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This paper presents a set of experiments aimed at investigating the features and the statistical 
frequency of intense vertical structures (sometimes called “filaments”, or “worms”) as manifested 
by a migrating bubble technique in a mean shear free, homogeneous, isotropic, stationary turbulence 
generated by oscillating grids in a water tank for R,, reaching up to 300. It is found that the 
nucleation of filaments at the surface of the walls of the tank, where boundary layers are liable to 
destabilize is much more frequent than in the homogeneous bulk of the tank where one filament is 
typically detected each hundred large scale turnover time. This distinction between the wall surface 
and the bulk activity, supplemented with the fact that the size of the filaments and their lifetime 
compare with the length and time-scales of the largest structures of the flow leads us to formulate 
an elementary model explaining the origin and the geometrical features of these intense vertical 
structures in turbulent flows for arbitrary Reynolds numbers. 0 1995American Zmtitute of Ph.ysics. 

I. INTRODUCTION AND MOTIVATION 

The temptation to reduce a complicated problem charac- 
terized by a strong disorder such as three dimensional turbu- 
lence to a limited set of simple objects from which one could 
extract all the statistical quantities of interest is in keeping 
with a long tradition. Several works have been devoted to the 
experimental search for well defined and statistically perma- 
nent structures in turbulence’72 and several authors have ex- 
amined the consequences of this representation of the flow 
on its statistical properties such as power spectra, and statis- 
tics of velocity increments.3-8 These works have also been 
encouraged recently by an increasing number of high reso- 
lution numerical simulations showing evidence for the exist- 
ence in the flow of high vorticity regions organized as elon- 
gated filaments.9-‘3 Since these filamentary objects, looking 
like columnar vortices present locally an excess of enstrophy 
w2 compared to their contribution to the dissipation 
E = mT2, they also manifest themselves, via the Poisson’s 
law linking the Laplacian of the pressure field to w2 and the 
square of the rate of strain cr2, as a pressure ~ink’~-‘~: 
VP/p= &&&IV]. 

Douady et al. l5 took advantage of this property and pro- 
posed an ingenious experimental technique to visualize these 
low pressure regions in an experimental configuration close 
to a circular mixing layer. The technique consists of seeding 
the medium (water), with small air bubbles which migrate, 
due to the large density ratio they offer with respect to the 
ambient fluid, through the pressure gradients towards the de- 
pression cores revealing the organization of these cores as 
transient filamentary objects. These observations were also 
supplemented by velocity and pressure measurements which 
showed unambiguously that these filaments are responsible 
for the deviation from the Gaussian noise of the negative 
tails in the pressure fluctuation histograms.r7 

However, the flow in this experiment, consisting of two 
contra-rotating disks in a closed circular vessel, suffers, by 
construction, from a lack of isotropy at least at large scale 
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since it is dominated by a permanent mean shear and second- 
ary (possibly unstationaryj recirculations. This point is sig- 
nificant since most of the observations of these filaments, 
and ail of the pressure measurements in this system (see also 
Abry et aZ.“) are made at the wall of the vessel, and at the 
position of maximum shear at the midplane between the 
disks. One might argue that, due to the large value of the 
Reynolds number usually reached, homogeneity (but not 
isotropy because of the permanent shear) is recovered at 
small scale but still the existence and statistical importance 
of these filaments in a real world experiment independently 
of any permanent large scale production mechanism (shear) 
and away from solid boundaries (boundary layer instabili- 
ties) remain an open issue. From this remark comes the mo- 
tivation for the present study. 

II. TURBULENCE GENERATED BY OSCILLATING 
GRID(S) 

Mainly used in the context of geophysical applications 
such as the study of mixing, dispersion in stratified, rotating 
or two-phase fluids, oscillating grids have drawn interest for 
their ability to produce a stationary zero mean shear spatially 
decaying turbulence (Fernando and De Silva” and refer- 
ences therein). 

A grid (usually square) of mesh size A4 oscillates around 
its mean position by an amplitude S (the stroke) at a fre- 
quency f in a tank (figure 1). Provided the stroke is not too 
large compared to &f, the frequency not too high and the end 
conditions of the grid at the walls of the tank are properly 
realized,19*20 turbulence away from the grid in the bulk of the 
tank results form the merging and interaction of the wakes 
produced by the grid bars during their displacement. The 
mean velocity of the flow is zero and turbulence decays with 
increasing distance from the grid to produce, beyond one or 
two mesh sizes, a flow which is homogeneous in planes par- 
allel to the grid. 

If U’ denotes the root mean square velocity of 
(u’=(u(t)“)‘“) and L the integral scale of the flow at a 
distance x from the grid, the spatial evolution laws for the 
configuration of figure la are given by Hopfinger and Tol$’ 
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FIG. 1. The two tank configurations used in this study. (a) One grid con- 
figuration: The grid is made of fives square bars Cd = 0.8 cm) spaced by M 
= 5.5 cm in each direction (square mesh). The.side bars are spaced by 
M/2 with respect to the walls of the tank. The grid oscillates with a total 
amplitude S = 4.5 cm around its mean position. (b) Two grids cohfigura- 
tion: RJO identical grids positioned at H= 5 XM=+28 cm with respect to 
each other, respectively on top and at the bottom of the tank are attached to 
the same central rod and oscillate in phase. A porous ceramic on the floor of 
the tank through which air was injected allowed to regulate the concentra- 
tion of bubbles in the tank, containing water, whose temperature could be 
increased up to 75” Celcius. 

(SMy2 
rr'=c,fP---- x ' (1) 

L= c&x. (2) 

These laws are valid for one grid beyond about one or 
two mesh sizes away from the grid and for SGM. The co- 
efficients C1 and CZ depend on the geometry of the grid. In 
the present experiments, we used grids of mesh M = 5.5 cm, 
a stroke S=4.5 cm and frequencies f ranging from 3 to 10 
Hz. The corresponding coefficients” are C1 =0.25 and 
C2= 0.2. Nevertheless, due to the quite fast decrease of U’ 
with x (i.e. u’ - l/x), the available kinetic energy and there- 
fore the amplitude of the pressure fluctuation (proportional to 
P'L ” if p denotes the density of the fluid) vanishes quite 
rapidly with x. 

Our visualization technique is directly inspired by the 
one use-d by the group of Y. Couder (Douady et a1.,15 Boon 
et a1.,21 Cadot et al.,” see also Hopfinger et ti1.22). Air 
bubbles were injected in the tank just below the bottom grid 
via a porous ceramic producing very small bubbles (approxi- 
mately 100 pm in size) at a controlled rate, in such a way 
that the concentration of bubbles could be adjusted at will, 
independently of the imposed oscillation frequency of the 
grids. In order to facilitate the migration of the bubbles to- 
wards low pressure structures, the medium was heated up to 
70” -75” Celcius, thereby reducing its viscosity 
(17=0.4X 10m3 Pa s and p-970 kg/m3 at that temperature). 
The drag force exerted on a (quasi-spherical) bubble is re 
duced proportionally to 77 and the Reynolds number of the 
flow Re= u ‘Llv where v= v/p is increased with respect to 
standard conditions. Throughout all of the configurations, the 
bulk turbulent Reynolds number Re= u’Llv varied from 
1000 to 3000 and $e Reynolds number based on the Taylor 
microscale which writes Rx=(30Re)‘” in grid turbulence 
when L refers to a transverse integral scale varied from 170 
to 300. 

One is thus tempted to “rectify” the spatial evolution of 
II’ in the center of the box by adding a second grid, identical 
to the first one, on top of the tank (figure lb). In our experi- 
ment, the two grids are attached to the same central rod, and 
thus oscillate in phase. They are separated by 5 mesh size M. 
This separation distance is sufficient to warrant that their 
wake regions (i.e. x/M < l-2) do not interfere. The central 
region’of the box, close to the midplane between the grids is 
made more homogeneous with respect to the sidgle grid 
case, and slightly more intense for the same value of the 
agitation parameters (M,S and f). Indeed, to understand how 
the laws (1) and (2) are altered in this ne’w configuration, one 
has to take into consideration the fact that the energy re- 
leased in the system per unit time E = u’~I(LIu’) = u’~/L by 
each grid is additive. Thus, at a given location in the box, the 
local effective dissipation per unit mass eeff writes 

ill. RESULTS 

The visualizations could be carried out according to two 
distinct operating modes. Either the tank was lit from behind 
by a white diffuse light, or the center of the box was made 
visual by a thick sheet of light produced through two slots 
positioned in front of each other on each side of the tank, 
perpendicuIar to the direction of observation (figure 2). In 
each case the flow was recorded by a CCD camera at a rate 
of 25 images per second. The first visualization mode (by 
transmission) offered only a small optical penetration depth 
in the medium which was rapidly opalescent at working 
bubble concentrations. This mode was thus appropriate for 
the observation of the surface activity in the immediate prox- 
imity of the wall of the tank (not more than 2 cm in depth). 

&,ff=&~+&~=--+- -z- 
Ll J52 

With the second visualization mode, we were able to 
concentrate on a region in the bulk of the tank 3 X 3 cm wide 
and, according to the width of the slots, 3 cm in depth. At 
that location from the grids (xm 12.5 cm), the integral scale 
L was about 2.5 cm. 

where E 1 and s2 are the contributions coming from each grid These two kind of investigations reveal rather contrast- 
at that location in the tank. ing situations. 

Close to the cerltral region near the midplane between 
the grids, the two integral scales L1 and L2 are, by symmetry 
since the two grids are identical, equal. In addition, since the 
integral scale is only a function of the geometry of the grid, 
it is, at this intermediate location, also equal to the one given 
for one grid by (2). Thus L1 = L2= L and it follows from (3), 
writing eeff as u$/L where U& is the effective turbulent 
velocity with two grids, that 

u&z 2 lf3u’ (4) 

if u’ is given by (1) for one grid. This is a slight increase. 
The main effect using two’ grids is the confidence that the 
central region of the box is fairly homogeneous and not bi- 
ased by a mean decrease. We have concentrated our obser- 
vations in this region. 
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FIG. 2. The two distinct visualization modes. The white arrows indicate the 
direction of light emission, the black arrows indicate the direction of obser- 
vation. (a) The tank is lit from behind and, because of the opalescence of the 
medium due to the presence of bubbles, the optical penetration depth was 
limited to about 2 cm in the immediate vicinity of the wall. This mode 
singles out the surface activity. (b) Light is emjtted through two slots posi- 
tioned here and there of the tank, perpendicular to the direction of observa- 
tion, thus producing a thick t -3 cm) sheet of light. In both cases, the 
visualization window was centered at x=== 13 cm from the bottom grid. 

A. Near wall activity 

The activity of the how at the walls is permanently sus- 
tained by the turbulent motions in the bulk of the tank. It is 
observed that large eddies impinge periodically at the wall 
with, most of the time, a preferential direction parallel to the 
wall, therefore inducing locally a shear that leads if the im- 
pingement is sufficiently violent, to a boundary layer insta- 
bility, enhanced by longitudinal stretch. This mechanism is 
made visible by the concentration of vorticity in the struc- 
tures resulting from this primary instability, and thus to the 
migration of bubbles in the depression cores. These struc- 
tures show up as elongated dark filaments on a white back- 
ground, since they correspond to high bubble concentration 
zones and are illuminated from behind (figure 3). Some of 
them exhibit a typical pattern of secondary instability in 
boundary layers, i.e. the evolution towards “lambda” shaped 
vorticies (figure 3b). The filaments systematically nucleate 
parallel to the wall, are rather longer than the local bulk 
integral scale L and can live up to 2 or 3 times the local large 
scale turnover time t(L) = L/u’. Since these surface events 
are quite frequent, it is possible to compute from a long 
sequence the statistics of the waiting times At between the 
appearance of two consecutive filaments in the visualization 
window (figure 4). Normalizing the waiting time At by t(L) 
as r=Atlt(L), the probability density function P( 7) is 
found to be fairly represented by an exponential decrease 
P(7)-eeU7, with a-0.5. 

The histograms of waiting times obtained in the configu- 
ration of rotating disks’7*‘8 exhibit also an exponential decay, 
typical of rare uncorrelated events for intervals 7 larger than 
a few units (the Poisson character of the distribution has 
been specifically established by Cadot et al.t7). When replot- 
ted in the non-dimensional coordinate T= Atlt( L), and as- 
suming t(L) = 2 rr/bL where !J is the angular velocity of the 
discs, the argument a found by Abry et al. is of the same 
order of magnitude as ours ( cr= 0.3) weakly varying with the 
Reynolds number. However, in the circular mixing layer con- 
figuration, the primary vortices, originating from the Kelvin- 
Helmholtz instability of the mean shear profile are as for 

FIG. 3. Surface filaments. The visualization window is 5 cm wide. The 
filaments, illuminated from behind, appear black on a white background. (a) 
Re= u’L/v = 2000. (b) Same conditions, large scaIe destabilization in a 
“lambda” shape, characteristic of boundary layer secondary instability. 

them perpendicular to the wall (this is also the reason why 
they are revealed by the pressure measurements at the wall 
performed by these authors). This numerical coincidence, to- 
gether with the fact that the average waiting time, but also 
the mean lifetime of the vortices,r7 scale with the large scale 
turnover time, could be an indication that these filaments are 
simply the signature of the existence of a primary instability 
production mechanism (free shear, boundary layer) in a re- 
gion of the flow rather than a spontaneous intensification of 
the vorticity of a smooth turbulent background. 

B. Bulk filaments 

In the center of the box, through a cubic window cover- 
ing a little bit more than one local integral scale (3 X 3 X 3 
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FIG. 4. Histogram of the waiting times between the appearance of consecu- 
tive filaments in the visualization window Af normalized by t(Lj, for two 
runs at Re=2200. The scatter among the points gives an idea of the error 
bars. Setting T=A.~/~(L). The probability density P(T) behaves as 
P(T)%“-. 

cm and L = 2.5 cm), the flow is characterized by a continuous 
smooth agitation revealed by smooth spatial fluctuations of 
the concentration of bubbles. Once in a while however [i.e. 
once every 100X t(L) approximately], a large scale coherent 
motion of fluid animated by a strong velocity difference of 
order U’ with respect to its nearby environment precedes the 
sudden formation of an intense, rapidly distorting and short 
lived filamentary aggregation of bubbles, showing up as a 
bright structure on a noisy dark background (in that case the 
medium is lit from the sides, figures 5a and 5b). The estima- 
tion of the magnitude of the velocity difference was made by 
comparing the position of the bubbles on two successive 
frames just before the formation of a filament. Considering 
the framing rate of the camera, the motion of the bubbles 
was slow enough so that their velocity could be estimated 
from their displacements by this procedure. The sizes of the 
filaments are most slightly shorter than L. but no definitive 
statement is possible because of the perspective effects asso- 
ciated to the random orientation of the filaments. After a 
complex transient period during which the vortex undergoes 
either a global bending due to the large scale reorganization 
of the background flow, or small scale instability of its core 
{wiggles), or both, the vortex disappears abruptly. Rarely are 
secondary or subsequent smaller filaments detected. The life- 
time of the bulk filament is found to scale with the integral 
scale turnover time t(Lj= L/u’ and represents roughly a 
quarter of this time scale, irrespectively of the turbulent Rey- 
nolds number for lOOO<Re<3000 (figure 6). We would like 
to emphasize at this point that, within this crude experimen- 
tal visualization technique of migrating bubbles, these ob- 
jects in the bulk are detected as rare events (at least com- 
pared to the surface ones) and that they seem to be attached. 
in lengthscale and timescale, to the dynamics of the largest 
structures of the flow. 

Needless, to say, invoking Plato’s Cavern Allegory, we 
are aware that our observations are probably very sensitive to 
and dependent on the visualization technique used. This 
technique definitely filters only the strongest events, that is 

FIG. 5. Bulk filaments. The visualization window is 3 cm wide. The fila- 
men) ts, illuminated from the sides, appear white on a dark background. (a) 
One grid configuration, Re= 1700. (b) Two grid configuration. Re=‘2200. 

(a) 

(W 

the filaments with a large peripheral velocity. If we estimate 
the peripheral velocity of the filaments we observe by U’ (see 
section IV and also Cadot et 01.‘~) and the viscous radius of 
the vortices as several units of the Kolmogorov scale (a 
lengthscale which compares to the diametkr of the bubbles), 
the migration time t, required for a bubble to reach the 
viscous core of the vortex starting froth an initial position, 
say, twice the vortex radius is provided by the balance of 
acceleration seen by the bubble ( rrd3/8) (Aplp) (dPldr) in 
the radial pressure gradient dPldr== plY”/4rr2r3 and the vis- 
cous drag for small air bubble? - 3 ad 77 (drldt) , if p de- 
notes the density of water, Apmp the difference of density 
between water and air, and l? the circulation of the vortex. It 
is found that ~,=+~OV/U’~. With u’-3X lo-’ m/s and 
v-0.4X 10m6 m”/s, the migration time t, is estimated to be 
of the order of 0.03 s, a time that compares to the inverse of 
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FIG. 7. Sketch of a possible scenario for the formation of intense vertical 
structures in turbulence. A velocity difference of order u’ is intermittently 
established over a scale S- \IvLlu’. Provided the Reynolds number 
Res= II ’ 6/v is large enough (> 100 typically), this shear layer destabilizes 
through a Kelvin-Helmholtz process to form a concentrated vortex of radius 
of order 8 and of circulation r-u’& The probability of occurrence of this 
scenario is, away from any permanent vorticity production mechanism 
(wall, permanent shear) of order $ e -“-7Re’16 with Re=n’Llv. 

1000 1500 2000 2500 3000 
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Re 

PIG. 6. Lifetime t, of the bulk filaments. (a) t, versus l/f, wheref is the 
oscillation frequency of the grid. (b) Lifetime resealed by the large scale 
turnover time t(L) = L/u as a function of Re. 

the framing rate of the camera (we indeed observe the for- 
mation of the filaments on a duration that does not exceed 
l/SO s). It is clear that, for a filament to be clearly identified 
as such, the separation between its formation time, typically 
given by t,, and its lifetime, typically given by 
0.25X t(L), has to be large. This simple effect naturally se- 
lects the filaments associated with vertical structures pertain- 
ing to the large scales. 

But we do emphasize, as well, that we observe only 
these large scale filaments. This leads us to some elementary 
considerations about their origin and their formation. 

IV. DISCUSSION 

We have already mentioned that the formation of a Ma- 
ment in the bulk was preceded by a large scale coherent 
motion of fluid at the same location in the flow. This finding 
provides us with a possible scenario for the origin of these 
events: suppose that a packet of fluid of typical size L hap- 
pens. intermittently, to present a motion of solid translation 
with respect to its environment, with a velocity of order 
u ’ . We set aside for the moment the estimation of the prob- 
ability of this event. This motion will, most probably, last for 
a time t(L) corresponding to the displacement time of the 
packet by a distance of its own size L, that is t(L)-L/u’. 

Subsequent to this relative motion, a diffusive shear layer 
forms around the packet (figure 7), whose thickness S scales 
as 

- 

Note that at this level of description of the phenomenon, 
the thickness 8 according to the above qualitative scenario is 
identical to an expression such that 8-m involving a 
large scale spanwise strain rate y==u’lL so that both inter- 
pretations may be valid. Now, this shear layer, experiencing 
a velocity difference U’ on a width 6 will, provided the Rey- 
nolds number Res= u’S/v is sufficiently large, destabilize 
via a classical Kelvin-Helmholtz process to form a roll-up 
vortex. The length of the vortex just after this primary insta- 
bility corresponds to the spanwise extent of the support of 
the shear layer, that is L, and the size of its viscous core is of 
order S, this object therefore shows up as a large aspect ratio 
filamentary structure of circulation r-2~~ ’ 6. This model 
is particularly sensitive to two points that might serve to test 
it. 

First, the growth rate of the Kelvin-Helmholtz instabil- 
ity of a shear layer whose thickness is controlled by diffusion 
is known to be strongly affected (i.e. damped) as soon as the 
Reynolds number Re8 is lower than about 150 (Betchov and 
SzewczykZ4). Note that Res is proportional to the square root 
of the turbulent Reynolds number Re= u/L/v and thus 
scales as Rx. The present experiments, with 
170<R,<300, have been performed just above this thresh- 
old and we also have to mention that no filament could be 
detected any more below Re= 1000 (Rx= 170). This would 
suggest that a critical turbulent Reynolds number has to be 
reached, corresponding to a critical microscopic Reynolds 
number Res (or, equivalently, Rh) for these filaments to be 
able to nucleate in the medium, the effect of viscosity being 
predominant below. This phenomenon could suggest that the 
structure of turbulence undergoes a continuous (second or- 
der) critical transition above Rh about a few hundreds25 sim- 
ply because of the damping action of viscosity on a Kelvin- 
Helmholtz instability, first and necessary step of the 
formation of filamentary concentrated vortices linking large 
to small scales, whose breakdown could be a sine qzza non 
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condition for the existence of an inertial range. This sugges- 
tion has to be moderated by the fact that the intense filaments 
are detected as rare events when in that case at least one 
filament per integral scale cubic volume L3 and per turnover 
time t(L) should be requested. This point could also be ad- 
vantageously clarified by numerical simulations.26 

Second, we have up to now said nothing about the prob- 
ability of realization of our scenario, which is essentially the 
probability of existence in the flow of a velocity difference of 
order of the large scale excursion U’ over a distance S con- 
trolled by diffusion effects, scaling like the Taylor microscale 
X as a function of Re [see equation (5)]. The PDF of velocity 
differences over such distances in the dissipative range 
Crl~7<30) are known to be broad, with exponential tails; if 
r.r denotes the root mean square value of the velocity differ- 
ence over a distance S, then the probability density to find a 
velocity difference of modulus u over this distance is given 
approximately, at Reynolds numbers Rh about a few hun- 
dreds, byZ7 

b 
“* gy e -bz with b-0.7, 

this expression being a fit of the PDF valid for ~23 o. (See 
also the simulations of Vincent and Meneguzzi” whose 
PDF’s fit precisely to this form at a similar Reynolds num- 
ber.) Let (r be computed by the Kolmogorov estimate 
a=u’(aILy; we see that our problem amounts to estimate 
the probability p for the veIocity increment u to be of the 
order of the large scale excursion u’ or more, across the 
separation distance 6. Since the PDF is a rapidly decreasing 
function of 14, the probability p is dominated by the lower 
bound of the integral 

thatispwie -b(U”V). With S- (vL/u’ ) “‘, this probability 
is therefore pw f e -“.7Re1’6=0.013 at Re= 1000 and 
p-O.008 at Re= 3000, in good agreement with our observa- 
tions: assuming that such an event is followed by the forma- 
tion of a filament, the probability to observe a filament dur- 
ing a period of observation t(L) in a box covering a cubic 
integral scale L” should be, according to the above reason- 
ing, of order l/100, and we indeed find that the appearance 
of a filament in the bulk occurs, in the mean, each 100 large 
scale turnover time t(L). 

It is clear that in the regions of the flow where our sce- 
nario is forced to occur most of the time, that is in the vicin- 
ity of a wall developing unstable boundary layers, or in an 
externally maintained shear, the probability of this favorable 
event for the formation of a filament becomes order unity 
[one filament per turnover time t(L)], as suggested by our, 
and other authors observations.15V’7 
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