on the fluid parameters εi and K but also on external parameters
such as the applied electric field and the surface charge, to be
determined from the cone-jet solution. The problem becomes
manageable in a long-wavelength description [247], which is
self-consistent in most cases.

Apart from a modified Rayleigh mode, which is gradually
suppressed as the electric field is increased, another varicose

‘conducting’ mode becomes increasingly unstable, which
comes from the redistribution of surface charges. A third
‘whipping’ mode is most significant for large surface charges:
namely, imagine three like charges on a line. A lower energy
state is achieved if the middle charge breaks out of line, so the
jet is no longer straight. For a quantitative analysis, the axial
variations of h(z) andσ (z) must be taken into account [248], so
the stability depends significantly on the downstream distance.
With this in mind, the onset of whipping can be predicted
quantitatively [248].

Charges also play an important role for the stability of
nuclei [255], which may be modelled as charged liquid drops
[256] or, in a more extended state, jets [257]. The stability
of uniformly charged jets was investigated in [258], and its
relevance to the stability and the breakup of nuclei is discussed
at length in [257].

3.10. Ferrofluids in a magnetic field

Ferrofluids are colloidal dispersions of small (typically
micrometre-sized) magnetized dipolar particles which are
spread out in a continuous, liquid phase. Application of
an external magnetic field H induces a magnetization of the
dispersion M = χH, where χ is the magnetic susceptibility
of the medium, such that the net induction field is B = µH =
µ0(1 + χ)H, with µ the permeability of the medium and µ0

that of vacuum. The resulting stresses lead to an additional
body force in the Navier–Stokes equation, which adds a term
µ0M∇H to the internal pressure gradient. Rosensweig [259]
gives a comprehensive exposition of these notions, illustrated
by many examples including the two discussed below.

3.10.1. Parallel field. A magnetic field H0 applied
perpendicular to a free plane magnetic fluid interface leads
to an instability very similar to a Rayleigh–Taylor instability
[219, 259], because of the magnetic susceptibility jump,
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Figure 42. (Left) Whipping instability. Water jet exposed to an increasing longitudinal potential difference from left to right [244].
(Right) Strobe photograph of the overall picture of an unstable jet. Reprinted with permission from [247], copyright 2001 by the American
Institute of Physics.

inducing a normal stress at the interface. But when the field
H0 is applied parallel to the surface of a jet, as for instance
when a ferrofluid jet is immersed at the centre of a coaxially
positioned solenoid, the effect of the field is stabilizing. The
dispersion relation reads [259]

ρh3
0

γ
ω2 = −(kh0)

I1(kh0)

I0(kh0)
[1− (kh0)

2] (152)

+-m (kh0)
2 I0(kh0)K0(kh0)(µ/µ0 − 1)2

(µ/µ0)I1(kh0) + I0(kh0)K1(kh0)
, (153)

where µ0 and µ stand for the permeabilities of the vacuum and
of the fluid, respectively. The parameter

-m =
µ0H

2
0

γ /h0
(154)

is the ratio of the magnetic pressure to the Laplace pressure,
analogous to (151). The magnetic term in this equation is
always positive.

3.10.2. Azimuthal decaying field. A thin layer of fluid of
thickness e0 coating a cylindrical fibre, or a wire of radius h0,
suffers a capillary instability, as described in section 3.5.2. If
the wire is conductive and carries a current I , the magnetic
field is azimuthal and decays with the distance r from the wire
according to Biot and Savart’s law

H = I

2πr
, giving G = dH

dr

∣∣∣∣
r=h0

= H

h0
. (155)

When the liquid layer coating the wire is thin compared with
the wire radius (i.e. when e0/h0 . 1), the dispersion relation
reads [259]

ρh3
0

γ
ω2 = e0

h0
(kh0)

2[N + (kh0)
2 − 1], (156)

Figure 43. Suppression of the capillary instability by a radially
decaying azimuthal magnetic field generated by a current in the wire
coated by the magnetic fluid [259].

where the so-called ‘magnetic Bond number’ N is

N = µ0MGh0

γ /h0
= µ0χI 2

4π2h0γ
. (157)

The dispersion relation (156) shows that the usual Rayleigh–
Plateau instability is weakened as N increases from zero, and
completely disappears for N > 1, as shown in figure 43. Note
that (156) applies to the inviscid limit, as opposed to (93),
which applies for highly viscous fluids.

3.11. Other body forces

The effect of body forces on the dynamics of liquid jets has
already been alluded to in section 3.5, where we described the
gravitational stretch of a viscous thread, and in section 3.10
above. Here we mention a few more examples which are
important in practice.
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Figure 44. (Left) Dispersion curve of a swirling jet representing the growth rate (in units of
√
γ /ρh3

0) versus dimensionless longitudinal
wavenumber kh0 for various azimuthal wavenumbers m. Adapted from Ponstein (1959) [260]. (Right) Still images of helical instabilities on
a rotating jet, showing how the most amplified azimuthal wavenumber increases as the rotation increases, subsequent ligament and drop
formation. Courtesy of Kubitschek and Weidman [261]. Reprinted with permission, copyright 2007 by the American Institute of Physics.

3.11.1. Swirling jets. A convenient way to communicate
a body force to a the jet is to impose a rotation of the jet,
sometimes called swirl. This can be achieved using a so-called
‘cyclone spray chamber’, which is a rotating pressurized
chamber, from which the jet is expelled tangentially. In
[262,263], the trajectory of such a swirling jet was calculated.
The effect of the swirl on the base flow is usually modelled as
one around a line vortex along the jet’s axis, with a radially
decaying azimuthal velocity

vφ = -

r
and vr = 0. (158)

Here 2π- is the circulation, with a negligible viscous core.
This imparts a centrifugal acceleration g ≡ -2/h3

0 on the
jet. The entire jet is being translated at the issuing velocity
vz = v0. The alternative case of a solid body rotation, or
when the viscous core is as thick as the injector diameter, is
considered below.

Ponstein (1959) [260] has considered the stability of a jet
flow with base flow (158) by considering perturbations of the
form (46). When the influence of the external medium, as well
as of the viscosity, is neglected the dispersion relation becomes
(
ω − m-

h2
0

− kv0

)2

= γ

ρh3
0

[m2 − 1 + (kh0)
2 − S](kh0)

I ′m(kh0)

Im(kh0)
, (159)

where S is the ‘Swirl number’ given by

S = ρ-2

γh0
. (160)

Not surprisingly, centrifugal forces enhance instability
because the acceleration is directed outwards, pointing towards
the light phase. A hollow jet is correspondingly stabilized by
rotation. Azimuthal modes are now unstable too; in the limit
of very large rotation (S , 1), the jet interface is unstable to
all modes m and is quasi-planar for large m. From (159), the
marginal azimuthal wavenumber k⊥ such that mc = k⊥h0 is,
for k = 0 (azimuthal modulation uniform in the z direction),

k⊥ =
√
ρg

γ
with g = -2

h3
0

. (161)

This is to be expected by analogy to the associated Rayleigh–
Taylor instability [219] with acceleration g. This instability
hinders the capillary instability of the jet when its time of
growth (γ /ρg3)1/4 is smaller than the capillary timescale

τ =
√
ρh3

0/γ , that is for

S > 1. (162)

Figure 44 summarizes these trends.
Note finally that this technique of rapid rotation is used

as an atomization process employing ‘spinning cups’. The
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Figure 45. Formation of liquid threads from a rotating hollow
tube [264].

liquid is deposited as a film on a rapidly rotating disc or hollow
tube, and ejects liquid threads spaced by the above length scale
2π/k⊥ (see figure 45 and [264–266]). In another context, the
process is known as ‘prilling’, and used to produce fertilizer
and magnesium pellets [262, 263, 267].

3.11.2. Rotating jets. The study of jets in solid body rotation
was pioneered by Beer [15]. Here, the base flow (158) is
replaced by

vφ = 3r and vr = 0. (163)

This is produced very easily by rotating the entire nozzle from
which the jet is emerging [268], or by rotating one fluid inside
another, as already done by Plateau [269] (see also [261] and
figure 44). The latter is the geometry of the ‘spinning drop
tensiometer’ [270], which is used to measure very small values
of the surface tension between two liquids. The result of
an axisymmetric stability analysis in the absence of an outer
liquid [268, 271] is that angular rotation, as quantified by the
parameter

L = γ

ρ3h3
0

, (164)

always destabilizes the jet. In particular, the jet is unstable for

0 < kh0 <
√

1 + L−1, (165)

independent of viscosity [272].
The full axisymmetric stability analysis (again without

outer fluid), as well as experimental tests, was performed
by [268]. The limiting case of an inviscid fluid [271] shows an
increase in the growth rate with the speed of rotation relative
to (57), and consistent with (165). The opposite case of very
large viscosity leads to a simple extension of (80)

−iω = γ

2h0η

1− (kh0)
2 + L−1

1 + (kh0)2[1− (I0(kh0)/I1(kh0))2]
, (166)

which is of course once more consistent with (165). In a
rather extensive recent study [273], the transition towards non-
axisymmetric ‘swirling’ modes was considered as well.

It is interesting to note that a naive long-wavelength
description of a rotating jet [274] is in general not consistent
with (165). The reason for this is the formation of a very
thin boundary layer near the free surface of the jet for small
ω, i.e. near the stability boundary [275]. Namely, Rayleigh’s

stability criterion for a rotating fluid implies that the interior of
the fluid be stabilized, while the Rayleigh–Taylor mechanism
destabilizes the free surface, squeezing disturbances to within
a very thin layer. For very large viscosities, however, the long-
wavelength description becomes consistent, and the analogue
of (85) becomes

− iω = 1
6τv

[1− (kh0)
2 + L−1]. (167)

Finally, the two-fluid case, relevant to the measurement of
surface tension, was investigated in the viscous limit in [276].
In the spinning drop tensiometer the lighter fluid moves to the
centre, where it is stabilized by the rotation. The stability is
controlled by the ‘rotational Bond number’ [276]

Bo3 =
(ρ2 − ρ1)3

2h3
0

γ
, (168)

which without an outer fluid (ρ1 = 0) is Bo3 = −L−1. When
0 < Bo3 < 1, the thread is unstable in the wavenumber region
0 < kh0 <

√
1− Bo3, while it becomes completely stable for

Bo3 > 1. Thus as3 is reduced, the liquid cylinder breaks up,
and from a measurement of the growth rates the surface tension
can be deduced [270, 276].

3.11.3. Jet in a cross flow. Consider a jet of radius h0 and
density ρ issuing at velocity v0 into a gaseous environment
(density ρa) flowing at a translational velocity u perpendicular
to the ejection direction of the jet (figure 46). The drag force
exerted by the velocity contrast bends the jet. A simple force
balance on a length element d4 of the jet between the air drag
and the centrifugal inertia of the liquid reads

CDρau
2h0 d4 ∼ ρh2

0
v2

0

R
d4, (169)

where R is the radius of curvature of the jet’s trajectory in
the fixed frame, and CD a drag coefficient of order unity. The
balance can thus be simplified to

R

h0
∼ ρ

ρa

(v0

u

)2
. (170)

Now, the jet fluid is subjected to an acceleration g ≡ v2
0/R

in the plane of the jet’s trajectory, so the outer surface of the
jet suffers a Rayleigh–Taylor instability, whose wavelength is
controlled by the capillary length λ ∼

√
γ /(ρ − ρa)g. Thus

for ρ , ρa one obtains

λ

h0
∼ We−1/2 with We = ρau

2h0

γ
. (171)

The wavelength (171) is independent of the liquid velocity and
its density. This instability hinders the capillary instability
when its time of growth

√
λ/g = (γ /ρg3)1/4 is shorter than

the capillary time τ =
√
ρh3

0/γ , that is, as soon as

We = ρau
2h0

γ
> 1. (172)
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Figure 46. Liquid jet in a transverse cross flow of air. (a) Reference jet with no air, (b) We = 3, (c) We = 8, (d) We = 30 with
We = ρau

2d/γ as defined in (171). The jet diameter is millimetric and the liquid velocity v0 is of the order of a few 10 m s−1. The bar
indicates the length of the Rayleigh–Taylor wavelength λ. Courtesy of K A Sallam [277].

The scaling law (171) has been checked by [277] over more
than two orders of magnitude in We, for different liquids and
issuing velocities.

The above mechanism by which the liquid follows a
curved base flow and thus sustains a centrifugal instability is
reminiscent of the ‘wavy corridor’ mechanism, responsible for
the destabilization of undulated liquid sheets [278].

3.12. Liquid intact length

The minimum distance from the nozzle over which the
liquid jet is still connected is usually called ‘liquid intact
length’ L [215,216,279]. This distance can fluctuate by several
wavelengths, but is defined in the mean. Scaling theories for L

are readily derived from the discussion in sections 3.2 through
3.8. Namely, the intact length is

L = v0τ, (173)

where τ is the characteristic time of the instability, needed to
break the jet. Let us describe two simple extreme cases:

• For a pure capillary instability at negligible viscosity τ is
given by (2), and thus

L

h0
∼ We1/2, (174)

as is indeed observed for jets beyond the jetting transition
and entering a gaseous environment [119, 280, 281].

• For larger Weber number, the shear instability overcomes
the capillary destabilization (see section 3.8). Consider
for instance that the jet is ‘peeled off’ by an instability
of the type sketched in figure 33, the injection velocity
v0 also being the velocity contrast setting the shear
intensity. This instability turnover time has been shown to
be Re[−iωi (km)]−1 ∼ (δ/v0)(ρ/ρa), and the associated
wavelength k−1

m ∼ δ(ρ/ρa)
1/2. If these conditions are

maintained for several turnover times of the instability,
the breakup time is

τ ∼ h0km

ρ

ρa

δ

v0
= h0

v0

(
ρ

ρa

)1/2

, (175)

leading to an intact length

L

h0
∼

(
ρ

ρa

)1/2

, (176)

independent of the jet velocity. This intact length can
reach several hundred jet radii if ρa/ρ . 1 [228, 231].
Note that (176) is scale invariant and holds whatever δ
may be. In other words, whatever the physical process
which fixes δ (which may be a boundary layer thickness
imposed externally, or an intrinsic wavelength γ /ρav

2
0 as

in section 3.8), L will always have the form (176), as soon
as the jet destabilization is due to shear [231].

The overall dependence of L on the ejection velocity v0

for simple jets usually displays a linear increase at small v0,
consistent with (174), and then a saturation whose level is
higher for a lighter environment, cf (176), and as seen in
figure 47. Both dependences can be incorporated by saying
that v0/L is the sum of the characteristic growth rates of each
of the competing instabilities, i.e.

v0

L
= 1

√
ρv2

0/γ
+
δ
√
ρ/ρa/h0

ρ/ρa(δ/v0)
. (177)

Thus, disregarding prefactors, we have

h0

L
= 1√

We
+

1√
ρa/ρ

, (178)

so the transition between the two limits occurs for a Weber
number of order

We ∼ ρ

ρa
. (179)

In particular, at large Weber number L/h0 saturates at a value
proportional to

√
ρ/ρa, which is inversely proportional to

ambient gas pressure Pa. Data to support this conclusion
are shown in figure 47. Contrary to a common belief since
[238], this saturation is not an effect of viscosity on the
capillary instability development, but relates to the appropriate
shear instability responsible for the jet peeling-off (see also
section 3.8 and the point made in [236]).
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Figure 47. Liquid intact lengths (or jet breakup length) measured for increasing jet velocity v0 for various injection conditions (d0 is the
injector diameter and 40 denotes the orifice length, setting the boundary layer thickness at the exit) as well as different ambient gas
pressures. (Adapted from Hiroyasu et al (1982) [282]).

When the injection velocity v0 is very different from
the one setting the shear va − v0 ≈ va, as is the case for
coaxial jets with a strong momentum ratio contrast M =
ρav

2
a /ρv

2
0 , 1 between the streams, one has L = v0τ and

τ ∼ h0/va(ρa/ρ)
1/2, and thus

L

h0
∼ v0

va

(
ρ

ρa

)1/2

(180)

sometimes written L/h0 ∼ M−1/2 [231, 283, 284].
The effect of initial turbulence in the jet as it issues

from the nozzle is to hasten the capillary instability (when the
turbulence level is a few per cent of the injection velocity v0, as
for pipe flow turbulence). In the capillary dominated regime,
this will lead to a moderate shortening of the intact length [285].
In the shear dominated regime, the influence of background
turbulence is immaterial, the primary shear instability being
essentially unchanged by initial surface roughness and liquid
velocity fluctuations as soon as the momentum ratio is large
enough (i.e. M , 1) (see e.g. [232] and figure 48).

The way in which viscous slowing and longitudinal
stretch can modify the scaling dependence for L (sometimes
drastically!) has been explained in section 3.7.3. But the
construction underlying L is always the same and given by
(173); this standard procedure is also useful to predict the
extent of unstable liquid sheets [226].

3.13. Gravitational collapse

The phenomena we have described up to now were all on
a human scale or below, for which gravity is either sub-
dominant (when the Bond number is small) or of order one (see
section 3.7.3). At larger scales, the gravitational interaction
may be felt, and if one considers objects sufficiently remote
from massive sources of gravity, suspended in the interstellar
medium, their shape and evolution is now determined by
their own gravity. This problem was first described for a
self-gravitating compressible medium in thermal equilibrium,
motivated by the understanding of the formation of galaxies,
nebulae and the known spottiness of the interstellar medium
[286] and fractality of its mass distribution support [287].

We will once more consider an incompressible fluid of
density ρ, having initially the shape of an infinitely long jet of
radius h0, remaining cohesive due to its own gravitational field
g = (gr , gψ , gz) alone. That field obeys a Poisson-Gauss law

∇ · g = 4πρ G (181)

inside the jet (with G = 6.67×10−11 kg−1 m−3 s−2 the constant
of gravity), and a Laplace law

∇ · g = 0 (182)

outside the jet, neglecting an external medium. For an infinitely
long straight cylinder, the field is purely radial, equal to
gr = 2πρ Gr in the jet, and the pressure in the jet is p =
πρ2 G(h2

0 − r2), obeying

g = − 1
ρ

∇p. (183)

Note that for a dense fluid, the radius h0 need not be very large
for gravitational forces to be dominant compared with surface
energy. Indeed, at equilibrium, the gravitational pressure scale
ρ2 G42 balances the capillary pressure scale γ /4 for

46 =
(
γ

ρ2G

)1/3

. (184)

For a fluid such as water, 46 ≈ 1 m, which is not an
astronomically large distance.

As before, we investigate the stability of a cylinder.
Varicose undulation of the jet radius will again be unstable, as
can be guessed from the following argument: as known since
Kepler and Newton [288], distant masses attract mutually with
an intensity F proportional to their masses (say m and M) and
inversely proportional to their distance (say z) squared, i.e.
F = GmM/z2. Thus from Newton’s second law z̈m = F/m,
and for M > m we can conclude that z̈m > z̈M . This suggests
that a constriction of the jet’s cross-section (of smaller mass m)
will move in the direction of a bulge with a larger mass M , thus
thinning even more while feeding the bulge. If the masses are
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Figure 48. Surface profiles of a jet issuing from a smooth pipe
(left), and one whose surface is rough (right), as a function of the
Reynolds number Re = 2v0h0/ν (adapted from [232]). At high
Reynolds numbers, the jet on the right is much more corrugated.
However, the initial destabilization of the jet by a coaxial stream is
insensitive to the surface roughness and associated liquid velocity
fluctuations as soon as the momentum ratio M between the streams
is large enough (i.e. M , 1).

such that m . M and are initially at a distance, say, R apart,
they collapse according to

z̈ = −G
M

z2
, (185)

in the finite Kepler time T

T 2 ∼ R3

GM
. (186)

If furthermore the masses are compact in space so that M ∼
ρR3, one has

T 2 ∼ 1
ρG

. (187)

This is the instability mechanism which, however, has to
be examined more closely since the pressure gradient along the
jet counteracts the motion, the pressure in the bulge being larger
(because it is thicker) than in the constricted region (which
is thinner), this effect representing a potential stabilizing

mechanism. We thus refine the above qualitative discussion by
a somewhat more elaborate argument, using a long-wavelength
description of the longitudinal rearrangements along the jet.
The dynamics of small corrugations h = h0 + ε(z, t) is
described by

∂v

∂t
= − 1

ρ

∂p

∂z
+ gz, (188)

∂ε

∂t
+

h0

2
∂v

∂z
= 0, (189)

∇ · g = ∂gz

∂z
+

1
r

∂

∂r
(rgr) = 4πρ G, (190)

where v is the velocity component in the jet along z, and gr

and gz stand for the radial and longitudinal components of the
gravity. According to the above system, the dynamics of ε is
given by

∂2ε

∂t2
+

h0

2

(
− 1
ρ

∂2p

∂z2
+
∂gz

∂z

)
= 0. (191)

The pressure of the base state is p = πρ2 G(h2− r2), and
thus, at first order,

− 1
ρ

∂2p

∂z2
= −2πρGh0

∂2ε

∂z2
. (192)

The radial gravity gr is altered by the radius corrugations
ε(z, t) ∼ eikz−iωt and the associated modulations of the local
mass as

gr = 2πρGr

(
1 +

2
π

|k|ε
)

. (193)

Namely, crests and troughs, where gz = 0, are separated by
a longitudinal distance λ/2 = k/π . The longitudinal gravity
gz, which is zero in the straight cylinder configuration, is thus
given by the Poisson equation as

∂gz

∂z
= 4πρG − 1

r

∂

∂r
(rgr), (194)

= −4πρG
2
π

|k|ε. (195)

Thus, from (191), the dispersion relation reads

ω2 = 1
T 2

(
− 4
π

|k|h0 + (kh0)
2
)

, (196)

T 2 = 1
πρG

. (197)

The gravitational collapse occurs for a wavenumber given
by the inverse of the jet radius, at a rate 1/

√
πρG, independent

of the radius, as expected from (187). These features are
correctly reproduced (unlike the numerical value of the cut-
off wavenumber and the detailed dependence of ω(k) at
k = 0) compared with the true dispersion relation, given in
Chandrasekhar [145]:

ω2 = −4πρGkh0
I1(kh0)

I0(kh0)

(
K0(kh0)I0(kh0)−

1
2

)
. (198)

In [145] it is also noted that all purely non-axisymmetric
perturbations are stable, consistent with our qualitative
argument above.
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4. Breakup

4.1. Overview

The initial stages of breakup are governed by linear theory.
Since growth is exponential, this gives a good estimate of
the total time to breakup, and thus of the breakup length of
a jet, as discussed in section 3.12 above. Yet the growth of
sinusoidal modes cannot even explain basic features such as
satellite drops, so the inclusion of nonlinear effects is essential.
The aim of this section is to explain what actually takes place
as the radius of the fluid neck goes to zero, to produce a theory
of drop formation from the continuum perspective.

Near breakup, the typical size of the solution goes to
zero, and thus does not possess a characteristic scale. It is
therefore natural to look for solutions that are invariant under
an appropriate scale transformation, i.e. to look for similarity
solutions. We choose the intrinsic scales (27) as units of length
and time, and the point z0, t0 where the singularity occurs
as the origin of our coordinate system. The dimensionless
coordinates are thus z′ = (z − z0)/4ν and t ′ = (t0 − t)/tν . In
the simplest case that a one-dimensional description (29), (30)
is appropriate, we expect a similarity description

h(z, t) = 4ν |t ′|α1φ(ξ), v(z, t) = (4ν/tν)|t ′|α2ψ(ξ),

ξ = z′/|t ′|β, (199)

as first postulated in [29].
To calculate the values of the exponents, one must know

the balance of terms in the original equation, or its one-
dimensional counterpart. We will see below that in the absence
of an outer fluid, asymptotically breakup always proceeds
according to a solution first described in [21], which balances
surface tension, viscous and inertial forces. However, for
extreme values of the Ohnesorge number (6), other transient
regimes are possible. For example if the viscosity is small
(Oh . 1), it must initially drop out of the description.
Assuming that the solution is governed by a single length
scale, determined by the minimum radius hmin, it follows from
dimensional analysis that hmin ∝ (γ ((t0 − t)2/ρ)1/3, and thus
α = β = 2/3 [22, 289].

In the opposite limit still another scaling solution is found
[290], characterized by a set of irrational scaling exponents, an
example of self-similarity of the second kind [291,292]. Both
viscous and inviscid similarity solutions eventually cross over
to the asymptotic solution [21]. If an outer fluid is present,
it will exert a shear force which leads to a crossover to still
another solution [293, 294] in which the simple self-similar
form (199) is broken by the presence of logarithmic terms.

Once microscopic scales are reached, it was predicted
[295, 298] that thermal noise drives the pinching and changes
the qualitative behaviour of the solution. This was confirmed
by recent experiments for very small surface tension [299].
The different scaling regimes to be described in this section are
summarized in table 2, demonstrating the remarkable richness
of the phenomenon, even in the context of Newtonian fluids.

Table 2. Balances of inertia (I), surface tension (ST), viscosity (V),
noise (N) and gravity (G) that may appear during pinching of
Newtonian fluids. The absence of an outer fluid is marked (NO), of
an inner fluid (NI), and the general case is (GEN). The typical size of
the profile in the radial direction is 1tα , in the axial direction 1tβ .

Balance α β Logs Reference

ST-I-V, NO 1 1/2 No [21]
ST-V, NO 1 0.175. . . No [290]
N-I-V, NO 0.418. . . 1/2 No [295]
G-V, NO 1/2 −1/2 No [296]
I-ST, GEN 2/3 2/3 No [22, 289]
ST-V, GEN 1 1 Yes [22, 289]
ST-V, NI 1 0 No [137]
I, NI 1/2 1/2 Yes [141]
I, GEN 1/3 1/3 No [297]

4.2. Asymptotics of viscous breakup

It is easy to confirm that with the choice α1 = 1, α2 = −1/2,
β = 1/2, the self-similar profile (199) solves the slender-jet
equations (29)–(31), in which all terms are balanced as t ′ → 0.
The scaling implies that ε is proportional to |t ′|1/2, thus higher-
order terms in the expansion in ε go to zero as the singularity
is approached. In addition, (29)–(31) is now transformed into
a similarity equation for the scaling functions φ,ψ :

±(−φ + ξφ′/2) + ψφ′ = −ψ ′φ/2, (200)

±(ψ/2 + ξψ ′/2) + ψψ ′ = φ′/φ2 + 3(ψ ′φ2)′/φ2. (201)

The plus sign refers to the time before breakup (t < t0),
for (t > t0) all terms involving time derivatives change
sign. Equations (200) and (201) were rederived in [300]
starting directly from a similarity solution of the Navier–Stokes
equation, choosing the similarity exponents appropriately.

Let us focus first on the time before breakup. As it
stands, the system (200) and (201) has many solutions; which
is selected depends on matching conditions [138] to the flow
away from the singularity. At a finite value of the outer variable
z′, h(z, t) remains finite as t ′ → 0; this corresponds to the
physical condition that the outer solution cannot follow the
singular motion near the singularity. As the inner variable ξ
goes to infinity, (199) then implies that

φ(ξ)/ξα1/β = φ(ξ)/ξ 2 → a±
0 for ξ → ±∞.

(202)

A WKB analysis [301] of (200), (201) reveals that
solutions that grow quadratically at plus or minus infinity
form a two-dimensional submanifold of the three-dimensional
space of solutions. Thus each of the two conditions (202)
corresponds to one real condition on the solution. In addition,
it is readily seen that (201) has a movable singularity at the
‘sonic point’ ξ0 [302] with ψ(ξ0) + ξ0/2 = 0. Avoiding this
singularity corresponds to another condition, so that only one
unique physical solution remains [21].

More precisely, there is a discrete sequence of solutions,
corresponding to increasingly thin threads [303], but numerical
evidence [120] suggests that only the first solution in the
sequence is linearly stable and thus physically realizable.
We return to question of stability in section 4.2.1 below.
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Figure 49. A sequence of interface profiles of a jet of glycerol close
to the point of breakup [304] (the centre of the drop being formed is
seen as a bright spot in the top picture). The experimental images
correspond to t0 − t = 350, 298 and 46 µs (from top to bottom).
Corresponding analytical solutions based on (200), (201) are
superimposed [120]. There is no adjustable parameter in the
comparison.

The minimum of the only stable similarity solution is
φmin = 0.030 426 . . . [120]. In figure 49, this solution is
compared with an experimental sequence of photographs of
a viscous jet near breakup. Owing to the scaling 4r = |t ′|1/24z
the similarity solution appears increasingly elongated, leading
to a thin thread connecting two drops (of which only one is
shown). In summary, asymptotically pinch-off is described by
the ‘Navier–Stokes solution’, which has the form

h(z, t) = 4ν |t ′|φNS(z
′/|t ′|1/2),

v0(z, t) = (4ν/tν)|t ′|−1/2ψNS(z
′/|t ′|1/2).

(203)

The universality of pinching solutions has remarkable
consequences: at a time 1t away from the singularity the
minimum radius of a fluid thread is hmin = 0.0304γ1t/η,
independent of the initial jet radius [304]. The values of the
constants a+

0 = 4.6 and a−0 = 6 × 10−4 are also universal
properties of the similarity solution, indicating the extreme
asymmetry of the solution. On its steep side, it merges onto
the drop, on the other it forces the shape into a thin thread.
Thus the universal properties of the local solution impose a
certain structure onto the global form of the pinch-off. This
is remarkable, since in most matching problems, such as the
prototypical Prandtl boundary layer [42], the inner solution
depends on constants provided by the outer solution. Some
universal properties of the Navier–Stokes solution, as well as
other similarity solutions, introduced below, are summarized
in table 3.

4.2.1. Approach to the singularity. The comparison with
experiment in figure 49, as well as a host of more recent
experiments (for example, figure 61 below), indicate that
the convergence onto the similarity solution is rather quick.
This explains why the basic nonlinear features of breakup,

Table 3. Universal properties of similarity solutions corresponding
to the three possible balances in the absence of an outer fluid. The
fourth row applies to the breakup of one fluid inside another fluid of
equal viscosity. The second column refers to symmetry with respect
to the pinch point, the third column to the three scaling exponents
α1,α2, and β defined by (199). The + sign in the third column refers
to a logarithmic correction. The fourth column is the prefactor of
the minimum radius, defined by φmin = hmin/t

′α1(tα1
ν /4ν).

Balance Symmetry Exponents φmin

Navier–Stokes No 1,−1/2, 1/2 0.0304
Stokes Yes 1,−0.825, 0.175 0.0709
Euler No 2/3,−1/3, 2/3 0.7
Outer No 1,−1, 0+ 0.0328

such as satellite drops (see section 4.7.1 below) are explained
by considering the self-similar asymptotics of breakup. To
understand the convergence to the similarity solution, it is
useful to linearize the slender-jet equations (29)–(31) around
this time-dependent solution. To do this, a very useful trick is to
keep the full time dependence in the similarity transformation
(203), but to pass to the logarithmic time τ = −ln|t ′| [305]:

h(z, t) = 4ν |t ′|φ(ξ, τ ), v(z, t) = (4ν/tν)|t ′|−1/2ψ(ξ, τ ).

(204)

Inserting this into (29), (30), one obtains for the dynamics
leading up to breakup:

∂τφ = φ − ξφ′/2− ψφ′ − ψ ′φ/2,

∂τψ = −ψ/2− ξψ ′/2)− ψψ ′ + φ′/φ2 + 3(ψ ′φ2)′/φ2.

}

(205)

The important point to note is that the similarity solution (203)
is a fixed point of the system (205), greatly simplifying a linear
analysis.

Namely, denoting the similarity solution by φNS, the
general evolution can now be written as

φ(ξ, τ ) = φNS(ξ) +
∑

i

ai(τ );i (ξ), (206)

where {;i} is a suitable set of basis functions. For simplicity,
we will only consider the similarity solution corresponding to
h(z, t); the velocity field is treated analogously. Inserting (206)
into (205), and neglecting terms quadratic in ai , one arrives at
a linear set of equations

∂τai(τ ) = Mijaj . (207)

If the largest eigenvalue ν1 of Mij is negative, the
corresponding similarity solution is stable and will be
approached exponentially. In terms of the minimum radius,
for example, this means that

hmin = 4ν t ′(φmin +;1(0)t ′−ν1 + . . .), (208)

if ;1(ξ) is the eigenfunction corresponding to ν1. Thus
one finds a correction familiar from the theory of critical
phenomena [306]. As shown in [307], the eigenfunction ;1

has the asymptotic behaviour

;1(ξ) ∝ ξ 2−2ν1 . (209)
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Figure 50. Nine images (of width 3.5 mm) showing how a 3He
crystal ‘flows’ down from the upper part of a cryogenic cell into its
lower part [308]. The recording takes a few minutes, the
temperature is approximately 0.32 K. The crystal first ‘drips’ down,
so that a crystalline ‘drop’ forms at the bottom (a)–(c); then a second
drop appears (d) and comes into contact with the first one (e);
coalescence is observed (f ) and subsequently breakup occurs (h).

In terms of the spatial structure, analysing (206) for large ξ ,
this implies that convergence occurs in a fixed region in space.
In terms of the similarity variable ξ the region of convergence
expands as t ′−1/2 [21].

The program of calculating ν1 has unfortunately not yet
been carried out for the Navier–Stokes solution, although
numerical evidence [21] unequivocally shows that ν1 is indeed
negative. As for the infinite sequence of additional solutions
found in [303], it was reported that they are extremely unstable
numerically, indicating that the corresponding exponent ν1 is
positive. However, the calculation has been performed for
the related problem of the capillary breakup of a cylinder
by surface diffusion [307]. The situation parallels the fluid
problem exactly: there is an infinite sequence of similarity
solutions, which can be ordered according to their decreasing
minimum radius. Only the solution with the largest radius
is found to be stable, all others are unstable. The same
observation holds true in the pinch-off of a very viscous fluid,
discussed in section 4.3.2 below.

There are however examples of pinch-off problems for
which a different type of behaviour is observed: the exponent
ν1 vanishes, a situation called ‘type II singularity’ [309]. In
that case convergence towards the similarity solution is much
slower, and logarithmic factors arise. One such example,
known as ‘mean curvature flow’, is illustrated in figure 50: the
‘dripping’ of a 3He crystal, surrounded by its melt [310]. The
surface shape may change only by melting and freezing, driven
by gravity and surface tension forces. Close to pinch-off,
where surface tension dominates, this leads to the equation

dh

dt
= −K

√
1 + h′2κ, (210)

where K is a constant and κ the mean curvature. A detailed
analysis of (210) was performed in [311], using an expansion
of the type (206). The result for the minimum radius is

hmin =
√

2K1t

[
1− 1

τ
+ O(τ−2)

]
, (211)

where τ = − ln(K1t/h2
0), implying only logarithmic

convergence onto the similarity solution. In space,
convergence only occurs in a finite region of order one in
similarity variables [310], and thus only describes a region
of size |t ′|1/2 in space.

4.3. Other scalings and crossover

The universality of the solution described by (200), (201) of
course implies that it holds equally well for the water jet shown
in figure 12, as it does for the glycerol jet of figure 13. The
reason this common feature is not immediately apparent is that
viscosity only becomes important on a scale of 4ν ≈ 10 nm for
water (cf table 1). To measure the Navier–Stokes solution
one would have to observe the neighbourhood of the point of
breakup under extreme magnification. For the more relevant
part of the evolution where the minimum radius hmin is much
larger than 4ν , one can neglect viscosity, so that figures 12 or 14
are effectively described by inviscid dynamics.

Thus to understand the scaling properties of pinch-off on
a given scale of observation r0 (such as the nozzle radius),
one has to take into account the phenomenon of crossover: if
initially r0 , 4ν , the dynamics is characterized by a balance
of inertial and surface tension forces. As hmin reaches 4ν , the
dynamics changes towards an inertial-surface tension-viscous
balance. If on the other hand r0 . 4ν initially, inertia cannot
play a significant role: the dynamics is dominated by viscosity
and surface tension. In the course of this evolution, however,
inertia becomes increasingly important and finally catches up
with the other two. As a result, the same universal solution as
before is finally observed.

4.3.1. Inviscid pinch-off. Unfortunately, inviscid pinch-
off is not described by slender-jet equations: the profile
overturns and the parametrization h(z, t) fails. Instead, one
needs to solve the full inviscid equations (17)–(19), which
is done conveniently using the boundary integral description
(19)–(21). Inviscid similarity solutions were first found by
Chen and Steen [289] for the case that the jet is surrounded by
another fluid of the same density; this includes the pinch-off of
a soap bubble, the air assuming the role of the fluid. The case
that the outer fluid is negligible was treated in [22], the most
general case of arbitrary density ratios D = ρout/ρ in [52].

The inviscid equations for the free surface x = (z, r)

can be recast in similarity variables using the length
4in = (γ1t2/ρ)1/3 [52]:

R = r/4in, Z = (z− z0)/4in,

; = (φ − φ0)1t/42
in. (212)

We will call the solution (Z(ξ), R(ξ)) of the corresponding
time independent equation the ‘Euler solution’. Like the
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Figure 51. (Left) Profiles from a Navier–Stokes simulation of the pinch-off of a water drop (Oh = 1.81× 10−3), the axes are rescaled by
hmin. (Right) hmin/r0 for a 83% glycerol–water mixture (Oh = 1.63× 10−1), showing crossover from the Euler to the Navier–Stokes
solution. Reprinted with permission from [74]. Copyright 2002 by the American Physical Society.

Figure 52. Closeup of the pinching of a water drop [74]. The left picture is a comparison with a full Navier–Stokes simulation, the right
picture is taken at an angle to show overturning. Reprinted with permission from [74]. Copyright 2002 by the American Physical Society.

Navier–Stokes solution, it is completely universal. For all
density ratios D, similarity solutions are found to have a
double-cone shape, (cf figure 51), with one shallow angle,
the other larger than 90◦, so the profile is always predicted
to overturn. This was found theoretically by Schulkes [53],
cf figure 14, but overturning had long before been seen
experimentally [20]. For D = 0 the minimum radius is
given by hmin = 0.7(γ1t2/ρ)1/3, the two angles are 18.1◦ and
112.8◦; these are all universal properties of the Euler solution,
independent of initial conditions, see table 3. Experimentally,
photographs thus have to be taken at an angle to show the
overturning, cf figure 52 (right).

The left panel of figure 51 shows a numerical simulation
of the pinch-off of a water drop. The profiles are rescaled
using the minimum thread radius, so they approach the inviscid
similarity solution as 1t → 0. However, the inviscid
scaling does not remain valid, since the viscous term becomes
increasingly important. This is easily confirmed by inserting
the Euler solution into (13) and comparing magnitudes [293].
A crossover is expected to occur when the minimum radius
reaches the viscous scale 4ν [292], or

hEu→ NS
min

R
≈ Oh2. (213)

Such a crossover is seen in figure 51, where the minimum
radius first follows the Euler solution, and then starts to cross
over at about hmin/r0 = 2.5 × 10−2, until the Navier–Stokes

solution is finally reached at hmin/r0 = 3× 10−3. The above
prediction (213) amounts to hEu→NS

min /R ≈ 2.6× 10−2, in very
good agreement with numerical simulations.

For D " 6.2 pre-breakup solutions are found to be
subject to an oscillatory instability, and for D " 11.8 they
disappear altogether when the original branch of similarity
solutions bifurcates. It is an open question how pinch-off is
reached for D > 6.2; an intriguing possibility is that pinch-off
becomes inherently unsteady. Some earlier work [312, 313],
reinforced by more recent studies [141, 297, 314], has shown
that the limiting case D → ∞ (breakup of a gas bubble in
water) is special, and leads to new scaling behaviour studied
in section 4.4.2 below.

4.3.2. Very viscous pinch-off. We now turn to the case of
large viscosity, Oh , 1, such that inertia will initially be
subdominant, first studied in [290]. As an aside, a freely
suspended drop will never break up in this limit, regardless
of the initial condition [315]. We will see below that in this
limit pinch-off is described by (199) with β < α1, i.e. the
jet is slender and the long-wave description (29)–(31) applies
with the lhs of (30) put to zero. Since the density ρ cannot
figure in a description without inertia, the only scale is the
capillary velocity vη = γ /η. Thus assuming that there is only
a single length scale characterizing the similarity solution, on
dimensional grounds one would expect 4r = 4z = vη(t0 − t).
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This would imply that α1 = β = 1. However, multiplying
(30) by h2 (neglecting inertia), integrating and using (31), one
finds

h + 3v′0/vη = T (t), (214)

where T (t) is the tensile force in the fluid thread [316]. It
is easy to confirm that the inertia-less problem (29), (214) is
invariant under the transformation z = az̃. But this means
that for any solution h(z, t) there is another profile whose axial
scale is stretched by an arbitrary factor a, so the local profile
close to pinch-off cannot be universal. Rather, there must be an
external length scale 4ex such as the nozzle radius r0 entering
the local scale 4z, making this a self-similar problem of the
second kind [291]. One expects 4z to have the general scaling
form [291] 4z = (vη(t0− t))β4

1−β
ex , where the exponent β is no

longer fixed by any dimensional argument, but will in general
assume an irrational value.

To compute β, it is useful to introduce the Lagrangian
position z(α, t) of a fluid volume, labelled by α [317]. With
the transformations

∂αz = 1/h2, ∂t z = v0 (215)

(29) is satisfied identically, and (30) can be written as a single
second-order equation for z(α, t) [120]. In the Stokes case
(214), the equation for the Lagrangian profile H(α, t) ≡
h(z(α, t), t) becomes

H − 6vη∂tHH = T (t), (216)

where all spatial derivatives have dropped out of the equation.
The equivalent of the similarity form (199) in Lagrangian
variables is

H(α, t) = 4ν |t ′|χ(ζ ), ζ = ((α − α0)/4
3
ν)/|t ′|2+β,

T = |t ′|T̄ . (217)

Note that formally other asymptotic behaviours of T are
possible [318, 319], but simulations [290] and experiment
[320] show that (217) is selected. Inserting (217) into (216)
leads to the similarity equation

T̄ = χ + 6χ2 − 6(2 + β)ζχ ′χ , (218)

where the constant of integration can be computed by noting
that H−2 = ∂αz, and therefore χ−2 = F ′ for a suitable F(ζ ).
Then, dividing (218) by χ4 it follows that T̄ /χ4 − 1/χ3 is a
total derivative, and thus

T̄ =
∫ ∞

−∞
χ−3(ζ ) dζ

/ ∫ ∞

−∞
χ−4(ζ ) dζ (219)

by integrating from −∞ to∞.
The integral constraint (219) can now be turned into an

equation for β, using the symmetric solution

ζ =
(

6(1 + β)

2 + β

)(3+2β)/2 [
χ +

3 + 2β
12(1 + β)

](3+2β)/2

(χ − χmin)
1/2

(220)

of (218). The form of the solution (220) assumes implicitly a
quadratic minimum, which is given by χmin = 1/(12(1 + β))

and T̄ = (3 + 2β)/(24(1 +β)2). Using these results, (219) can
be converted into a non-linear eigenvalue equation for β:

(1−β)(3 + 2β)

(1 + β)(3− 2β)
= F(−1/2−β, 1−β; 3/2− β;−3− 2β)

F (−1/2− β, 2− β; 5/2− β;−3− 2β)
.

(221)

A numerical solution, using e.g. MAPLE, gives β =
0.174 871 700 652 042 307 111 . . .. Once more there is an
infinite hierarchy of similarity solutions [303], of which (220),
(221) is the first. The sequence of solutions is found by
requiring that solutions of (218) have minima of 4th, 6th and
higher order. However, arguments advanced in [321] show
that all higher order solutions are unstable and converge onto
the lowest order solution.

Once β is known, the ‘Stokes solution’

h(z, t) = 4ν |t ′|φSt(z
′/|t ′|β),

v0(z, t) = (4ν/tν)|t ′|β−1ψSt(z
′/|t ′|β),

(222)

can be computed [120] using

ξ

ξ̄
=

∫ φSt/χ0

1

(x + 3 + 2β)(1+2β)/2

x(x − 1)1/2
dx, (223)

where ξ̄ depends on initial conditions; this implies that the
Stokes solution is universal, up to a single parameter which
sets the width of the solution. The minimum radius behaves
like hmin = 0.0709vη1t , see table 3.

For Oh , 1 pinching is at first symmetric according
to (223); however, this solution does not remain valid in the
limit of |t ′| → 0. Namely, the inertial term in (30) can be
estimated as vvz ∝ v2

η4z/4
2
r , whereas surface tension has

the size (γ /ρ)(1/h)z ∝ (γ /ρ)/(4z4r ). Since β < 1/2
the former grows more quickly than the latter, and inertia
eventually becomes relevant, leading to a crossover to the
asymptotic, highly asymmetric solution. By equating the
above estimates, the crossover is expected to occur when the
minimum radius is [292]

hSt→NS
min

R
≈ Oh2/(2β−1). (224)

Both the predictions of symmetric pinching and its
transition to the Navier–Stokes solution is nicely confirmed
in figure 53. However, a very careful study of the transition
to asymmetric pinching for a drop falling under gravity
[320, 322] finds that hSt→NS

min is to a good approximation
independent of viscosity. This contradicts the strong viscosity
dependence hSt→NS

min ∝ ν−3.1 predicted by (224). The reason
for this discrepancy is at present not understood. One factor
that has not been taken into account is the fact that the
transition involves a symmetry breaking, which might delay
the crossover. In particular, the transition might depend on the
overall geometry (dripping tap or liquid bridge, for example),
which may or may not break the symmetry.
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Figure 53. The neck of a falling drop of glycerol–water mixture [320], Oh = 0.49, Bo = 0.047, making a transition from symmetric
(Stokes) to asymmetric (NS) pinching. Accordingly, the rate of pinching changes at the transition point (right). The theoretical predictions
for the two solutions are marked by the dotted and the dotted–dashed lines, respectively. Reprinted with permission from [320]. Copyright
2001 by the American Physical Society.

4.3.3. Vanishing surface tension. Finally, the dripping of a
viscous liquid in the limit of small surface tension, as may
be realized in the recent experiment [299], was considered
in [296]. Namely, the Lagrangian equation (216) in the absence
of surface tension, but including gravity, can be integrated
to give

H 2(T , t) = r2
0 − C(T t − T 2), (225)

where C = ρgQ/(3η) and Q the volume flow rate from
the tap. The Lagrangian marker T is the time at which the
corresponding fluid element has emerged from the nozzle, thus
T = 0 corresponds to the lower edge of the thread, and T = t

is the element at the nozzle. The thread radius goes to zero

as hmin ≈ r0
√

2(1− t/t0) at t0 = 2
√

r2
0 /Q, cf table 2. This

apparent pinch singularity at zero surface tension is however
an artefact of the neglect of inertia: if inertia is added, no
singularity occurs [323]. Indeed, t0 corresponds to the total
length of the fluid thread stretching to infinity! Namely, the
position of a Lagrangian particle is

z(T , t) = Q

r2
0

√
1− (t/t0)2

[
arctan

(
t/

√
t2
0 − t2

)

− arctan
(

(2T − t)/

√
t2
0 − t2

)]
, (226)

which completely determines the thread profile. In particular,
the length of the thread diverges as

√
t − t0.

4.4. Outer fluid: logarithmic scaling

4.4.1. Two viscous fluids Figure 54 shows a drop of
viscous liquid pinching off in an ambient fluid of comparable
viscosity. The pinch region has a highly asymmetric double-
cone structure, qualitatively different from the Stokes solution
in the absence of an outer fluid. This is not surprising since the
velocity field in Stokes flow only decays as 1/r (cf (22), (23)),
so the outer fluid leads to an effective long-ranged interaction
between different parts of the liquid column.

The linear asymptotics of the profile suggests that the
solution is characterized by a single length scale 4out ∝ vη1t .
However, this solution fails because for a linear profile the first
integral on the rhs of (24) diverges as 1/r at infinity. As the
singularity is approached, the two cones of the far-field solution

Figure 54. (Left) A drop of glycerin dripping through
polydimethylsiloxane (PDMS) near snap-off [294]. The nozzle
diameter is 0.48 cm, the viscosity ratio is λ = 0.95. (Right) the inset
shows the minimum radius, hmin(t), as a function of time for the
drop shown on the left. The solid line is the theoretical prediction.
The main figure shows the similarity function H(ξ) as defined
by (227). The dots are rescaled experimental profiles corresponding
to the times indicated as arrows in the inset. The solid line is the
theory, and the ×’s mark the result of a numerical simulation using
(22)–(24). There are no adjustable parameters in the comparisons.

generate a velocity field that diverges as ln(4out/r0), where r0

is some outer length scale [293]. It is therefore natural to try
a similarity form which accounts for a corresponding uniform
translation [294]:

h(z, t) = vη1tH(ξ),

ξ = v−1
η (1z/1t) + b ln(vη1t/r0) + ξ0,

(227)

with1z = z− z0 and1t = t0 − t . In accordance with (202),
the matching condition is

H(ξ) ≈ s±ξ, ξ → ±∞. (228)

Inserting (227) into (11) gives

−H + H ′(V s
z + ξ − ξ0 − b) = V s

r , (229)

where Vs = V − b ln(vη1t/r0)ez and V is the solution of
(24) in similarity variables. By properly adjusting the constant
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Figure 55. (Left) The pinch-off of an air bubble in water [326]. An initially smooth shape develops a localized pinch point.
(Right) Numerical simulation of bubble pinch-off from initial conditions given by the shape with the largest waist; there is no gravity, so all
shapes are symmetric about the pinch point. Reprinted with permission from [326], copyright 2007 by the American Physical Society.

b, the singularity can be subtracted to make V s
z finite in the

limit 1t → 0. Performing the angular integration (which can
be done in terms of elliptic integrals [136]) the integral kernels
become:

J̄(ξ, ξ ′) = H(ξ ′)

8π

∫ 2π

0
J(r)dθ,

K̄(ξ, ξ ′) = −3H(ξ ′)

4π

∫ 2π

0
K(r) dθ, (230)

r = (H(ξ)−H(ξ ′) cos θ)ex + H(ξ ′) sin θey + (ξ − ξ ′)ez.

Thus the equation for the singular velocity becomes

1 + λ−1

2
Vs(ξ)= lim

A→∞

[
−

∫ A

−A

κ(ζ )J̄(ξ, ζ )n(ζ ) dζ + b ln Aez

]

+ (1− λ−1)

∫ ∞

−∞
Vs(ζ )K̄(ξ, ζ )n(ζ ) dζ, (231)

which is finite, iff

b = −1
4

[
s+

1 + (s+)
2 +

s−

1 + (s−)2

]
. (232)

The similarity description (229)–(232) was developed in [294],
and compared with experiment for the case λ = 1 (see
figure 54), in which case the minimum radius Hmin and the
asymptotic slopes are

Hmin = 0.0328, s− = −0.105, s+ = 4.81.

(233)

Simulations [324] and experiments [325] for general λ are
reviewed, together with a detailed study of similarity solutions,
in [59]. For decreasing outer viscosity (large λ), the shallow
slope s− decreases, while the steep slope increases. However,
forλ " 32 solutions are subject to an oscillatory instability, and
are thus well separated from the Stokes case λ = ∞ (cf 222),
for which solutions are symmetric. In the opposite limit of
λ → 0 both slopes go to zero. The case λ = 0 (gas bubble
surrounded by a viscous fluid) is another interesting singular
limit [137]. Namely, the local cavity radius h(z, t) collapses at
a uniform rate ∂t h(z, t) = γ /(2ηout). The self-similar scaling
is lost, and the form of the profile depends entirely on the initial
condition.

4.4.2. Bubble breakup in water. Another example in which
the fluid exterior to the ‘jet’ modifies the dynamics in a
fundamental way is that of a bubble breaking up in water
[141, 297, 314, 326–328]. An example is a bubble rising from
a submerged capillary (cf figure 55, left). To a very good
approximation, this situation is described by an inviscid fluid
surrounding a fluid which is not dynamically active, and thus
corresponds to taking the limit D →∞ in section 4.3.1. Using
the same computational techniques as before, simulations of
bubble breakup [141] can be produced as shown in figure 55,
right. Surprisingly, both experiment and theory suggest that
pinch-off occurs with a scaling exponent of α ≈ 0.56,
significantly smaller than the value of 2/3 suggested by scaling
theory (212). In particular, this means that surface tension
makes a subdominant contribution, even in the limit of small
hmin! Of course, at extremely small scales, both viscosity
of the fluid and the presence of the internal gas will become
important, see below.

Indeed, initial theories of bubble pinch-off [312, 313]
treated the case of an approximately cylindrical cavity, which
leads to the radial exponent α = 1/2, with logarithmic
corrections. Interestingly, in this approximation the problem
is essentially equivalent to that of the shape of a cavity
behind a high-speed object, treated frequently from the
1940s [130, 142, 329].

However both experiment [326] and simulation [141]
show that the cylindrical solution is unstable; rather, the pinch
region is rather localized, see figure 55. To describe this
cavity, we use the slender-body description (44) developed in
section 2.4.3. Since surface tension is subdominant, we can
drop the last two terms on the right of (44).

The integral in (44) is dominated by a local contribution
from the pinch region. To estimate this contribution, it is
sufficient to expand the profile around the minimum at z = 0:
a(z, t) = a0(t)+a′′0 (t)/2z2+O(z4). As in previous theories, the
integral depends logarithmically on a, but the axial length scale
1 is computed self-consistently from the inverse curvature
1 ≡ (2a0/a

′′
0 )1/2. Thus evaluating (44) at the minimum, one

obtains [141] to leading order

ä0 ln(412/a0) = ȧ2
0/(2a0), (234)

which is a coupled equation for a0 and 1. Thus, a second
equation is needed to close the system, which is obtained by
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Figure 56. A comparison of the exponent α between full numerical
simulations of bubble pinch-off (——) and the leading-order
asymptotic theory (239) (- - - -).

evaluating the second derivative of (44) at the pinch point [141]:

ä′′0 ln
(

8
e3a′′0

)
− 2

ä0a
′′
0

a0
=

ȧ0ȧ
′′
0

a0
−

ȧ2
0a
′′
0

2a2
0

. (235)

Equations (234), (235) are most easily recast in terms of
the time-dependent exponents

2α ≡ −∂τa0/a0, 2δ ≡ −∂τa′′0/a′′0 , (236)

where τ ≡ − ln t ′ and β = α − δ, are a generalization of
the usual exponents α and β defined by (199). The exponent
δ characterizes the time dependence of the aspect ratio 1.
Now we expand the values of α and δ around their expected
asymptotic values 1/2 and 0:

α = 1/2 + u(δ)δ = v(δ). (237)

To leading order in δ, the resulting equations are

∂δu = −8vu2, ∂δv = −8v3, (238)

which describe perturbations around the leading-order
similarity solution, which is a collapsing cylinder. These
equations are analogous to (207), but they have a degeneracy
of third order, leading to zero eigenvalues. Equations (238)
are easily solved to yield, in an expansion for small δ [141],

α = 1/2 +
1

4
√
τ

+ Oτ, δ = 1
4
√
τ

+ O(τ−3/2). (239)

Thus the exponents converge towards their asymptotic values
α = β = 1/2 only very slowly, as illustrated in figure 56. This
explains why typical experimental values are found in the range
α ≈ 0.54–0.58 [326], and why there is a weak dependence on
initial conditions [327].

4.4.3. Suction. The presence of an inner fluid will eventually
become important [297, 330]. In a symmetrical situation,
the inner fluid will resist pinch-off, thus leading to the
formation of tiny satellite bubbles, which have also been seen
experimentally [326, 328]. In an asymmetrical situation, i.e.
if there is a gas flow Q across the pinch region, the inner
gas can significantly enhance pinch-off [297]. To analyse this

situation, it is useful to consider a rough estimate, based on a
local version of (44).

Namely, disregarding logarithmic factors, one might
approximate the term on the left of (44) as ä ln(h2

0/a), where
the jet radius h0 provides the cut-off. According to Bernoulli’s
equation, the gas flow generates a suction p0 = −ρav

2/2.
Thus, since the volume flow rate Q = hv2 of the gas along the
cavity is conserved, one obtains

ä ln(h2
0/a) = ȧ2

2a
− 4γ
ρ
κ +

2ρa

ρ

Q2

a2
. (240)

This description is equivalent to that given in [312, 313] and
worked out in detail in [331]. A balance of the first two terms
correctly captures the leading expression α = 1/2 of (239),
but with incorrect logarithmic corrections.

However, as a goes to zero, the last Bernoulli term in (240)
becomes important. Balancing it against the inertial term on
the right, one finds α = 1/3, up to logarithmic corrections.
This is even more singular than the exponent of α ≈ 1/2,
observed without gas flow. The new scaling exponent has
been observed experimentally in a setup with external fluid
flow, which provokes a breaking of the symmetry.

4.5. Noise

Thermal fluctuations become important if the jet diameter
is small, to be distinguished from macroscopic noise, that
is responsible for the random breakup of ligaments, and
whose origin presumably lies in the non-linear character of
jet dynamics. These issues will be addressed in section 5. The
length scale where thermal fluctuations become important is
the scale where the thermal energy becomes comparable to the
surface energy, giving [332]

4T = (kBT/γ )1/2. (241)

For typical fluids at room temperature, this length is about
a nanometre, corresponding to the size of the jet shown in
figure 57. Thus the character of the breakup is changed
qualitatively, yet the jet still has a coherent appearance. Thus
it is possible to describe the fluid in a continuum picture [298],
but with fluctuations taken into account, as we will do below.

Fortunately, for small system sizes, molecular dynamics
(MD) simulations, which take into account the microscopic
interaction potentials between particles, become feasible.
Figure 58 shows such a MD simulation of a jet of propane,
emanating from a gold nozzle 6 nm in diameter. The
initial (linear) stages of breakup are well described by
standard hydrodynamic theory, in agreement with other MD
studies [333], and the jet eventually decays into droplets.
Strikingly, satellite drops are almost completely absent,
although they are a universal feature of macroscale breakup.
The reason is seen in figure 58: the profile near the pinch point
has a symmetric double-cone structure, very different from
the thread-like structures expected in the absence of noise,
and shown in the simulation marked ‘LE’. This means that
fluctuations become relevant on a scale of nanometres, thereby
changing the character of the breakup qualitatively.
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Figure 57. A fast gas jet blowing through an inertial liquid. The bubble pinches off extremely violently. Adapted from [297], with
permission. Original figure copyright 2005 by the American Physical Society.

Figure 58. A comparison between MD simulations of the jet in figure 5 and simulations of (246) for Ml = 0 (no noise, curves and profiles
marked LE) and Ml = 0.24 (marked SLE). From [298]. Reprinted with permission from AAAS.

Figure 59. A drop of silicone oil, viscosity η = 300 mPa, falling
from a tap [334]. The width of the frame is 2 mm. Just before
breakup, the thin thread has become unstable and produced several
‘bumps’. The moment of breakup shows irregular breakup at several
places.

However, it was noticed [335] that thin viscous threads
produced for large viscosity (cf figure 13) are very sensitive
to perturbations, as illustrated in figure 59. Although the
thread is still about 10 µm in radius, it has become irregular in

appearance and breaks up in several places. This is related to
the fact that the shape of the thread is close to a cylinder, and
thus susceptible to the Rayleigh instability. Thus the effect of
noise may show up on a scale much larger than (241). We
return to the stability of viscous threads below.

To derive a consistent description of these phenomena, the
effect of thermal noise has to be added to equation (30) for the
velocity field. The noise is added to the stress tensor, making
sure that local thermal equilibrium is preserved [42], thus in
addition to the viscous contribution to the slice equation (32)
one has

3νh2v′ + s/(πρ), (242)

with white noise

〈s(z1, t1)s(z2, t2)〉 = 6πkBT ηh2(z1)δ(z1 − z2)δ(t1 − t2).

(243)

The noise amplitude is proportional to the volume of a
slice of fluid, as expected. The slice equation (32) with added
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noise thus becomes

∂t (h
2v) + (h2v2)′ = −γ

ρ
G′ + 3ν(h2v′)′ +

6
π

kBT

ρ
ν(hξ)′.

(244)

Here we have used the fact that G, as defined by

G = − h√
1 + h′2

− h2h′′

√
1 + h′2

3 , (245)

obeys the relation G′ = h2κ ′.
The form (244) of the equation of motion is still awkward

to treat numerically, since it contains derivatives of the singular
process ξ . This can be overcome by introducing the integral
P(z) =

∫ z

0 m(x) dx of the momentum, so (244) can be
integrated. Non-dimensionalizing the equations using the
intrinsic scales (27), there remains a single quantity [298]
Ml = 4T/4ν characterising the strength of the noise. Thus
we finally arrive at the conserved form of the equations

∂t h
2 = −P ′′, (246)

∂tP = −(P ′2/h2)−G + 3h2(P ′/h2)′ + Ml

6
π

hξ .

4.5.1. Nanojets. In figure 58, MD simulations are compared
with stochastic simulations of (246). The dimensionless noise
strength Ml is of order unity, thus pinch-off is expected to
change qualitatively. Most notably, the pinch profile becomes
symmetric, and the minimum radius precipitates to zero, faster
than surface tension could drive it. The reason thermal
fluctuations drive breakup can be understood by modelling the
liquid bridge as a single particle, whose mass goes to zero with
hmin [336]. A fluctuation which increases hmin will be slowed
down as the effective mass increases, while in the opposite
case the dynamics is sped up. On average this leads to a force
driving the bridge toward breakup.

Although fluctuations are strong, the basic characteristics
of each event remain the same. It thus makes sense to look
for a ‘typical’ event, or the most probable sequence of profiles,
which connects an initial profile to one whose neck radius
has gone to zero. This means one has to maximize the
probability [337]

W {h(z, t), P (z, t)} ∼ exp
{
−

∫ t0

0
dtL

}
, (247)

where the ‘Lagrangian’ (in units of 4ν, tν) is

L = 1
2D2

∫
dz

(Ṗ + (P ′2/h2) + G− 3h2(P ′/h2)′)2

h2
.

(248)

In [295], the most probable solution is found by by solving
the Euler–Lagrange equations corresponding to (248) [338].
Unfortunately, the resulting set of ‘instanton’ equations is ill-
posed [339], reflecting the divergence of paths owing to noise.
This problem is addressed by looking for self-similar solutions

h(z, t) = |t ′|αφnoise(z
′/|t ′|1/2),

P (z, t) = |t ′|2αψnoise(z
′/|t ′|1/2),

(249)

of the instanton equations, which in the spirit of the previous
sections are expected to correspond to jet pinch-off. This leads
to a system of ordinary differential equations for φnoise,ψnoise,
and the corresponding ‘response’ fields [340]. In particular,
this overcomes the problem of ill-posedness. For the case
α < 1, suggested by numerical simulations [298], surface
tension becomes subdominant and pinch-off is driven by noise.
Remarkably, the physical solution to this system, obeying the
matching conditions (202), can be found analytically:

φ2 = ψ/3, ψ = 3F(−2α, 1/2,−ξ 2/12), (250)

where F is the confluent hypergeometric function [341]. In
particular, this pinching solution is symmetric, in agreement
with figure 58 and the experiment reported in figure 60 below.

The scaling exponent α is found by inserting the solution
(249), (250) back into the Lagrangian, and optimizing the
probability as a function of α. The result is α = 0.418
[295], which is indeed smaller than 1. An experimental test
(cf figure 60) of these ideas was performed recently using a
polymer–colloid mixture, which phase separates into a gas
(polymer-rich) and fluid (colloid-rich) phase, with a very small
surface tension in between [299]. As a result, 4T becomes
macroscopic, and interface fluctuations are easily observable
under a microscope (see figure 60, top, and digitized version
of interface, bottom left). Experimental measurements of the
minimum radius as a function of time indeed show scaling
exponents of about 0.45, which is much smaller than expected
from surface-tension-driven breakup. Thus although the
presence of an outer phase might slightly alter the dynamics,
the crucial effect of fluctuations in speeding up breakup is
demonstrated, in agreement with theory [295].

4.5.2. Iterated instabilities. As shown by [335], thin viscous
threads are extremely sensitive to noise. Using the linear
stability analysis of section 3.5.1, i.e. neglecting the flow in the
thread, the most unstable wavelength in the viscous limit gives
λbump ∝ h(4ν/h)1/4. Hence using the scaling 4r ∝ |t ′|1/24z
for the Navier–Stokes solution (203), perturbations are highly
localized ‘bumps’ on the scale over which the thread radius
is varying. However, since there is flow in the thread, bumps
become stretched as they grow, making them more benign.
At the same time they are convected out of the similarity
region, where eventually they no longer grow. As a result,
perturbations of finite amplitude are needed to destroy the
similarity solution, as follows from the weakly non-linear
stability theory of threads developed in [335].

To solve the problem analytically, a two-scale approach
has been developed [120,335], in which the perturbations move
on a much shorter wavelength than the underlying similarity
solution. To leading order in ε, which measures the scale
separation, equations for the amplitude and the wavelength of
the bump are found. Bumps are convected with the interfacial
velocity ψi = ψ + ξ/2, hence perturbations that start near
the stagnation point ψi = 0 have the longest time to grow.
From the growth rate, on the other hand, one finds that the
minimum wavelength for growth is ∝|t ′|1/2, which sets the
effective initial distance from the stagnation point the ‘most
dangerous’ perturbation can have.
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Figure 60. The breakup of a colloid-rich ‘fluid’ phase inside a polymer-rich ‘gas’ phase. Shown are typical ‘secondary’ breakup events, for
which gravitational stretching plays a minor role. On the left, a typical experimental breakup sequence (top) is shown together with its
digitized version (bottom). For system S1, shown on the left, 4T = 0.45 µm. On the right, the minimum neck radius is plotted as a function
of time (system S2, 4T = 0.09 µm) for two different events. Best fits give α = 0.43 ± 0.01 (12) and α = 0.47 ± 0.02 (◦).

Figure 61. A drop of glycerol in water (85%) pinching off. Out of
the main neck grow two more generations ‘micro-threads’ [304],
which have the form of similarity solutions. From [332]. Reprinted
with permission from AAAS.

Integrating the equations for the amplitude and
wavelength of a bump, one finds that surface perturbations
of size

hc = 4× 10−3hmin(hmin/4ν t)
1.5 (251)

suffice to destabilize the thread. Thus in the later stages of
pinch-off, and for more viscous fluids, the thread becomes
more and more vulnerable to small, random perturbations. A
curious phenomenon [332] that results from this increasing
sensitivity is shown in figure 61. Once a fluid neck has
destabilized, another similarity solution is growing on it.
Thus the pinching of a viscous thread becomes a noise-driven
superposition of nested singularities. In other circumstances,
breakup merely becomes irregular, as shown in figure 59. A

proper framework to use (251) in the context of thermal noise
would be equation (246). Simple estimates for hc based on
thermal noise have led to the conclusion that thermal effects are
not sufficient to explain the destabilization seen in figures 59
and 61 [335]. We have recently performed a numerical solution
of (246) for a drop of viscous liquid falling from a tap, using
the same parameters as in figure 59 [342]. In the simulation, no
irregularities were visible on the scale of figure 59, confirming
the need to search for other possible sources of noise.

4.6. Continuation through the singularity

The Navier–Stokes description on which the similarity solution
is based does of course break down when the minimum
thread radius approaches the size of molecules. Even before
this happens, thermal fluctuations may modify, as seen in
the preceding section. After the singularity, the Navier–
Stokes equation (13) becomes once more the appropriate
mathematical description for a different moving boundary
problem, which consists of two separate pieces of fluid, and
thus needs a different set of initial conditions. We now show
how similarity solutions can be utilized to continue the Navier–
Stokes equation across the singularity [301], using a method
introduced in [343].

By the same logic as before, solutions after the singularity
are described by (200), (201), but with a minus sign instead of
a plus sign. As a result, the stability properties for ξ → ±∞
are reversed: all solutions behave like (202), i.e. φ ≈ a±

0 ξ
2

and ψ ≈ b±
0 /ξ , and possible solutions (for either part) are

parametrized by a0 and b0. A short time t ′ after the singularity,
only a region of size |t ′|1/2 will have moved appreciably, while
the outer solution remains unaffected. Thus the values of a0, b0

for the post-breakup solution have to be the ones selected by
the pre-breakup solution, ensuring unique continuation.
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Figure 62. The breakup of a mixture of glycerol in four parts of
ethanol, as calculated from similarity solutions before and after
breakup. (a) shows three profiles before breakup, in time distances
of 46 µs, corresponding to |t ′| = 1, 0.55 and 0.1. In part (b) the
same is shown after breakup.

The process is illustrated by an example shown in
figure 62. After breakup, either side of the solution has a
receding tip whose position is given by ztip−z0 = 4νξtip|t ′|1/2.
The asymmetry of the solution before breakup translates into
two very different post-breakup solutions, with ξtip = −17.452
for the rapidly receding thread, and ξdrop = 0.4476 for the
opposite part of the drop. A technical problem which has to be
overcome is that at the tip the solution cannot be slender, since
axial and radial scales become comparable. However, the size
of this region is only ∝|t ′| compared with the typical axial
scale |t ′|1/2, hence its total contribution becomes negligible
asymptotically. In [301], the slender-jet equations were
amended to include the tip region; when rescaled according
to the slender-jet scalings, all solutions converge onto the
universal solution shown in figure 62.

Unfortunately, little experimental confirmation for the
breakup scenario of figure 62 exists today. The reasons are
threefold: first, the recoil of the thread is extremely fast, even
by the standards of modern high-speed cameras. For example,
if one continues the sequence shown in figure 49 to only 10 µs

after breakup, the tip has receded by 0.6 mm, which is more
than half the width of the frame. Second, at elevated viscosities
the thread becomes very unstable, and breaks at several places,
as shown in the preceding section. Third, the air drag on the
thread can be estimated to become significant [120], slowing
down the recoil. For a more detailed discussion, see [120];
more detailed experimental studies remain a challenge for the
future.

Just as in the viscous case [301], inviscid similarity
solutions can be used to continue the equations across the
singularity, but on scales h(z, t) . 4min [344]. Namely, the
pre-breakup solution effectively provides an initial condition in
the form of a cone and an inverted cone, respectively. The cone
opening angles together with the leading-order decay of the
velocity field away from the pinch point completely determine
the similarity solution for the post-pinch-off problem [344].
Namely, the tip of the fluid neck recoils as ztip − z0 = ξ in

tip4in,

where the coefficient ξ in
tip is completely determined by the

density ratio D. In addition, similarity theory predicts the
wavelength and amplitude of the capillary waves which are
excited on the fluid neck by the recoiling motion, characteristic
for pinch-off at low viscosities, as is evident from figure 12.
Images of recoil in liquid–liquid systems are found in [345].
However, the corresponding analytical analysis of continuation
still remains to be done.

4.7. Controlling breakup

In the preceding sections we have focused on surface-tension-
driven breakup of jets. While for myriads of applications
drops are desired, the results show that the breakup process
is difficult to tailor to a specific application. On one hand,
satellite formation leads to a bimodal drop size distribution.
On the other hand, the size of the main drop is set by the jet
radius and thus the size of the orifice. In particular, small drops
are inefficient to produce since the fluid needs to be pressed
through a small orifice at high pressure. This also causes
very high shear gradients, which are likely to damage sensitive
biological molecules by pulling them apart [346]. Below, we
briefly discuss satellite drops, and then demonstrate the power
of electric fields, as well as hydrodynamic forces to produce
very small drops.

4.7.1. Satellites. Universality means that breakup is difficult
to control, since its characteristics are independent of initial
conditions. In particular, the asymmetry of the pinch-off
profile implies that satellite drops are forming at each breakup
event, and thus there is a bimodal distribution of drops, as was
painfully rediscovered in the 1970s [103,120,347], when ink-
jet printing technology was widely introduced. This applies
in particular if drops are produced by jet decay (‘continuous’
ink-jet printing).

In recent years, ink-jet printing technology has moved far
beyond its original application in printing [73, 348, 349], for
example to print integrated circuits, make optical elements and
for so-called microarrays in biotechnology, see figure 63. Ink-
jet printers work by first charging a drop and then using an
electric field to deflect the drop towards the desired position.
For all these applications, a bimodal drop size distribution is a
problem, since drops of different sizes are deflected differently
in the electric field. Bimodal drop size distributions can
be avoided if the velocity of main drops and satellites are
sufficiently different [347], so both merge before they reach the
target. However, the breakup mode depends very sensitively
on the amplitude of the initial perturbation [347, 350], as well
as on the presence of higher harmonics [120, 351–353]. Thus a
small detuning can lead to an undesirable bimodal distribution
of drop sizes.

Better means of control are available if individual drops
are squeezed out of the nozzle (‘drop-on-demand’ ink-jet
printing), by either piezoelectric actuation or by local heating
[349]. In the latter case a bubble is nucleated, which pushes
out the ink. While this does not avoid satellite drops, the mode
of breakup can be engineered to impart a strong additional
impulse on the satellite drop. Thus the satellite drop merges

48



Rep. Prog. Phys. 71 (2008) 036601 J Eggers and E Villermaux

Figure 63. Commercial applications of ink-jet printing. The left panel shows so-called microarrays of drops laden with different biological
samples. This permits one to test a large number of samples, using a small amount of space. The right panel shows integrated circuits,
which can be printed ‘on-the-fly’ using ink jets.

with the main drop before it is deflected in the electric
field. Detailed experimental [354] and computational [355]
studies of different printing regimes were performed recently.
Similarly a clever protocol of pressure and suction is used
in [96] to eliminate the main drop altogether, making sure that
only the small satellite drop is ejected.

4.7.2. Electric jets and Taylor cones. The most versatile
methods of controlling breakup, though, are achieved by
applying external forcing, either using an external flow or
by applying an external electric field or even combinations
thereof [356,357]. Either type of forcing can be used to mould
the fluid into an extremely fine jet, thus beating constraints
imposed by the nozzle size. In addition, the rapidly developing
microfluidic technology [358–360] has developed many ways
of controlling the formation of drops and bubbles in confined
geometries.

The technique of using electric fields to make extremely
fine sprays has a long history [361] and many important
applications [362], for example in biotechnology [346]. The
tendency of electric fields to ‘focus’ a fluid into very pointy
objects is epitomized by the static ‘Taylor cone’ solution, for
which both surface tension and electric forces become infinite
as the inverse distance r from the tip [363]. This means
the electric field has to diverge as r−1/2. Almost all fluids
in question have some, if small, conductivity [246], so the
appropriate boundary condition for an equilibrium situation is
that of a conductor, i.e. the tangential component of the electric
field vanishes. Using the solution for the electric field of a cone
with the proper divergence r−1/2 [364], this leads directly to
the condition

P1/2(cos(π − θ)) = 0. (252)

From the first zero of the Legendre function of degree 1/2 one
finds the famous result θ = 49.29◦ for the Taylor cone angle
in the case of a conducting fluid.

Figure 64 shows such a Taylor cone on a drop at the end
of a capillary, held in a strong electric field. Note the very fine
jet emerging from the apex of the cone (the so-called ‘cone-
jet’ mode [246, 366]), which is not part of Taylor’s analysis,
but which is our main interest below. A similar phenomenon

Figure 64. A Taylor cone in the cone-jet mode (reprinted
from [365], copyright 1994, with permission from Elsevier). The
opening half-angle shown is θ = 52◦. A large voltage difference is
maintained between the capillary on the left, and an electrode on the
right. The cone-like structure on the right is produced by a cloud of
little droplets.

is observed for an isolated, charged drop in a strong electric
field [240]. To produce a Taylor cone, the applied electric field
has to be raised above a critical value, which is calculated by
matching the Taylor cone to an appropriate far-field solution,
such as a drop [133, 134, 365]. However, a simple argument
reveals that the static Taylor cone solution is in fact unstable
[134]: namely, the electric field becomes stronger if the angle is
perturbed to a smaller value, as the tip becomes sharper. Thus
the tip is pulled out, making the angle yet smaller. This is
consistent with the cone either spouting irregularly [363,367],
or exhibiting a stationary flow out of the tip (cf figure 64).
Since the size of the jet is now controlled by electric fields,
drops of micrometre [368] or even nanometre radius [369] (in
the case of liquid metals) can be produced.

In a pioneering paper, Gañán-Calvo [370] has described
the cone-jet mode as a combination of a thin jet and a static
Taylor cone near the nozzle, using a slender-jet description.
The most useful limiting case for the study of this problem
is one in which the fluid is modelled as a dielectric, yet
having some conductivity (the ‘leaky’ dielectric) [246, 372].
This means that the local time scale of electric relaxation
te = εi/K is much smaller than any time associated with the
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flow [247, 373], where εi is the dielectric constant of the fluid
and K is the conductivity. As a result, the field inside the fluid
is very weak, and the surface charge density is simply given by
σ = ε0En, where En is the normal component of the electric
field. The surface charges, however, take much longer to reach
their equilibrium than they would in a good conductor. On the
other hand, they move much faster than the carrier liquid inside
the jet.

In a slender-jet approximation, electric forces have to be
added to the rhs of (30) [247, 373, 374],

∂t v0 + v0v
′
0 = −p′tot/ρ +

2σE

h
+ 3ν

(v′0h
2)′

h2
, (253)

with E ≈ Et the z-component of the electric field. The most
important new contribution is the second term on the right,
which describes the electrostatic pull of the field on the surface
charges. The effective pressure

ptot = γ κ − ε0E
2/2− σ 2/(2ε0) (254)

has the usual capillary contribution, as well as a contribution
from polarization forces, induced by the deformation of the
jet. Conservation of charge [247]

∂t (σh) +
(
σhv0 +

K

2
h2E

)′
= 0 (255)

yields an equation of motion for σ , which contains, apart from
convection, a contribution from bulk conduction in the fluid.

To find the electric field E along the jet, one needs to
solve the electrostatic equations in the exterior of the jet, with
an imposed electric field E∞ as a boundary condition. The
equation for E is usually given as an integral equation, using
for example the slender-body description given in section 2.4.3.
In the case of a uniformly slender problem the electric field
can be computed from a local equation [247]. In general,
however, an accurate modelling of the jet requires a more
detailed description of the electrostatic problem, including the
nozzle and the far-field electrode [248, 371].

Under conditions of small flow rate [365], such as shown
in figure 64, the problem reduces to matching a jet to a static
Taylor cone. The most commonly observed force balance
in (253) is the one between inertia and the electrostatic pull,
resulting in a jet thinning as h ∝ z−1/4. So far, the joining of
the Taylor cone with the jet has only been achieved by patching
[370, 373, 375, 376]. Remarkably, the analysis predicts [374]
that the total current I through the jet is independent of the
applied voltage, and

I = 2.6(γKQ)1/2, (256)

with Q the mass flow rate. Originally, a logarithmic
dependence on Q/Q0 (with Q0 = ρK/(ε0γ )) was predicted
in [370], but so far has not been found experimentally. As
discussed in [248], the idealized conditions for a Taylor cone
solution at the nozzle are not always met (and not perfectly
known), so often the prefactor in (256) is less universal. In
particular, it may depend on the voltage [248, 371]. However,
once sufficient care is taken to model the electric field correctly,
remarkable agreement with theory can be achieved, as seen in
figure 65.

Figure 65. Comparison between theory, based on the slender-jet
description (253), (255) and experiment with an ethylene glycol jet
at Q = 2.78× 10−9 m3 s−1. Reprinted from [371], copyright 1999,
with permission from Elsevier.

Figure 64 shows an essentially stationary situation. A
problem that has been addressed only very recently is how
the cone-jet state is approached dynamically, for example as
seen in the experiments of [367] or [240]. In particular, how
does the Taylor cone give way to the new jet, a question
that has recently arisen in similar form in air entrainment
[377, 378], hydrodynamically forced jets [379, 380] (to be
discussed below), or contact line instability [381]. A recent
study [382] (see also [383]) looks at the dynamical process
by which a charged drop, with or without an electric field,
develops pointed ends as the drop turns unstable. The drop is
treated as a perfect conductor, and the dynamics is assumed to
be described by the Stokes approximation.

A new similarity solution is found [382], in which the drop
shape is of the form

h(z, t) = t ′1/2H(z/t ′1/2), (257)

where for t ′ → ∞ a cone is formed. The solution (257)
(with corresponding equations for electric field and the charge)
represents a balance of electrostatic repulsion and viscosity, so
surface tension drops out of the description! Namely, the cone
angle is found to be smaller than the static angle expected on the
basis of Taylor’s solution (252). Indeed, recent experiments
of bursting drops, both with and without external field, turn
out to be described by this dynamical cone formation, see
figures 40 and 66. The thickness of the jet, which eventually
emanates from the tip of the cone, is presumably set by the finite
conductivity, and is thus beyond the present description [382].

4.7.3. Outer flow. Instead of electric fields, an outer flow is
also a very versatile tool to control the thickness of jets and their
breakup behaviour [182,186,379,380,385]. Both inertial and
viscous forces can be harnessed to focus jets; an example of
the former case is shown in figure 67. The jet shape is molded
by the external air stream, for which a pressure difference1p

is maintained across the hole shown in (a). When Q is the
mass flux, the jet radius is determined by the inertial balance

r0 ∼ (Q2ρ/1p)1/4, (258)

hence by making 1p large the jet radius becomes small.
Electric jets can be employed to produce more complex

structures by having one liquid inside another one [386], and
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Figure 66. Comparison between experimental profiles [240] and
numerical 3D simulation based on a boundary integral code for
Stokes fluids [382, 384]. The ratio of viscosities considered in the
numerical simulation is λ = 0.3 and Rayleigh’s fissibility parameter
is X = 1.01, just slightly over the critical limit X = 1. The
parameter X, defined as the ratio of Coulomb energy to surface
energy, is the analogue of (151) in section 3.9. Numerical
simulations indicate very little dependence of the shapes during the
evolution and the final angle of the singular cones developing for
λ < 1 and X > 1.

Figure 67. A view of the experimental apparatus. Fluid is sucked
through a hole opposite a capillary tube (a). This leads to a much
thinner micro-jet (b). This micro-jet decays into droplets by surface
tension forces (c). Reprinted with permission from [379]. Copyright
1998 by the American Physical Society.

driving one to produce a Taylor cone. Using this method
compound jets and, after breakup, near monodisperse capsules
are produced. The same geometry can be used in the
reverse case of gas being driven by an external stream of
liquid [182]. The crucial difference is that the jet is now
absolutely unstable [178], so that instead of a gas jet, a series of
monodisperse bubbles emanate from the orifice. The transition
from convective to absolute instability is investigated in [186],
under much more general circumstances, including viscous
fluids. Again, more complex structures can be produced using
compound jets, such as bubbles inside a viscous jet, driven by
an external air stream.

The mechanism by which viscous forces lead to focusing
is much less understood. A classical realization is the selective
withdrawal experiment [189–192, 380], shown in figure 68.
Before the jet becomes entrained, the interface forms a hump,

which becomes unstable at a tip size of about 0.1 mm, for a
viscosity ratio between λ = 1 and 10−3 [189,190]. This result
appears to be at odds with results for drops and bubbles in
an extensional flow, a subject pioneered once more by Taylor
[194,363]. Namely, if the drop viscosity is small, their pointed
ends seem to become sharp without limit [194, 195, 387].
Using the same geometry as that of selective withdrawal, but
air as the inner ‘liquid’, it was shown in [191] that the size
of the tip could be made small without apparent limit. No
evidence for air entrainment was found, unless the tip had
entered the nozzle. At present it is not known what constitutes
the crucial difference between the two systems [189,191] and
under what conditions a steady stream is entrained. In [192]
it is shown experimentally that the transition towards a spout
is hysteretic: a thin thread (cf figure 68(b)) persists to flow
rates Q below the critical flow rate for the disappearance of a
hump as Q is lowered. The thread radius saturates at values
of around 22 µm.

A theoretical study [388] of a drop attached to a capillary
in an external flow, a geometry closer to that of figure 27,
analysed the existence of thin spouts (jets) using slender-body
theory [139]. The viscosity ratio between the inner and the
outer fluid was small but finite. A solution corresponding to
a vanishing jet thickness as the outer flow strength is tuned
towards a critical value can be realized, but only on a lower-
dimensional subspace: another experimental parameter needs
to be tuned along with the flow strength. Recent experimental
results [183,389] and simulations [188] indicate that the thread
radius can indeed be made small in a coflowing geometry, but
no quantitative test of theory has been performed as yet. For
an appropriate choice of parameters, the jet can be made stable
[187] according to the analysis discussed in section 3.6.2.

Finally, in highly confined geometries, such as those
arising in microfluidic applications, the possibilities for direct
control of flows is even greater [358]. Flow focusing can be
replicated on a smaller scale to form jets of different stability
characteristics [390]. In addition, drop breakup is modified by
the confinement. For example, drops can be forced to break up
at T-junctions of small channels. If the T-junctions are arranged
sequentially, the drop size decreases continuously. If breakup
takes place in long and narrow channels [391], breakup can
be halted so as to yield a sequence of stationary equilibrium
shapes, making the process of breakup highly controllable.

5. Sprays

The fragmentation of compact macroscopic objects is a
phenomenon linking complicated microscopic phenomena,
such as fracture in solid fragmentation and drop pinch-off in
liquid atomization, with the statistics of the fragment sizes.
The resulting statistical distributions are typically broad, as
seen qualitatively in figure 69, and non-Gaussian. Early
in history, in fact from the time when the need was felt
to rationalize empirical practices in ore processing [393],
questions about the principles of matter division have been
recurrent in science, up to modern developments in nuclear
fission [257,394]. For instance, Lavoisier (1789) [395] devotes
chapter IV of his Elementary Treatise of Chemistry to the
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Figure 68. In the selective withdrawal experiment, two viscous liquids are layered atop of one another. The upper, more viscous liquid is
withdrawn through a capillary and entrains a thin stream of the lower liquid. From [380]. Reprinted with permission from AAAS.

Figure 69. (Left) Drops in a liquid spray formed in an uncontrolled way are naturally distributed in size. (Right) Solid tin powder formed
from the atomization of a liquid tin stream for two operating conditions [392]. Obviously the resulting powder is far from uniform in size.

different techniques for dividing matter, and the monumental
treatise of Coulson and Richardson (1968) [396] has several
sections dealing with the many ‘unit operations’ of the
chemical industry to fragment, atomize, blend and mix. The
timeless character of the subject is certainly not a sign of a
lack of progress, but rather reflects its growing number of
applications.

As for liquid atomization (literally ‘subdivide down
to the size of an atom’), examples abound ranging from
distribution of agricultural sewage, diesel engines and
liquid propellant combustion in the aerospace industry
[215, 216, 397], geophysical balances and ocean–atmosphere
exchanges [398–400], volcanic eruptions and tephra formation
[401], sprayed paint and cosmetics, ink-jet printers,
microfluidic and novel devices [358,359], medical diagnostics
[402], to quote but a few among the many applications where
it is desirable to have an a priori knowledge of the spraying
mechanism. Of particular interest is the distribution of droplets
sizes as a function of the control parameters, the optimal design
of injector size and shape and other external parameters such
as wind speed and liquid surface tension.

5.1. Jets everywhere: ligaments production and dynamics

Drops come from the rupture of objects having the form of
threads or ligaments, whose instability and breakup into drops
has been the major subject of the previous sections. This has
been speculated on by Lord Rayleigh in ‘Some Applications
of Photography’ (1891) [23]. Later time-resolved still images,

Figure 70. A bubble bursting from a lava tube at Kilauea’s shoreline
illustrates the simultaneous cooling and breakup of magma during
turbulent mixing with water and steam. Visible lava has been hurled
upwards in a fraction of a second, stretching the outer surface to
several times its original length, bursting through the formation of
ligaments (a), and exposing a new, hot, incandescent surface. Width
of the photo is about 3 m. USGS photo by Takahashi, 10 February
1988 (adapted from [403]).

and more recently high-speed movies have substantiated this
claim [32, 264, 266, 404–411]. The thread and ligaments can
come from many different sources, which can itself be jets
(cf figure 38), violent eruptions (cf figure 70), impact of drops
with other drops or liquid pools (cf figure 72), converging
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flows (cf figure 73), and sheets (cf figure 79). The observed
polydispersity of drop sizes results mainly from the dynamics
peculiar to ligaments, as suggested by the examples given
below.

5.1.1. Wind over wave crests: spume. The disintegration and
dispersion of a liquid volume by a gas stream is a phenomenon
which embraces many natural and industrial operations. The
spray droplets torn off by the wind at the crest of waves in
the ocean are obvious examples [412, 413], see also [414] in
another context. As suggested by figure 38, at the root of the
disintegration process is the shear between the light, fast stream
and the slow, dense liquid. The change of the liquid topology
proceeds from a two-stage instability mechanism: the first
instability is of a shear type described in section 3.8 forming
axisymmetric waves. It is controlled by the boundary layer
thickness δ of the gas at the interface, and produces interfacial
undulations whose selected wavelength is proportional to
δ
√
ρ/ρa, where ρ and ρa stand for the densities of the liquid

and gas, respectively.
For large enough amplitudes, these undulations undergo

a transverse destabilization of the Rayleigh–Taylor type
[415–417], caused by the accelerations imposed on the liquid–
gas interface by the passage of the primary undulations. These
transverse corrugations have a wavelength given by

λ⊥

δ
0 3 Weδ

−1/3
(
ρ

ρa

)1/3

with Weδ = ρav
2
a δ

γ
,

(259)

where va is the relative gas velocity. This last instability sets the
volume of liquid eventually atomized: the modulation of the
crests is further amplified by the air stream, forming ligaments
of total volume

3 = d3
0 ∼ λ3

⊥. (260)

The axial momentum of a cylindrical volume 3 = d3
0 in

uniform extension is 1
2ρ3

dL
dt

and the force balance on a
ligament entrained in the wind gives

1
2
ρ3

d2L

dt2
= 1

2
ρav

2
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, (261)

where CD is a drag coefficient of order unity [418]. The ratio
of aerodynamic to capillary forces

CD
ρav

2
a

γ

(
3

L

)1/2

(262)

indicates that capillary retraction gets weaker as the ligament
elongates and one has approximately

L

31/3
0 1 +

(
t

τa

)2

, (263)

with a characteristic time of acceleration

τa = 31/3

va

√
ρ

ρa
. (264)

The ligaments detach from the liquid bulk by a pinching of their
base. The time τ it takes for the pinch-off to be completed is

close to the capillary time based on the ligament volume 3,
independent of its rate of elongation because the ligament’s
foot is weakly stretched:

τ =

√
ρ3

γ
. (265)

The length Lb and thickness ξb at the breakup time thus follow
from (263), and thus (remembering that 3 = d3

0 = Lξ 2),

Lb/d0 ∼ (τ/τa)
2 ∼ We, (266)

ξb/d0 ∼ (τ/τa)
−1 ∼ We−1/2, (267)

with We = ρav
2
a d0/γ (see [232]).

Once detached from the bulk, ligaments break by
capillarity. Although stretched by the gas stream, the final drop
size is larger than the ligaments thickness ξb just after they have
been released from the liquid bulk. This is due to coalescence
between the blobs making up a ligament, an aggregation
process which also determines the drop size distribution p(d)

in the resulting spray. This distribution is the convolution of the
relatively narrow distributions of the ligament sizes pL(d0) and
of the distribution of drops sizes coming from the ligaments. It
is found to be very well represented by a Gamma distribution,
as shown in figure 71:

pB(x = d/d0) = nn

-(n)
xn−1e−nx, (268)

and first emphasized in [32, 232]. The problem only depends
on relative velocities, and the same ‘stripping’ phenomenology
occurs when a liquid jet is moving in a still atmosphere, as
can be seen from the early instantaneous pictures of Hoyt and
Taylor (1977) [221] (see figure 34). The size of the droplets
peeled off from the liquid surface is also found to decrease
with the velocity contrast, in that case given by the liquid
velocity [285, 419].

5.1.2. Impacts. Ligaments often form upon various types
of impact (cf figure 72), see figure 81 for an unconventional
example. Particular attention has been paid to drop impact on
thin layers of fluid, which leads to the celebrated Worthington–
Edgerton crown [212, 421], which eventually produces drops.
However, data on fragmentation following drop collision, a
phenomenon potentially crucial to understanding the structure
of the Solar system [422], are scarce. Various authors
[420, 423] have quantified the conditions for coalescence or
satellite formation in binary collisions of drops, and measured
[424] the number of fragments of a water drop colliding with
a solid surface and qualitative hints for their distribution. A
systematic study exploring the dependences of the fragments
size on initial drop sizes, impact Weber and Reynolds numbers,
roughness of the solid substrate, ambient conditions, etc is
certainly desirable (see however [425]).

Violently accelerated and initially corrugated density
interfaces are unstable in the sense of Richtmeyer and Meshkov
[429, 430]. A version of this instability for an order one
corrugation amplitude is shown in figure 73: a cavity at a
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Figure 71. (Left) Formation of ligaments peeled off from a liquid jet at fixed velocity by an increasingly fast coaxial gas stream, showing
the aspect ratio of the resulting ligament [232]. (Right) Time resolved series of the elongation and breakup of a ligament in the wind
showing the coalescence between the blobs constitutive of the ligament as it breaks. Time interval between pictures is 1.34 ms. (Bottom)
Droplet sizes distribution after ligament break-up pB(d) for air velocity 29 m s−1. Here d0 is the volume-equivalent ligament size, the line is
a fit by a Gamma distribution. Distribution of droplet sizes in the spray p(d). The slight increase of the exponential slopes with air velocity
(inset) reflects the variation of the Gamma orders n on 〈d〉/ξ (see section 5.3.3 and [32]).

Figure 72. (Left) Binary collision of drops, stretching and fragmentation. We = 83 based on the relative velocity between the drops [420].
Reprinted with permission from Cambridge University Press. (Right) A jet emerging from the closing cavity left after the impact of a drop
on a layer of the same liquid.
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Figure 73. Axial impact of a cylindrical tube falling under gravity and filled with a liquid wetting the tube wall. Following the impact on a
rigid floor, the curvature of the spherical meniscus initially fixed by the tube radius reverses violently, a prelude to the birth of a rapidly
ascending jet [426].

Figure 74. (Left) Sequence of frames showing a rapidly moving jet evolving from an over-forced standing wave in a ferrofluid [427].
(Right) Impact of a (millimetric) water drop on a super-hydrophobic surface, formation of a cavity and ejection of a highly focused jet.
Reprinted with permission from [428]. Copyright 2006 by the American Physical Society.

free liquid/gas interface collapsing due to an impulsive body
force forms an intense focused jet [426]. This is the paradigm
for bubbles bursting at a liquid surface [85], the collapse
of cavitation bubbles near a rigid boundary [84], collapsing
voids following an impact [47], shaped charges, gravity waves
colliding with a dam and high amplitude Faraday waves [431],
to quote just a few examples among many [432]. The collapse
produces a jet, as seen in bursting bubbles at the surface of

the ocean, a mechanism responsible for most atmospheric
aerosol generation [398, 433]. The shape, dynamics and
resulting drops of the corresponding jet are a problem still
under debate [426] (figure 74).

5.1.3. Rain. The phenomenon of rain is documented in much
more detail. Bentley (1904) [30], an autodidactic farmer from
Vermont, was the first to capture the broad distribution of
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Figure 75. (Left) Raindrop specimens [30] captured by allowing drops to fall into a 1 in. deep layer of fine un-compacted flour. (Middle)
drop size distributions for three different rainfall rates [436]. (Right) Cumulative drop size distribution η =

∫∞
R

p(R, R0) dR resulting from
the breakup of a drop with initial radius R0 falling in air [439].

Figure 76. Fragmentation of a water drop (diameter 5 mm) falling in an ascending stream of air [404]. Images are taken at
(t = 0, 4, 9, 17, 24, 30, 33, 34, 35, 37, 43 and 60 ms.)

drop sizes. His ingenious experiments (figure 75) allowed
him to conclude: ‘Perhaps the most remarkable fact, early
brought to our notice, was the astonishing difference in
the dimensions of the individual drops, both in the same
and different rainfalls’, thus singling out the most salient
feature of rain. At the same time, Lenard [434], a professor
in Heidelberg and a future Nobel Prize winner (see also
figure 8), was mainly contemplating drop shapes and terminal
velocities. Subsequent measurements [435, 436] established
the exponential shape of the distribution, and related its
steepness to the intensity of rainfall: drop sizes are more
broadly distributed in heavy storms than in fine mists, a trend
already visible from Bentley’s records (figure 75).

Existing interpretations of these facts essentially pertain
to the aggregation scenario summarized in section 5.2.2 below,
plus condensation of ambient water vapour and possibly
evaporation of the drops [399,400,437,438]. This emphasizes
the (presumed) role of coalescence in the falling rain. However,
Srivastava (1971) [439] mentions that spontaneous drop
breakup could also be incorporated in the global balance
describing the evolution of the drop size population and, using
earlier measurements [440], devises arguments to interpret the
Marshall–Palmer law [436] on this basis.

A very different, but tempting idea is that the
polydispersity of raindrops results from the breakup of isolated,
large drops (compare figures 76 and 75). Indeed, figure 76
shows how a liquid drop, falling in a counter-ascending air
current first deforms, then destabilizes and finally breaks into
stable fragments. The process, usually called ‘bag breakup’
[404], exemplifies the three stages shared by all atomization
processes:

• A change of topology of the initial object: the big drop
flattens into a pancake shape as it decelerates downwards.

• The formation of ligaments: the toroidal rim of the bag
collects most of the initial drop volume.

• A broad distribution of fragment sizes: the rim is highly
corrugated and breaks into many small, and a few larger
drops.

If 1u is the velocity difference between the drop and the
air stream in a Galilean frame, the drop will break as soon
as the stagnation pressure of order ρa(1u)2 overcomes the
capillary restoring pressure γ /d0. This condition indicates
that the Weber number

We = ρa(1u)2d0

γ
(269)
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should be larger than some critical value [441,442], with some
corrections accounting for possible viscous effects [404,443].
In this as in many atomization processes, there is no typical size
of fragment. There is an average size, and an obvious upper
bound, namely the size of the initial drop; it is even unclear
if there should be a lower bound. However, the hierarchy of
fragment sizes d follows a regular distribution p(d), giving
the probability to find a drop size between d and d + dd. The
tail of the distribution is described by an exponential law

p(d) ∼ e−d/d0 , (270)

up to some cut-off parametrized by the drop’s initial size
d0 [440,444]. The exponential tail is also shared by the Gamma
distribution (268).

5.1.4. Sheets. The transition from a compact macroscopic
liquid volume to a set of dispersed smaller drops often involves
as a transient stage the change of the liquid topology into a
sheet shape. This transition is sometimes enforced by specific
man-made devices, and also occurs spontaneously as a result
of various impacts and blow-ups. An easy way, widely used
in the technological context, to produce a spray is to form a
liquid sheet by letting a jet impact on a solid surface, or by
two jets impacting each other. The sheet disintegrates into
drops by the destabilization of its edges. Pioneering works of
Savart (1833) [445–447], and later Taylor (1959) [448, 449]
and Huang (1970) [450] focused on the resulting sheet shape
and its spatial extension. Depending on the Weber number (5)
the sheet is either smooth with a radial extension increasing as

R

h0
= We

4
(271)

or, for higher impact Weber number, decreases as

R

h0
∼ α−2/3We−1/3. (272)

Here α is the ratio of the liquid to ambient medium densities
ρa/ρ; the transition occurs for [226]

We # 20√
α

. (273)

Above this limit, the sheet sustains a flag-like instability
generated by shear [222–224, 451, 452]. The undulations may
also be enforced artificially by vibrating the impact point [278].
Leaving aside some qualitative early work [223,453,454], the
quantitative study of the drop formation process itself was
addressed only recently [226, 278, 455, 456]. While drops of
the order of the jet diameter are formed from the destabilization
of the thick rim bordering the sheet in the smooth regime, the
average drop size is a strongly decreasing function of the Weber
number in the flapping regime (figure 77). In all cases, the sheet
fragments by the destabilization of its rim, forming cusps at the
tip of which ligaments are ejected, a prelude to the formation of
drops (figure 78). These ligaments were already visible on the
early drawings of Savart [446], and have been observed more
recently with air blasted liquid sheets [457, 458]. They are

(a)

(b)

(c)

Figure 77. Axisymmetric liquid sheet states: (a) Smooth regime.
(b) Flapping regime for larger Weber number (higher than 1000).
(c) Perturbation of the smooth regime by imposing vertical
oscillations of the impact rod. Adapted from [278].

Figure 78. Close-up views of the free rim of a smooth liquid sheet,
taken from the top (a). In (b), a periodic vibration of the impact
point at 120 Hz has been added. The scale indicated in (a) is the
same for both images, and h0 = 3 mm. Adapted from [278].

also seen in numerical simulations [459, 460], if a span-wise
perturbation is added to the flow initially.

In the oblique collision of two identical jets (figure 79),
the liquid expands radially, forming a sheet in the form of a
bay leaf bounded by a thicker rim; the ligament production
phenomenology persists [456, 461–467]. This is a particularly
interesting configuration because the distribution of the drop
sizes can be manipulated at will by varying the impact angle
and the Weber number. The volume d3

0 of massive regions
centrifuged along the rim (where d0 is here the diameter of the
rim [456]) is both insensitive to the external parameters and
narrowly distributed (figure 80). It elongates and stretches in
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Figure 79. Water sheet fragmentation for three collision angles, the jet velocity is equal to 4 m s−1 and the jet diameter is 1.05 mm.
Elongation of ligaments is clearly enhanced when the collision angle is decreased [456].

Figure 80. (Left) Definition of the equivalent sphere diameter d0 of a ligament, as well as its value normalized by the average drop size for
several injection conditions. Typically, 〈d0〉/〈d〉 ≈ 2.5. (Centre) Distributions pL(d0) and pB(d); the distribution of d0 is narrower than that
of d . (Right) Probability density functions of the drop size normalized by the mean drops size d/〈d〉 for a fixed impact velocity
uj = 3.5 m s−1 and three collision angles. The fitted curves are Gamma distributions with parameters n as indicated in each case and
reported in the inset versus dimensionless stretch γ for all conditions [456].

the form of ligaments, with their foot attached to the rim. The
transient development of the capillary instability at the early
stages of ligament elongation determines the local radius along
the centre-line at the moment it detaches. Corrugations are
more pronounced when stretching is weak, giving broader size
distributions. Drop sizes are distributed according to (268),
and are parametrized by the single quantity

γ̇

√
ρd3

0

γ
, (274)

which is the rate of stretch in the rim normalized by the
capillary timescale. The size d0 of the rim is a function
of both the Weber number and the collision angle (see
figure 80 and [456]).

5.1.5. Blow-ups. A fascinating problem, and a very efficient
atomizing process [468], is the ‘explosion’ of cavities in
a liquid volume (expanding micro-bubbles injected in situ,
dissolved gases, etc). Its two-dimensional version, i.e. a film

bursting by hole nucleation (figures 83 and 84), suggests that
interesting geometrical ingredients probably influence final
drop size distributions.

Rayleigh [415] first analysed the stability of an interface
between two media (with density difference ρ), subjected to
a constant acceleration a normal to the interface. Taylor
(1950) [416] subsequently studied the stability of a layer
sandwiched between two phases of a different density. In
the absence of surface tension, these situations are always
unstable, with no mode selection. The growth rate depends
solely on the density contrast, acceleration and wavenumber.
In the case studied by Taylor, it is independent of the layer
thickness h. However, surface tension does induce mode
selection on the capillary wavenumber kc =

√
ρa/γ [145].

Soon after the works of Taylor and Lewis (1950) [416, 417],
Keller and Kolodner (1954) [470] extended Taylor’s analysis
incorporating surface tension. A new phenomenon arises in
that case from the coupling between the two interfaces of the
layer which, when it is much thinner than the capillary length
(i.e. when kch . 1), induces a considerable slowing down of
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Figure 81. The ‘crystal crown’ formed by the impact of a 5 mm
viscous drop (89% glycerin/water solution) onto a 35 µm thick layer
of ethanol (We = 5720). Marangoni forces thin the sheet locally,
leading to a myriad of holes, ligaments and then drops [469].
Reprinted with permission from Cambridge University Press.

Figure 82. Growth rate −iω of the instability of a thin liquid sheet
accelerated perpendicular to its plane, according to [470, 471]. The

growth rate has been made dimensionless by
√

2/3
√

3
√
ρa3/γ , the

maximal growth rate of the infinite thickness limit obtained when
kch, 1. It is plotted as a function of k/kc with kc =

√
ρa/γ the

capillary wavenumber. The curve has been drawn for kch = 0.001
and the inset shows the same relation for kch, 1 in the same
units [278]. Note the invariance of kc with h, the strong dependence
of both the shape and amplitude of ω as h decreases and, in
particular, the presence of a plateau of wavenumbers with uniform
amplification at low kch.

the amplification rate and a shift of the selected mode towards
larger length scales [471]. The most amplified wavenumber
km lies between 0 and kc on a broad plateau of wavenumbers,
all having growth rates ωm close to the maximal one, which
goes to zero as kch→ 0 (see figure 82):

km = 1
61/6

k4/3
c h1/3 and ωm =

(
ρha2

2γ

)1/2

.

(275)

A sudden acceleration imparted to the film also causes its
destabilization [429, 430, 472]. In practice, this is achieved
by imposing a pressure difference between both sides of a
soap film, stretched on a frame positioned at the exit of a
shock tube [471]. The film accelerates impulsively as the
shock passes through it (with kch , 1). The resulting
thickness modulations amplify and eventually form holes,
which subsequently grow in radius and connect to each other
(figures 83 and 84). The patterns thus formed resemble that
obtained from the spinodal decomposition of thin liquid films

on solid substrates [473, 474], or ‘punctuated’ liquid films
(figure 81 and [469]). The hole density and their rate of
nucleation increase with shock strength, as measured by the
incoming wave Mach number. Thin films, although rigidified
by capillarity, can disintegrate too. Not much is known,
however, about the resulting drop size distribution.

5.1.6. Bubbles. The examples discussed so far all concerned
liquid drops forming in a gaseous environment. There is no
reason to think that the same phenomenology and ideas should
not apply to the opposite situation of bubbles forming in a
continuous liquid phase: the fundamental instability, that of a
hollow ligament in a liquid is of the same nature as that of a
liquid ligament in vacuum, although developing with a stronger
growth rate (see, e.g. section 3.4 and [145]). Large cavities
entrained at the sea surface by breaking waves form elongated
void structures with an eccentricity up to 8 [476]. Those
formed by the impact of a solid object at a free surface can be
even longer (see figure 85 and [477]). The resulting bubble size
distributions are very likely Gamma distributions [478, 479].

5.2. Fragmentation scenarios

The ubiquity of fragmentation phenomena has prompted
a number of interpretations and paradigms, which can be
grouped into roughly three distinct classes. If none of them is
satisfactory, all of them warrant further exploration.

5.2.1. Sequential cascades of breakups. A first class
of models was introduced by Kolmogorov (1941) [480],
motivated by ore grinding, a process where repeated size
reductions are imparted on brittle solid particles. Kolmogorov
later applied the same model to turbulence [481, 482], and it
was later extended to liquid atomization. Spray formation is
visualized as a sequential process where mother drops give rise
to daughter drops which themselves break into smaller drops,
producing ever smaller sizes. In this cascade process and many
of its variants (see e.g. [483–486]), a drop of initial volume v0
breaks, after n steps of the cascade, into a family of drops of
volume vn = v0

∏n−1
i=0 αi where the αi are random multipliers

smaller than unity.
The distribution of the αi (assumed to be identical in

each generation), depends on the atomization mechanism, but
they are constrained to guarantee volume conservation. The
distribution of volumes P(v) is governed by large deviation
theory [487,488] and depends on the distribution of multipliers.
In particular, the moments of v depend exponentially on
n. Defining the size of a drop d by d3

n = vn, the drop
size distribution is recovered from p(d) = 3d2P(v = d3).
Defining

M = 1
n

n−1∑

i=0

ln αi and S2 = 1
n

n−1∑

i=0

(ln αi )
2 −M2,

(276)

the variance of the drop size distribution is given
approximately by

〈d2〉 − 〈d〉2

〈d〉2
= enS2/9 − 1, (277)

59



Rep. Prog. Phys. 71 (2008) 036601 J Eggers and E Villermaux

Figure 83. Bursting of a soap film accelerated by the parallel impact of a shock wave. Time goes from left to right with time step
1t = 0.05 ms. Incoming wave Mach number is M = 1.21 [471].

Figure 84. Sheet formed from a water/oil emulsion showing hole
nucleation and ligaments formation. Adapted from [475].

Figure 85. Ripple-induced breakup of the entrained bubble behind a
1/2 in. diameter steel sphere impacting at 4.1 m s−1 in water.
Courtesy of A Belmonte [477]. Reprinted with permission,
copyright 2007 by the American Physical Society.

and increases exponentially with the cascade step n. If one
anticipates that the cascade will end at some generation n = m,
when the Weber number (269) based on dm is of order unity,
the shape of the distribution will depend on the initial Weber
number We = d0/dm. The size of the largest drops in
stirred suspensions is indeed found to obey this rule, see e.g.
[441, 489–492].

5.2.2. Aggregation. The process of aggregation is inverse to
the above idea of size reduction: an ensemble of initially small
elementary particles form clusters of increasing average size as
they collide and merge, and the evolution is towards ever larger

sizes. The paradigm of this process is Smoluchowski’s kinetic
aggregation, initially imagined to represent the coagulation of
colloidal particles moving by Brownian motion in a closed
vessel [493]. For instance, this idea has been popular in
representing growth of aerosols in clouds [400]. In other
applications, mechanical agitation first forms small pieces,
which then grow by mutual collision.

If n(v, t) is the number of clusters whose volume is
between v and v+dv and K(v, v′) is the aggregation frequency
per cluster between clusters of volumes v and v′, then

∂t n(v, t) = −n(v, t)

∫ ∞

0
K(v, v′)n(v′, t)dv′

+
1
2

∫ v

0
K(v′, v − v′)n(v′, t) n(v − v′, t)dv′. (278)

This is an evolution equation for n(v, t), to which
additional effects like liquid evaporation can be added in the
form of a Liouville term—∂v{q(v)n(v, t)}, where q(v) is the
rate of evaporation [400]. The volume distribution of the drops
P(v, t) is equal to n(v, t)/N(t) with N(t) =

∫∞
0 n(v, t) dv the

total number of clusters. This framework has been popular in
modelling the breakup and coalescence of drops in emulsions
[494], turbulent clouds of drops [495], gas–liquid dispersions
in stirred media [496], and breath figures [497]. In each case, a
suitable frequency factor K(v, v′) has to be found. Similarity
solutions have been found for various forms of the interaction
kernel K(v, v′), which all display an exponential tail [498,499]

P(v, t →∞) ∼ e−v/〈v〉 for v # 〈v〉, (279)

similar to (270). Here 〈v〉 =
∫∞

0 vn(v, t)dv/N(t) is the
average volume, which is a function of time.

The exponential law (279) is easily found for the case
that K ≡ K(v, v′) is constant, using the Laplace transform
ñ(s, t) =

∫∞
0 e−svn(v, t)dv. Namely, in the long-time limit in

which the distribution becomes stationary, one finds that the
solution of (278) becomes

n(v, t) = N

〈v〉
e−v/〈v〉 with N = 1

1 + t/2
, (280)

where N =
∫∞

0 n(v, t)dv is the total number of clusters
at time t . Thus one finds (279) for the asymptotic cluster
volume distribution P(v) = n(v, t)/Ne with N〈v〉 = V ,
the (conserved) total volume of the aggregates. For example,
this solution applies to the coarsening of an assembly of
droplets exchanging solute by diffusion through the continuous
phase [500].
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Figure 86. Comparison between experimental records of drop size distributions in liquid sheet fragmentation (data from [456]) and various
models. The distributions are normalized by their mean and have the same variance 〈d2〉 (lognormal) and skewness 〈d3〉 (Poisson) as the
experimental ones. (Left) Narrow size distribution showing how the lognormal (section 5.2.1) and an experimental distribution can be easily
confused for a single data set. (Right) A broader distribution showing how the lognormal fit over-estimates both the distribution around its
maximum (inset) and its tail. The maximum entropy distributions (Poisson and similarly exponential, see sections 5.2.3 and 5.2.2) have a
much too sharp fall-off (i.e. ∼exp{−(d/〈d〉)3}) at large sizes. The Gamma fit discussed in section 5.3 has n = 17 (left) and n = 4 (right).

5.2.3. Maximum entropy principle and random breakups.
Another approach considers the random splitting of an initial
volume into various disjointed elements, all in one step. This
is an ensemble theory as commonly used in statistical physics,
with no explicit reference to dynamics. Similar ideas were
developed for the kinetic theory of gases [501] and the physics
of polymers ([502], see also [503,504] for a review). The idea
is to visualize a given volume v0 = d3

0 as a set of

K = (d0/dm)3 (281)

elementary bricks of volume vm = d3
m, whose linear sizes

are for instance linked by the requirement We = d0/dm as in
section 5.2.1. The distribution is found by computing the most
probable distribution of the disjointed clusters incorporating
all the bricks [505, 506].

Let us thus consider a drop consisting of N clusters which
make up the K elementary bricks. We call nk the number of
clusters consisting of k bricks, the average number of bricks
per cluster is 〈k〉 = K/N . Then the number of microscopic
states leading to a given cluster partition {nk} is

w({nk}) = N !
∏K

k=0 nk!
.

K!
∏K

k=0(k!)nk

, (282)

together with the conservation laws

K∑

k=0

nk = N, and
K∑

k=0

knk = K. (283)

Looking for the maximum number of microscopic states
(282), subject to the constraints (283), one finds the optimal
distribution P(k) = nk/N to be a Poisson distribution

P(k) = nk

N
= 〈k〉k

k!
e−〈k〉, (284)

of parameter 〈k〉, the average number of bricks per cluster. This
is also the distribution of the number of objects in a regular
partition of space, when the objects are spread at random as
sometimes encountered with low inertia particles in turbulent
flows [507,508]. The drop size distribution then follows from
p(d) = 3 d2/d3

mP(k = (d/dm)3).
Following the same line of thought, Longuet–Higgins

[509] considered the fragment distribution produced when a
volume is cut at random into exactly m pieces. The answer is

P(x) = m(1− x)m−1, (285)

for a linear segment of length unity where x is the fragment
length, with average 〈x〉 = 1/(1 + m). This distribution
tends towards a pure exponential characteristic of shot noise
P(x) 0 me−mx (Poisson intervals) for m , 1. Longuet–
Higgins [509] also provides the corresponding distribution
for random breakup of surfaces and volumes. These purely
combinatory descriptions do not account for any interaction
between the clusters as they separate. They lead to fragment
size distributions determined entirely by their mean, as does
the aggregation scenario in section 5.2.2 above.

The above three classes of models are compared
with figure 86 to experimentally measured and statistically
converged drop size distributions (cf section 5.1). Maximum
entropy or aggregation scenarios are far from the truth: nature
does not aggregate nor split liquid volumes at random. Small
but significant differences exist between the lognormal fit and
real data; more evidence that liquid atomization does not
proceed from a sequential cascade of breakups is given in
section 5.3.3.

5.3. Drop size distributions

5.3.1. A toy model to understand timescales. We have
already discussed ligaments in section 5.1.4, and pursue
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Figure 87. Condition for ligament formation from the withdrawal of a capillary tube (diameter D = 7 mm) whose end dips into water [510].
(Left) Ligament contraction with a slow tube elevation velocity (time intervals1t = 10.7 ms). (Right) Fast elongation and ligament
formation (1t = 4.5 ms).

the discussion here to point out the hierarchy of timescales
associated with substrate deformation, inertial rearrangements
and breakup.

A ligament is a more or less columnar object (a jet),
attached by its foot to the liquid bulk from which it has been
stripped. To produce a model ligament, one can withdraw
a capillary tube (diameter D) rapidly from a free surface
(figure 87). The conditions for the entrainment of a ligament
are easily understood by the following argument: suppose the
tube elevation H above the surface increases at a constant rate
γ̇ and that the column length L in between the end menisci is
proportional to H , so that L = D exp (γ̇ t) if D is the initial
elevation. The liquid can flow out of the column through
the attached end, whose surface area is S 0 πξ 2/4. The
flow velocity is u = 2

√
γ /ρξ , as determined by Bernoulli’s

equation, using the capillary pressure 2γ /ξ in the middle of
the column of diameter ξ . With V = πLξ 2/4 being the total
volume, continuity dV/dt = −uS leads to

d(ξ 2L)

dt
= −2

√
γ ξ 3

ρ
. (286)

The solution of this equation is

ξ

D
= e−σ t/2

{
1− 2

3στ
(1− e−3σ t/4)

}2

with τ =

√
ρD3

γ
. (287)

For weak stretching (στ . 1), the ligament empties
completely in a finite time t , set by the capillary time τ , and
dependent on its initial size:

ξ/D = (1− t/2τ )2. (288)

The (unphysical) exponent 2 is a geometrical artefact
originating from the assumption of a fixed external length L.
The exponent could be 1/3, 2/5, 1/2, 2/3 or 1 depending on
other choices dictated by other constraints, see table 2. Large

stretching (στ , 1) prevents capillary contraction, and the
ligament thins at constant volume

ξ/D ∼ exp(−σ t/2). (289)

Note that this caricature cannot be completely realistic, since
the ligament shape is itself a solution of the elongation function
H(t); a cylindrical shape (with uniform σ along the ligament)
is only compatible with an elongation linear in time [199].
Indeed, the column eventually pinches off from its ends and,
if no longer stretched, fragments into drops (figure 87).

Stretching prevents a ligament from emptying, and also
hinders its destabilization, as explained in section 3.7. The
initial fluid motion along a ligament is well described, as shown
in sections 3.2.2, 3.5 and 3.7, within the long-wavelength
approximation, thereby giving the dynamics of the capillary
waves along the ligament. Note that a localized pinching
event only takes of the order of 10−3 of the total time tξ for the
ligament to disintegrate (figure 88 and [120,289]). Most of the
time is thus spent moving the fluid around the initial ligament
shape. This demonstrates that a random superposition of
capillary waves can lead to the ligament’s corrugations, and
the distribution of the resulting drop sizes.

5.3.2. Construction mechanism. The statistics P(h) of
heights h of a large number of overlapping waves with random
amplitude and phase but with the ‘same pitch’ was first
examined by Rayleigh (1880) [511]. It leads to the celebrated
‘Rayleigh distribution’

P(h) = h

σ 2
h

exp
(
− h2

2σ 2
h

)
, (290)

popular in optics, acoustics and oceanography [512, 513].
Another idealization has been proposed in [32]: when two
liquid blobs of different sizes d1 and d2 (with, say, d1 < d2)
are connected to each other, they aggregate due to the Laplace
pressures difference ∝ γ (1/d1 − 1/d2). The time it takes for

coalescence to be completed is of order
√
ρd3

1/γ , the same time
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Figure 88. Time sequence of the maximum principal curvatures of a
liquid bridge as it pinches-off under mild stretching (see also
figure 87). Time τ = tp − t is the time from pinch-off. The onset of
the instability, as well the boundary conditions influence the
evolutions down to 10−2–10−3 of the overall time tp, after which the
dynamics is universal. Adapted from [289].

Figure 89. Double flash exposure of a ligament torn off by the wind
(section 5.1) just before and after breakup. (Middle) A sketch of the
layer interaction scheme. (Bottom) An isolated ligament covered
with blobs of various sizes d corresponding to the local thickness.

it takes for the neck connecting the two blobs to destabilize
and break (section 5.3.1). A particular consequence of this
equality is the ‘coalescence cascade’ described in [514]. For
the same reason, the blobs which make up a ligament tend, as
they detach, to coalesce, thereby forming bigger and bigger
blobs (see also [515]).

If n(d, t)dd is the number of blobs constituting a ligament
whose size is within d and d + dd at time t (figure 89), the total

number of blobs is

N(t) =
∫

n(d, t)dd. (291)

Conjecturing that blob sizes result from a random overlap of
independent layers, whose width is set by the ‘mean free path’
of fluid particle motions across the ligament, the evolution
equation for n(d, t) can be computed along lines similar to
those in section 5.2.2. A layer of given size d1 overlaps
with another one of size d2 with a probability proportional
to n(d1, t)n(d2, t). This gives rise, at a time δt after merging,
to a size d with probability n(d, t +δt) =

∫
n(d1, t)n(d2, t)dd2

with d = d1 +d2, corresponding to self-convolution of the size
distribution. In addition, the net ligament volume

V =
∫

d3n(d, t)dd ≡ d3
0 , (292)

must be conserved. The continuous version of this evolution
for n(d, t) can thus be written, in its most general form, as

∂t n(d, t) = −n(d, t)N(t)ζ−1 +
1

3ζ − 2
n(d, t)⊗ζ ,

with ζ = 1 +
1
n
. (293)

Here⊗ denotes the convolution operation on the linear sizes d.
Time t is counted from the moment the ligament detaches from
the liquid bulk. Time is nondimensionalized by the capillary
time tξ =

√
ρξ 3/γ , based on the initial average blob size

ξ =
∫

dn(d, 0) dd/N(0). (294)

The interaction parameter ζ is determined from the initial
blob distribution along the ligament requiring that

ζ = 〈d2〉0
ξ 2

with 〈d2〉0 =
∫

d2n(d, 0)dd/N(0).

(295)

A uniform thread of constant thickness (made of many thin
layers) is characterized by ζ = 1, while a corrugated ligament
(made up from a few independent layers) has ζ > 1. The
asymptotic solution of equation (293) for pB = n(d, t)/N(t)

is the Gamma distribution (268) of order

n = 1
ζ − 1

. (296)

The Gamma shapes fit the experimental distributions of
the blob sizes before breakup (figure 90), and that of the drop
sizes after ligament breakup, as substantiated in this review.
For an initially corrugated ligament, coalescence between the
blobs tends to restore the average diameter 〈d〉 from ξ to d0.
This is at the expense of the number of blobs, decreasing in
time as

N(t)

N(0)
=

(
1 +

N(0)1/nt

n(1 + n/3)

)−n

. (297)

Concomitantly, the average diameter increases as 〈d〉/ξ ∼
N(t)−1/3, and the net projected ligament surface S(t) =
N(t)

∫
d2p(d, t)dd behaves like N1/3 (figure 90).
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Figure 90. Blob size distribution of the ligament in figure 89 just prior to its breakup, fitted by a Gamma distribution of order n = 4.5.
(Left) Evolution of the roughness ζ of the ligament (12) and of the surface S/S(t = 0) (•) as a function of the time in units of the capillary
time tξ . The continuous line is the prediction for S(t) based on equation (293). (Right) Corresponding ligament.

Figure 91. An initially smooth ligament produces a set of close to mono-disperse drops, while a rough ligament breaks into drops with a
broad collection of sizes. The parameter n is large on the left and small on the right.

5.3.3. Average drop size versus variance. The dependence
of the resulting average droplet sizes 〈d〉 on n contains two
distinguished limits: for large n (i.e. for smooth and uniform
ligaments) one finds a narrow distribution (width ∼1/

√
n)

centred around ξ :

ln
〈d〉
ξ
0 1

n
. (298)

This means drop sizes are proportional to the initial thread
diameter, cf [147]. For small n (strongly corrugated ligaments)
one has

ln
〈d〉
ξ
0 ln(N(0)1/3)− 1

3
n ln(n), (299)

giving an average drop size 〈d〉 ≈ ξN(0)1/3 = V 1/3 = d0,
of the order of the equivalent diameter (in terms of volume)
of the entire ligament. Ligaments which break into one
big drop, plus a few smaller ones, produce the broadest
possible size distribution. These distributions resemble those
encountered in section 5.1.1. Interestingly, (299) predicts that
thinner, but nevertheless corrugated ligaments produce not
only finer drops, but also narrower distributions (figures 71
and 80). Ligaments of this type are formed by fast winds,
or when capillary breakup is slowed down by an increased
liquid viscosity [516, 517] so that the ligament is stretched
longer [456].

This trend is the opposite of the sequential cascade
mechanism, for which the width of the distribution is
increasing with the cascade step, while drop sizes are
decreasing as the steps are accumulated (section 5.2.1 and
(277)). On the contrary, breakup of corrugated ligaments
involves an inverse cascade, going from the smallest towards
the larger sizes, the coarsening process being interrupted earlier

for smooth ligaments, and going on up tod0 for rough ligaments
(figure 91).

When the diameter d0 is itself distributed among the
ligaments population as pL(d0), the size distribution in the
spray is

p(d) =
∫

pL(d0)pB(d/d0)dd0. (300)

Generically (see figure 80), pB(d/d0) is narrower than pL(d0).
The composition operation stretches the large excursion wing
of pB(d/d0) over nearly the whole range of sizes d; as a
result, the distribution in the spray (figure 71) once more has
an exponential tail

p(d) ∼ exp(−n d/〈d0〉). (301)

The steepness of the fall-off depends on the average ligament
volume through 〈d0〉, which also sets the average drop size
in the spray, independent of Weber number [518, 519]. This
fact is once more in disagreement with the direct cascade
scenario (section 5.2.1). Instead, the exponential shape of
spray size distributions originates from the large excursion tail
of the Gamma distribution, which in turn arises from ligament
dynamics, the crucial step of atomization.

The examples discussed so far all concerned liquid drops
forming in a gaseous environment. There is no reason to think
that the same phenomenology and ideas should not apply to
the opposite situation of bubbles forming in a continuous liquid
phase: the fundamental instability, that of a hollow ligament
in a liquid, is of the same nature as that of a liquid ligament in
vacuum (see e.g. section 3.4 and [145]). Bubbles entrained at
the sea surface by breaking waves have size distributions very
likely to be Gamma distributions [478, 479].
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5.3.4. Minimum value of the Gamma order. The relative
roughness of the ligament ζ = 〈d2〉0/ξ 2 sets the width of the
resulting drop size distribution, since the order n is

n = ξ 2

〈d2〉0 − ξ 2
. (302)

The strongest corrugations of the initial ligament are bounded
by the ligament diameter. Thus estimating the maximum
roughness by

√
〈d2〉0 − ξ 2 ≈ ξ/2, one finds the minimum

value of n to be
nmin ≈ 4 (303)

or slightly above. This is close to the value found for liquid
sheets (for which n ≈ 5) as seen in figure 93. This reflects the
strong corrugation of the sheet’s rim, which have reached their
saturation level, independent of the injection parameters (see
figure 78 and [278, 450]).

5.4. Origin of roughness: the case study of merging jets.

The roughness of jets and ligaments sets the width of the
resulting drop size distribution. This roughness has multiple
origins in various practical situations and it is difficult to
anticipate a priori. However, in the model problem of the
merging of two identical jets, parameters can be controlled
more carefully.

Consider the inelastic collision of two identical jets with
diameter d1 and velocity u1, merging at an angle 2θ , and thus
forming another free ligament. Let the jets Weber number
We be moderate, between 5 to 10 (figure 94); it must in fact
be smaller than 4(1 + cos θ)/(sin θ)2, the value above which
the jets form a sheet [456]. We show that an energy balance
explains the corrugations amplitude of the resulting jet, and
consequently the width of the drop size distribution.

We take the jets as initially smooth, and call u and p

the resulting ligament velocity and internal pressure, and d its
diameter (figure 92). Momentum and mass conservation give

ρu1 cos θ · 2u1d
2
1 − ρu · ud2 = (p − p1)d

2, (304)

2u1d
2
1 = ud2. (305)

Surface tension enters through the internal pressures p1 =
2d1/γ and p = 2d/γ . The pressure difference before and
after merging is, according to (304), (305), given by

p1 − p = ρu(u− u‖) with u‖ = u1 cos θ . (306)

On a pressure scale given by the incident kinetic pressure ρu2
1,

the pressure difference p1−p = 2/γ (1/d1− 1/d) is of order
We−1. The velocity of the resulting jet u is thus

u ≈ u‖ = u1 cos θ, (307)

up to terms of order We−1
1 = O(1/10), so that typically

d/d1 ≈
√

2/ cos θ . However, the loss of energy q during
the collision

q = 1
2
ρu2

1(1− cos2 θ) +
2γ
d1

(
1− d1

d

)
(308)

Figure 92. Average diameter of the drop’s dispersion normalized by
the ligament initial average radius 〈d〉/ξ , as a function of n
according to (297) for N(0) = 125. An initially strongly corrugated
ligament gives rise to an average droplet size appreciably larger than
its average initial diameter. Inset: corresponding distributions
p(d/〈d〉) as a function of d/〈d〉 for n = 1, 2, 5, 10, 25.

is of order one, and dominated by the surface energy term.
Namely, the destruction of surface area in the collision is

q = 2γ
d1

(
1− 1√

2

)
+ O(θ2), (309)

as illustrated in figure 95.
We know of no ab initio principle that determines how

this energy will be dissipated. Irregular motions in the bulk
of the resulting jet will excite capillary waves at its surface,
which ultimately decay by viscous friction. We proceed by
invoking an equipartition between bulk agitation and surface
energy [520], although we are not describing an equilibrium
situation. The change of surface energy 1E of a cylinder of
radius h = d/2, perturbed at wavenumber k with amplitude εk ,
is given by (49). We attribute the amount of energy ultimately
dissipated to the (transient) excess of surface energy (implying
de facto that k > 2/d):

1E ∼ q
πd2

4
4, (310)

with an unknown prefactor, presumably of order unity. This
gives the relative amplitude of the corrugations thus formed as

ε2
k

d2
= 1

2

√
2− 1

(
kd
2

)2 − 1
, (311)

independent of surface tension. In the confluence region, the
resulting jet is excited essentially at a scale given by the size
of the incoming jets d1. Putting therefore k = 2π/d1, and
remembering that the width of the drop size distribution is set
by the order n = d2/ε2

k , one finds that

n = 4π2 − 2√
2− 1

≈ 90. (312)
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Figure 93. (a) Probability density functions of the drop size d ,
normalized by the arithmetic mean 〈d〉 for a number of jet velocities
uj and for several conditions of forcing • as well as without forcing
◦. The solid curve represents the Gamma distribution with n = 5.
(b) Semi-logarithmic representation of the size distributions shown
in (a); for details see [278].

Figure 94. Two liquid jets, impacting at an angle 2θ , at small Weber
number (We = 5).

Figure 96 indeed shows that when two nearly (but not
strictly) smooth jets merge, they give rise to drop distributions
essentially independent of the merging angle, and well fitted
by Gamma distributions with an order (n = 70), a large figure

Figure 95. (a) Schematic of jet merging, and surface roughness
generation. Corrugations expanded in Fourier modes:
ξ =

∑
k εk cos(kx). (b) Dependence of the average drop size from

the destabilization of the resulting jet on the impact angle. Solid line
is 〈d〉/d1 =

√
2/ cos θ .

characteristic of ‘nearly smooth jets’, but somewhat smaller
than the expected one. This latter difference is an indication of
the residual fluctuations in the incoming jets (see figure 96(a)
and (b)). According to this mechanism, the stronger the
noise, the broader the distribution. Note, however, a recent
observation that reports an opposite trend [299].

6. Non-Newtonian effects

The universal structure of pinch-off solutions owes everything
to the fact that the Navier–Stokes equations retain the same
structure, independent of the fluid. An important assumption
underlying this statement is that the time scale of all relaxation
processes is short compared with the time scale of the flow.
Near pinch-off, in particular, this assumption is bound to be
violated, since the time scale of the flow goes to zero.

The most common case is that the fluid contains molecules
of high molecular weight, whose relaxation time towards
their equilibrium state is no longer negligible. In addition,
if the polymers are flexible, they are able to store energy,
resulting in elastic behaviour. Indeed, flexible polymers
have the most dramatic effects, as concentrations as low as
10 ppm can completely alter the character of jet breakup
[521]. Other examples of non-Newtonian behaviour whose
effect on jet breakup has been studied are shear-thinning
liquids [522], yield-stress fluids [523], liquid crystals [524],
superfluid helium [525] and sand [526]. Surfactants, on the
other hand, alter the surface tension, which is driving much of
jet dynamics [527].

6.1. Flexible polymers

Many liquids of biological and industrial importance contain
very long, flexible polymers. Figure 97 shows a jet of
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Figure 96. Probability density functions (pdf) of the drop size d normalized by the arithmetic mean 〈d〉 for (a) two jets at an angle of 90◦

and three different diameters dj . For comparison, the pdf for a single jet is also shown. (b) Same as (a) in log–lin units. (c) Pdf for an
impact angle 2θ varying from 52◦ to 160◦ with two identical jets of 1.07 mm. (d) Pdf for two jets with dj = 1.07 mm, α = 90◦

superimposed with a Gamma fit with n = 70.

Figure 97. Photograph of a jet of dilute (0.01 wt%) aqueous
polyacryamide solution (surface tension γ = 62 mN m−1)
undergoing capillary thinning [316]. The polymeric contribution to
the viscosity is ηp = 0.0119 Pa s, and the polymer timescale is found
to be λ = 0.012 s. This corresponds to a Deborah number of
De = 18.2.

water, into which a small amount of flexible polymer has
been dissolved. Instead of breaking up like a jet of water
(cf figure 12), adjacent drops remain joined by threads, which
grow increasingly thinner, delaying breakup significantly
[528]. The reason for this ‘beads-on-a-string’ structure is that
polymers become stretched in the extensional flow inside the
thread, and thus depart from their ideal coiled state [529]. The
polymers’ tendency to return to their equilibrium configuration
results in a buildup of extensional stresses, which resists
pinching.

The initial stages of jet instability, as shown in figure 97,
are of course governed by a linear instability, as analysed
in [528, 530, 531] for, among others, the general ‘Oldroyd
8-constant model’ [529]. The most outstanding conclusion
from these studies is that the non-Newtonian liquid breaks
up faster than a corresponding Newtonian liquid. Namely,
in the limit of very low shear rates Newtonian behaviour is

recovered, which defines a ‘zero-shear rate viscosity’. The
quantitative consequences of this observation seem to be small,
however, as we are sadly unaware of any experimental test
of the theory. What is more important is that threads under
tension are stable [530]. Below we will see that threads in the
late stages of pinching, as seen towards the right of figure 97,
are indeed under tension.

Polymeric threads have been observed in liquid jets
[528, 532], drops falling from a capillary [521] or in filament
breakup devices [533, 534]. The latter consist of two rigid
plates which are rapidly pulled apart, to form an unstable liquid
bridge, which then pinches owing to surface tension. The
thickness of a thread is very nearly uniform in thickness [316],
since any reduction in radius increases extensional stresses, as
argued above. Thus from a simple measurement of the thread
radius, information on the polymeric stresses at very large
deformations can be deduced, which is virtually unobtainable
by any other measurement. The only alternative is much more
elaborate ‘filament stretching devices’ [535–537], in which
plates are separated exponentially, to keep the extension rate
constant. Eventually external forcing leads to de-cohesion
from the endplate [538], and thus breakdown of the method.
Capillary thinning thus plays an important role in polymer
rheology, and filament breakup devices are being marketed
under the name CABER [539].
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Figure 98. The logarithm of the normalized minimum radius of a
liquid bridge, which was produced by a very rapid initial
stretch [316]. The circles correspond to experiment, theory to the
dotted line. The thick line is the theoretical prediction for the
slope −1/(3λ).

Figure 98 shows some typical data obtained for the case
of a highly dilute polymer in a viscous solvent [533, 540].
A simple interpretation of thinning data is aided by the
fact that the threads are very generally observed to thin
exponentially [540]:

h = h0 exp(−βt), (313)

thus defining a single characteristic timescale β−1 of the
system. In a simple extensional flow (29), (313) produces
a constant extension rate ε̇ = v′ = 2β, to which polymers
are subjected. The straight line in figure 98 is the theoretical
prediction β = 1/(3λ), to be explained below, where λ is the
longest relaxation time of the polymer, obtained from a near-
equilibrium measurement alone [533, 541]. Unfortunately,
this simple interpretation of the thinning rate fails for small
viscosities [521, 541, 542], as we will see below.

Two different approaches have been used to describe the
motion of polymeric liquids [529]. In the spirit of continuum
modelling, the first aims at identifying proper ‘slow’ variables
to describe the additional degrees of freedom. There is much
debate as to what these slow variables are, and how the right
conservation laws and symmetry principles are built into the
theory [543–545]. Worse still, even when properly accounting
for symmetry constraints, there is a virtually infinite freedom
in proposing ‘constitutive’ equations, which relate the average
state of the polymers to the flow they are experiencing.

An alternative is to start from ‘microscopic’ models of
polymers in a flow. Much progress has been made by
modelling their equilibrium behaviour as long chains of beads,
tied together by elastic springs [546]. Far from equilibrium,
the state of the art remains much more rudimentary [547]: just
two beads, connected by a spring. Moreover, the polymer
solution is assumed to be ‘dilute’, so there is no interaction

between polymers. As a ‘polymer’ is stretched, additional
stress is supported by the tension in the spring, leading
to a strong increase in the effective ‘extensional’ viscosity.
The simplest, exactly solvable model is the Hookean spring,
which quite unrealistically allows the polymer to become
infinitely stretched, once it is subjected to a sufficiently strong
extensional flow. An attempt to improve this is the so-called
FENE model [529], for which the restoring force diverges once
a critical extension is reached. This model is no longer exactly
solvable, but requires moment closures, the simplest of which
is called FENE-P.

It goes without saying that these models can in no way
do justice to real polymer–fluid interactions. The best one
can hope for is to build in some simple physical ideas in
a consistent fashion. In a one-dimensional description, the
polymers lead to an additional contribution from the axial
components σz(z, t), σr (z, t) of the stress to the force balance
(30) [126, 542, 548]:

∂t v + vv′ = −γ κ ′/ρ + [(σz − σr + 3νsv
′)h2]′/h2. (314)

In a FENE-P description, the stresses are related to the
corresponding components of the conformation tensor L
of the polymer via σz = νpLz/(λpN) − νp/λp and
σr = νpLr/(λpN)− νp/λp, where N = 1 − (Lz + 2Lr)/b.
The extensibility parameter b limits the maximal extension a
polymer can have, νs is the viscosity of the solvent, while νp

is the zero-shear contribution of the polymer.
Finally the stretching of the polymer is described by

∂tLz + vL′z = 1/λp + (2v′ − 1/(λpN))Lz (315)

∂tLr + vL′r = 1/λp − (v′ + 1/(λpN))Lr . (316)

If the flow is such that 2v′ > 1/λp and constant, corresponding
to a strong elongation, Lz will grow exponentially, while Lr

remains inconsequential for most slender-jet problems. If
the polymer is infinitely extensible (b = ∞), one obtains
the classical Oldroyd-B model [529], and exponential growth
continues forever. The zero-shear rate viscosity νp can be
determined by rheological measurements [549].

If polymers are still far from full extension, (314)–(316)
predicts exponential thinning of the thread at a rate 1/(3λp), as
we are going to see now. When the polymers have reached their
maximum extension, breakup proceeds more rapidly, since the
stress supported by the polymers no longer increases [548].
Thus to understand (313) we consider the limit b → ∞, in
which case the longitudinal stress σz is proportional to Lz.
Assuming a spatially constant stress, from (315) we then find
exponential growth of σz, at a rate 4β − 1/λp.

Now we use the force balance (314), which in the
late stages of pinching is dominated by surface tension and
polymeric stress. In particular, since inertia can be neglected,
one can integrate (314) spatially to give the balance

(γ /ρ)h + h2σz = T (t), (317)

where T (t) is the tension in the string. Since pinching is driven
by surface tension and resisted by polymer stretching, it is
reasonable to expect that the two terms on the left are of the
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same order, σz ∝ 1/h. Thus β = 1/(3λp) and the stress
increases at the same rate as the radius decreases:

h = h0 exp(−t/(3λp)), σz = σ0 exp(t/(3λp)). (318)

As shown in figure 98, (318) works reasonably well. The
polymer relaxation time was determined by fitting small
amplitude oscillatory shear data to a Zimm spectrum [546],
and identifying λp with the longest time scale [550].

However to determine the so-called extensional viscosity
νe = σz/ε̇, the prefactorσ0 in (318) is needed, which according
to (317) is determined by the tension T (t) in the thread. To this
end one has to understand how a thread, as seen in figure 97,
is matched to the drops between which it is strung. As is
evident from figure 97, the transition region where the thinning
thread is attached to a drop develops into an increasingly sharp
corner. Recently [316] it has been shown experimentally and
theoretically that the profile in the corner region is self-similar,
with a typical size that is set by the thread radius. Using
this self-similar structure, and within the confines of the one-
dimensional model equations (314)–(316), the tension was
found to be T = 3γh/ρ. The extensional viscosity

νe = 3λpγ /(ρh) (319)

can thus be determined from a measurement of the thread
thickness alone. However, the slenderness assumptions
underlying the one-dimensional description is no longer valid
inside the drop, so the precise value of the prefactor in (319) is
expected to be different if the full axisymmetric flow profile is
used. Thus, a fully quantitative calculation of the extensional
viscosity of a thinning polymeric thread remains an unsolved
problem.

A particularly simple description of a polymeric thread
is achieved for observation over a time short compared with
λp, formally derived from (315), (316) in the limit λp →∞.
In particular, one finds [551, 552] that for negligible initial
deformation σz − σr = G(1/h2 − h4), where G = νp/λp

is the ‘elasto-capillary’ number [533]. In this limit in which
there is no polymer relaxation, the fluid behaves like an elastic
solid. As a result, a stationary thread thickness is reached,
corresponding to a balance of surface tension and elastic
stresses [551]. A linear analysis of this stationary state shows
that it is stable, with non-dispersive elastic waves running on it.

Figure 99 illustrates the effect of flexible polymers on
the dripping of a low-viscosity solvent (water), (a) showing
the case of pure water for reference. The images in (b) and
(c) are split to demonstrate the considerable power of the one-
dimensional model (314)–(316) in reproducing experimental
data. In this comparison, only the polymer timescale λp

was used as an adjustable parameter [542]. If polymers are
added to the water, a thin thread forms between the main
drop and the nozzle, analogous to figure 97. However, if
the nozzle diameter is sufficiently large, a smaller ‘satellite’
bead is trapped in the middle of the thread. In particular, if
the polymer timescale λp is greater than the Rayleigh time
(2), polymer stretching sets in right after the initial linear
disturbance growth on the fluid neck, resulting in a symmetric
profile, cf figure 99(c). In this case, a uniform thread is formed.
In the opposite case, polymer stretching is negligible at first,

Figure 99. (a) A drop of water falling from a faucet, h0 = 3 mm.
(b), (c): closeup of the pinch region, with 100 ppm of PEO
solution added. (left: numerical simulations, right: experiment)
(b): h0 = 3 mm, tc − t = 6, 2, 0, −3, −5 ms; (c): h0 = 0.4 mm
tc − t = 1, 0 ms. Model parameters: ηp = 3.7× 10−4 Pa s,
λp = 1.2× 10−2 s, b = 2.5× 104, ηs = 1× 10−3 Pa s,
γ = 6× 10−2 N m−1.

and a highly asymmetric Euler solution (212) develops [521],
see also figure 14. This normally leads to the formation
of a satellite drop, but since polymer stretching eventually
becomes important, this satellite drop is connected by thin
threads cf figure 99(b). In [521], the thinning rate at the abrupt
transition between the Euler solution and a thread was proposed
as a measure for the polymer time scale. This rate was found
to be similar to, yet significantly different from the subsequent
thinning rate of the thread.

Indeed, while the FENE-P model (314)–(316) is
successful in describing the early stages of pinching shown
in figure 99, it fails to satisfactorily describe the subsequent
thinning of the thread. In [541] a strong dependence of β
on the polymer concentration c was found, which persists
to concentrations far below overlap concentration c∗, and
which is attributed to interactions between polymers. Namely,
polymers become highly deformed in the early stages of
pinching, which greatly increases their interaction radius.
However, two observations made in [542] point to even more
fundamental problems of classical descriptions like FENE-P.
Firstly, in [542] λp was fitted to match the transition from
the Euler solution to a polymeric thread, but the same value
does not predict the correct thinning rate of the thread. Thus
more than one time scale seems to be necessary. Even
more worryingly, the value of β was also found to depend
on the radius of the capillary, so β cannot be an intrinsic
property of the model. In [542] it is argued that for small
solvent viscosities, polymer deformation is already large at
the onset of thread formation, so finite size effects may play a
significant role.

Still another phenomenon occurs for somewhat more
concentrated (above c∗) aqueous solutions, as first described
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Figure 100. Blistering of an aqueous solution of
Mw = 3.8× 106 g cm−3 PEO solution at a concentration of
c = 2000 ppm. Reprinted with permission from [515], copyright
2005 by the American Institute of Physics.

by [515]. The first image shown in figure 100 is a closeup
of a single, highly stretched polymer thread such as the one
seen suspended between the two rightmost drops in figure 97.
At first, the thread is subject to what appears to be a linear
instability with a well-defined wavelength [553]. Interestingly,
the process goes through several stages, leading to up to 4
generations of droplets of decreasing size (cf figure 100).
The phenomenon appears not to be described by the FENE-
P model (314)–(316), as shown in [548]. Namely, according
to (314)–(316), when polymers become fully stretched, the
thread breaks in a localized fashion, once more described by a
similarity solution, whose exact form depends on the polymer
model used [554, 555].

A similar phenomenon of ‘iterated stretching’ had been
observed earlier in [556]. However, the theoretical analysis
is based on dilute, infinitely extensible polymers, and occurs
only in the corner region, where the thread meets the drop.
This is contradicted both by experiment (since the instability
grows in the interior of the thread, cf figure 100 [515]), and
subsequent slender-body analyses of the Oldroyd-B equations
[316,548,557]. Finally, in his classical monograph Boys [558]
shows a picture of a thread taken from a spider web, showing
droplets of various sizes on the thread, whose appearance is
strikingly similar to figure 100. The ‘sticky’ droplets have
an important biological function in capturing insects [559]. It
remains to be seen whether they are produced by the same
blistering instability seen in figure 100, or whether they come
from a coat of sticky liquid applied to an existing thread, as is
usually supposed in the literature [559].

6.2. Shear-thinning fluids

If the polymer molecules in solution become stiffer, ideally like
rods, memory effects diminish. A particularly simple case is
the ‘generalized Newtonian liquid’ [529], for which the stress
tensor is proportional to the deformation rate tensor D (cf (39)),
but with a viscosity that depends on the invariants of D. Very
often it is observed that the viscosity diminishes like a power

law as a function of the second invariant γ̇ =
√

DijDij , if γ̇
is greater than a critical value γ̇0 (Carreau fluid):

η/η0 = (1− β)[1 + (γ̇ /γ̇0)
2](n−1)/2 + β. (320)

For low shear, the viscosity tends towards a constant value. If
n < 1, as is observed for xanthan gum solutions [560], the
behaviour is shear thinning.

Note that (320) implies the same shear-thinning behaviour
under extension; namely, in a thin filament γ̇ = |∂vz/∂z| =
|v′| to leading order. This determines the slender-jet equations
(30), with the viscosity replaced by (320). The problem is
that there is not much evidence so far that (320) is a faithful
description for extensional flows, as most rheological measure-
ments are under shear. In fact, there is evidence that xanthan
gum solutions (like suspensions of rigid rods), thicken under
extension [561–563]. By contrast, there is some evidence that
concentrated suspensions of spherical particles show not only
shear thinning [564] but also extensional thinning [565]. The
latter has also been found in polymer melts [566].

It is simplest to analyse pinching in the limit γ̇ , γ̇0,
for which there is pure power-law behaviour, and a similarity
solution of the form (199) can be found [567–569]. Namely,
from (29) one estimates that v′ ∝ t ′−1, and a capillary-viscous
balance gives 1/h ∝ ηv′ ∝ vn. From this we deduce
immediately that α1 = n: not surprisingly, pinching is speeded
up, because the viscosity decreases as pinching progresses. As
in the previous section, pinching experiments have the potential
of conveying useful information on the extensional rheology
of the liquid, which is difficult to obtain by other means. This
statement is not tied to power-law behaviour, although this of
course simplifies the analysis.

The axial extension of the solution is determined from
including inertia in the balance [567, 568], leading to

α1 = n, α2 = −n/2, β = 1− n/2. (321)

Thus as n decreases, the solution becomes more localized, and
for n = 2/3 axial and radial length scales become the same, so
that a long-wavelength description is no longer justified. This
makes intuitive sense, since the dynamics accelerates rapidly
as one gets close to the pinch point. In addition, as solutions
of the similarity equations demonstrate [568], profiles become
increasingly symmetrical. The net result is that even if the
base viscosity is high, thread-like features close to breakup
disappear, as seen in the one- and two-dimensional simulations
shown in [522]. Instead, breakup is localized and less likely
to produce satellite drops. From an engineering point of view,
this is a desired effect for many foods, for example yoghurt, for
which a ‘stringy’ appearance is not considered attractive [570].
In fact, preliminary experiments show that some brands of
yoghurt are indeed shear thinning. Breakup experiments then
demonstrate that the pinching exponent α1 is indeed smaller
than 1, showing that the thinning effect extends to extensional
flow [570].

If the base viscosity is high, one expects inertia to
be irrelevant initially; of course, as viscosity decreases, a
crossover to an inertial–viscous balance will occur even sooner
[567,568]. For n 8= 1 new branches of symmetric solutions are
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Figure 101. Successive views of a mayonnaise sample at different
times, pushed out of a nozzle of radius h0 = 3 mm. The initial time
(0 s) corresponds to the separation of the previous extrudate.
Reprinted with permission from [523]. Copyright 2005 by the
American Physical Society.

found, which connect between the symmetric Stokes solution
branch and the asymmetric Navier–Stokes solution branch far
away from n = 1. In the Newtonian case n = 1 itself, no
symmetric solutions are known to exist if inertia is present.
Just as in the purely Newtonian case, the axial exponent β is no
longer determined by dimensional analysis if inertia is absent,
but has to be obtained from solving the similarity problem
explicitly, as done in detail in [569]. As expected, β increases
with decreasing n, making the profile less slender.

6.3. Other non-Newtonian behaviour

Another interesting type of rheological behaviour is displayed
by materials like toothpaste, bread dough or mayonnaise
(cf figures 101 and 4), which are so-called ‘yield-stress’ fluids
[529]. This means they do not flow if the viscous shear
stress they are subjected to is below a threshold value σ0:
σijσij < 2σ 2

0 . In this regime the viscosity is effectively infinite.
Above the yield stress σ0, the viscosity is given by

η = η0 +
σ0√
2γ̇

(322)

in the so-called Bingham model [529]. Mayonnaise is more
realistically described by the Herschel–Buckley model, for
which the divergence of the viscosity for γ̇ → 0 is weaker
than by the power of −1 in (322) [523].

Using the Lagrangian methods developed in [296, 571]
analyses dripping using a generalized form of (322) (the two-
fluid model), neglecting both inertia and surface tension. In
the lower part of the drop the material does not move, but once
gravitational stresses have become large enough the material
starts to yield and pinch-off eventually occurs. The form of
pinch-off is very similar to that of a purely Newtonian fluid with
the same approximations, i.e. the liquid bridge has to extend
to infinity before pinch-off occurs (cf (226)). Experiments, on
the other hand, exhibit breakup profiles close to conical (see
figure 101) [523], indicating that a description which predicts
very long threads is not realistic. Clearly, it will be crucial to
include surface tension into the description.

Jets of superfluid liquid helium are also a potentially
interesting subject, because of the unique hydrodynamic

properties of the superfluid phase. Rayleigh breakup has been
demonstrated as a useful source of superfluid helium droplets
[525], and pinch-off of both normal and superfluid helium has
been studied in [572]. Unfortunately, no qualitative difference
between the two cases has been detected. An even more exotic
‘fluid’ that has recently attracted interest is formed by granular
materials or sand [573]. Curiously, a jet of sand has been one of
the earliest subjects investigated by photographic means [34],
and one observes a decay into drops or clusters of sand, which
is superficially similar to Rayleigh breakup [34, 526, 574].
A recent study suggests this to be a purely kinematic effect,
based on the free fall of particles [526], pouring out of a
container. Khamontoff [34] already investigated the effect of
gravity, projecting the jet horizontally using compressed air.
According to his preliminary investigation, the tendency to
form clusters remained the same, which appears to contradict
the simple kinematic theory [526]. Hence the true mechanism
for cluster formation in a granular jet remains an open problem.

6.4. Surfactants

The value of the surface tension, in particular for aqueous
solutions, depends strongly on the concentration of surface-
active molecules or ‘surfactants’ [575]. Either surfactant
molecules are inherently present, as in inks and DNA arrays
[73], or they are added to control the drop sizes in sprays [576].
In general the surfactant distribution is non-uniform, hence
non-trivial effects are to be expected, apart from renormalizing
the surface tension.

Most existing studies consider the insoluble case ( [527] is
an exception), for which the surfactant remains on the surface.
Then, the surfactant concentration-(s, t) is described by [577]

∂-

∂t
+ ∇s(-v) = Ds∇2

s -, (323)

where ∇s = (I – nn) · ∇ is the surface gradient operator. A
non-dimensional measure of the diffusion constant Ds is the
surface Peclet number Pe =

√
Rγ0/ρ/Ds, where γ0 is the

surface tension in the absence of surfactant. The Peclet number
is usually large (≈106 for mm-sized jets [578]), so diffusion
can be neglected [579]. The equation most commonly used to
describe the dependence of surface tension on concentration is
the non-linear Frumkin equation [578]

γ = γ0 + -mRT ln(1− -/-m). (324)

At the maximum packing density -m the surface tension
reaches a plateau, an effect which is not captured by (324).
Apart from changing the value of surface tension, the most
important effect of (324) is that it introduces surface tension
gradients: this results in Marangoni forces [42], which act to
restore a uniform distribution of surfactant.

The most important parameter is thus the surface activity
number β = -mRT/γ0, which measures the ‘effectiveness’
of the surfactant. For β = 0 the surfactant has no effect; in
the extreme case of β → ∞ the surface becomes rigid in
the sense that any tangential flow must be balanced by radial
contraction [579]. Typically, β is of order one (β ≈ 0.3 in the
experiments [578]).
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The linear stability of a jet, uniformly covered by
surfactant, has been studied for a long time [580, 581] in the
absence of a surrounding liquid [579, 582, 583] and when an
external fluid is present [584–586]. The most remarkable
general feature is that in the inviscid limit surfactants leave
the linear behaviour unchanged [581, 585]. In all cases, the
surfactant slows down the instability. In the absence of an
outer fluid, the surfactant tends to increase the most unstable
wavelength [579,585], which for vanishing Ohnesorge number
becomes finite if β > 1/2 [579] (namely, it is infinite without
surfactant according to (85)).

As for the non-linear behaviour, the most significant
result is that the asymptotics of breakup, as described for
Newtonian jets above, remains unchanged by the presence
of surfactant [578, 579, 583]. The reason is that the strong
extensional flow near the pinch point sweeps all the surfactant
out of the pinch region. Most of the non-linear analyses of
surfactant-laden jets are based on a slender-jet description
analogous to (29), (30). However, comparison with fully
three-dimensional, axisymmetric calculations shows that a
slender-jet description is only quantitative for β ! 0.5,
when radial variations in the velocity field are not too
great. It is found that satellite formation is suppressed by
the presence of surfactant [576, 578, 583], since concomitant
surface rigidification reduces axial velocities, and thus the
role of inertia. More recently, it was shown that surfactants
can promote the growth of several secondary necks during
the small-scale evolution of a fluid jet [587], thus mimicking
phenomena observed in the presence of noise [335].

Finally, we mention the so-called ‘dynamic surface
tension’ [575], usually associated with soluble surfactants.
Namely, if the surface and bulk concentrations are not in
equilibrium, it will take a certain time for surfactants to diffuse
to the surface and to establish equilibrium. Such effects were
first discovered by [588], and measured by Rayleigh [155]
using oscillations of a jet around a circular profile. Close to
the nozzle, where the interface is still fresh, surface tension
is found to be higher than away from it [155, 589]. Such
measurements are notoriously difficult, among others since
close to the nozzle the jet has not yet relaxed to a plug
profile [590]. Dynamic surface tension also has dramatic
consequences for the radial extent of Savart’s sheets, an elegant
configuration to study the transient diffusion of bulk surfactant
towards the interface [591]. As a historical aside, phenomena
which are most likely explained by the presence of surfactants
have let to a spirited controversy between Phillip Lenard
[20, 592] and the young Niels Bohr [156, 593], the former
having erroneously claimed evidence for a dynamic surface
tension of pure water [594, 595].

The issue of dynamic surface tension of a pure liquid
has resurfaced recently [596], based on a surface tension
measurement of water, using Rayleigh’s and Bohr’s method
[597]. Introducing a phenomenological correction factor for
the relaxation of the jet’s velocity profile near the nozzle
opening [590], a relaxation time of 3 ms was found for water,
but not for any other pure fluid. As far as we are aware, this
measurement has not been confirmed by any other group. A
more recent review of dynamic surface tension measurements

[37] concludes that the fluid mechanics at the jet entry may
not be sufficiently well understood for the oscillating jet
method to be reliable. Instead, a recent study [589] found
no evidence of relaxation behaviour of pure liquids. More
importantly, the description used in [596] to model dynamic
surface tension is physically flawed, and leads to predictions
which are unrealistic [598]. Therefore, we do not believe that
any meaningful conclusions can be drawn from an application
of such models to jet breakup [599].

7. Perspectives

Given the breadth of the subject we have treated, a simple
‘conclusion’ would not be appropriate. Rather, we would like
to indicate possible future directions of research.

• Armed with a good understanding of jet dynamics, one
could tackle more ambitious questions of optimization
and control: designing a nozzle ‘on purpose’ to get rid
of satellites, or to minimize/maximize drop size under
dripping, in the spirit of the ‘optimal faucet’ [600].
Also, what is the minimum energy needed to transform
a certain amount of fluid into a spray with a given mean
droplet size, and is the concept of energy useful in these
instances [278]?

• A proper treatment of the capillary instability for
the frequent case of a time-varying base solution, as
epitomized by the stability problem of a falling thread
(section 3.7.3), is still lacking.

• A few issues remain in the context of section 4 on
breakup. Most notably, the destabilization of threads
by noise (section 4.5.2), the transition from symmetric
to non-symmetric pinch-off (figure 53), an experimental
confirmation of post-breakup solutions such as that shown
in figure 62 and cases where ‘simple’ breakup solutions
can no longer be found, for example in inviscid pinch-off
for large D (cf section 4.3.1).

• Jets produced from the collapse of a cavity and/or
impulsive acceleration (see figures 73 and 74) are very
important, for example to understand droplet production
and its effect on the albedo of the ocean. The shape,
dynamics and fragmentation of these jets remain an issue.
For example, is there a ‘generic’ jet/ligament shape other
than a uniform one, that would explain the observed drop
size distributions?

• The self-convolution model conjectured in section 5.3.2
works well, but lacks a fundamental justification. A
justification based on the equation of motion is needed.

• The intelligent use of polymers, for example to
produce very thin yet persistent strands (cf section 6.1),
with possible applications as synthetic textiles, or in
understanding spider webs.

• Free-surface flows lead to highly non-linear fluid
motion, in particular strong stretching. Non-Newtonian
constitutive laws are usually not well tested in this regime,
and few quantitative experiments are available. Even the
much-studied case of flexible polymers (cf section 6.1),
usually only leads to qualitative agreement between theory
and experiment.
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• The extensional rheology of dense suspensions [601], in
particular, is not understood. Jet dynamics would furnish
an ideal testing ground.
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[378] Lorenceau E, Quéré D and Eggers J 2004 Phys. Rev. Lett.

93 254501
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[384] Betelú S I, Fontelos M A, Kindelaán U and Vantzos O 2007

(unpublished simulations)
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