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Abstract In this article, we study experimentally the
evolution of a vertical columnar vortex in a stratified fluid.

Three different measurement techniques are used. Particle

image velocimetry allows us to monitor the time evolution
of the characteristics of the vortex (Froude and Reynolds

numbers). Dye visualizations reveal the existence of an

instability for Froude numbers smaller than one, which
creates an undulation of the vortex centerline. Synthetic

schlieren visualization shows that the density structure of

the unstable mode is very similar to the structure found
recently numerically for the radiative instability of a

Lamb–Oseen vortex (Riedinger et al. in J Fluid Mech,

2010). The experimental stability diagram and unstable
wavelengths are compared with these numerical results. A

secondary instability associated with the presence of criti-

cal layers is also observed for Froude numbers larger than
one.

1 Introduction

Vortices such as the Lamb–Oseen vortex are considered as
coherent structures in homogeneous fluids, but in stratified

fluids they may be affected by the radiative instability as

we recently found in Riedinger et al. (2010). The aim of
this work is to provide an experimental evidence of such a

destabilization.

Kelvin (1880) showed more than a century ago that a
Rankine vortex (i.e. a patch of uniform vorticity) is stable

in a homogeneous fluid with respect to 3D perturbations.

However, it was shown only recently by Fabre et al. (2006)
that this statement is valid for a Lamb–Oseen vortex (with

a Gaussian profile of vorticity).

The effect of a stable vertical stratification was at first
thought to stabilize the flow, since it prevents vertical

motions. It is the case for the Kelvin–Helmholtz instability

(Drazin and Reid 1981) and the centrifugal instability of a
Taylor–Couette flow (Withjack and Chen 1974). But the

stratification can also lead to new instabilities such as the

zig-zag instability of a vortex pair (Billant and Chomaz
2000a, b) and the tilt-induced instability of a non-vertical

vortex (Cariteau 2005; Boulanger et al. 2008). It was also

recently shown numerically (Yavneh et al. 2001; Mole-
maker et al. 2001) and experimentally (Le Bars and Le Gal

2007) that the stratification can destabilize the Taylor-

Couette flow in centrifugally stable regions of the param-
eter space. This strato-rotational instability is associated

with a phenomenon of resonance of neutral boundary

modes (Yavneh et al. 2001; Le Dizès and Riedinger 2010).
In the absence of boundaries, Ford (1994) discovered

that a Rankine-like vortex is unstable in rotating shallow
water, by a mechanism of internal gravity wave emission.

This result was further extended for continuously stratified

flows by Schecter and Montgomery (2004) and Billant and
Le Dizès (2010). A similar result was also obtained by

Plougonven and Zeitlin (2002) in a slightly different

framework. Le Dizès and Billant (2009) analyzed the
mechanism of instability for arbitrary vortices using a

‘‘Wentzel–Kramers–Brillouin–Jeffreys’’ (WKBJ) approach

and obtained inviscid growth rate estimates for a Gaussian
vortex. These results were extended numerically in Rie-

dinger et al. (2010) for a large range of Reynolds numbers

and Froude numbers. In this paper, it was shown that the
most unstable mode is a helicoidal mode with a small

frequency, which is often called slow bending wave
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(Leibovich et al. 1986) or displacement mode, since it

translates the vortex filament as a whole. The goal of this
paper is to observe such an unstable mode in a controlled

experiment. The experimental set-up is described first in

Sect. 2.1. We show that it allows us to generate a single
vortex, which is characterized in Sect. 2.2. The description

of the instability is performed in Sect. 3, using both visu-

alization and schlieren techniques. The comparison with
the numerical results is done in Sect. 3.3. The case of large

Froude numbers for which the instability disappears is
treated in Sect. 3.4. A summary of the results is finally

provided in Sect. 4.

2 Generation of a solitary vortex

In this section, we describe the apparatus that is used to

create a single laminar vortex in a stratified fluid. Such an

apparatus has already been used in previous studies (Car-
iteau and Flór 2006; Boulanger et al. 2007). A particular

effort is made here to minimize the influence of other

distant vortices.

2.1 Experimental set-up

The experimental set-up is presented in Fig. 1. Experi-

ments are performed in a 1.50-m long, 0.75-m wide and

0.50-m high Plexiglass tank, which is filled with a stratified
fluid. The stratification is established by the two-tank

method, using fresh water in the first tank and salted water

with a density of 1,190 kg m-3 in the second tank. Two
stratifications are considered: a moderately strong linear

stratification over a height of 45 cm (leading to a Brunt-

Väisälä frequency N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#gozq=q0

p
¼ 2:09 rad s-1) and a

strong stratification over a height of 20 cm (leading to

N = 2.96 rad s-1). For the strong stratification, the linearly

stratified layer lies in between a top layer of 10 cm of fresh

water and a bottom layer of 15 cm of salted water, in order

to minimize boundary effects associated with the free
surface and the bottom of the tank.

The vortex is created by rotating impulsively a flap

(visible in Fig. 1) in the fluid initially at rest. The rotation
is performed by a computer-controlled step-motor. This

method has been used frequently in other studies (see

Thomas and Auerbach 1994; Cariteau 2005; Boulanger
et al. 2007) and is known to create a very laminar vortex.

However, this technique usually creates a stopping vortex
during the deceleration phase of motion of the plate, which

may interfere with the dynamics of the main vortex. To

minimize this effect, which can become important for long
times (t[ 120s), we had to modify the experiment. In

particular, the dimension of the plate was chosen larger

than in previous experiments: we used a 30-cm wide flap
instead of a 10-cm wide flap, such that the distance

between vortices is increased. Then, the motion of the flap

has been chosen carefully in order to minimize the circu-
lation of the stopping vortex. Starting from the motion used

in Boulanger et al. (2007), the law of motion has been

progressively modified and improved using particle image
velocimetry (PIV) measurements in a horizontal plane. The

motion law finally adopted for the angle h of the plate (in

radians) is:

0\h\0:94 : _h ¼ _Hmax
0:2164

hþ 0:0175
1# e#ð h

0:1222Þ
5=4

n o
ð1Þ

0:94\h\1:40 : _h ¼ _Hmax0:00403ð110# hÞ: ð2Þ

Figure 2 shows the resulting angular velocity _h of the

plate as a function of the angle and as a function of time.
The motion consists of a rapid acceleration followed by a

gradual slow-down up to the angle h = 1.40 rad

(corresponding to 80"). This law is optimized to create a
nearly Gaussian vortex and to avoid other parasitic

counter-rotating vortices up to a distance of 10 cm from

the primary vortex, as will be shown in the next section.
The circulation of the vortex is varied by modifying

the maximal angular velocity _Hmax between 0.02 and
0.09 rad s-1.

Particle image velocimetry measurements have been

done in a horizontal section at mid-height of the vortex. For
this purpose, the fluid has been homogeneously seeded

with small reflecting particles of diameter 10 lm (Spheri-

cel hollow glass spheres 110P8 from Potter Industries)
illuminated by a 3–5-mm thick laser sheet produced by a

170-mJ pulsed ND-Yag laser (Quantel). The density of the

particles is peaked around 1.1 kg m-3 and is distributed
between 1 and 1.2 kg m-3, i.e. on the range of densities of

the stratified fluid. They are introduced at the depth of the

laser sheet and diffuse in approximately 1 day on the whole
height of the tank. Image pairs are recorded by a digital

Fig. 1 Experimental setup used for the generation of the solitary
vortex. The camera records the position of the dye (for visualizations)
and the deformation of the screen (for Synthetic Schlieren)
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PIV camera (Roper Megaplus ES 4.0) triggered by the laser
pulses. The time interval between two PIV exposures is 20

or 40 ms. The time between two image pairs is 1 s, which

makes the data time-resolved because the flow evolves
slowly (over 40-80 s). The images are treated by an in-

house cross-correlation algorithm (Meunier and Leweke

2003). The accuracy of the PIV software is 0.1 pixel on the
displacement of the particles between the two images

(Meunier and Leweke 2003). This makes the relative error

on the velocity of the order of 2%, since the time interval is
chosen such that the mean displacement is of the order of

five pixels. More details on the PIV technique are given in

Boulanger et al. (2007).
The evolution of the vortex is measured through dye

visualizations. As showed on Fig. 1, Rhodamine B dye

mixed with water and a silicone paste (to make it thicker) is
painted on the edge of the plate, when the plate is above the

water. After the dye is dry, the flap is slowly immersed.

The disturbances created in the fluid are weak and have
totally disappeared after 5 min when the flap is moved. The

generation of the vortex creates a sheet of magenta dye,

which detaches from the edge of the flap and rolls up
around the vortex core. It is very efficient to obtain side

views of the vortex as a function of time. Images are

recorded using a Nikon camera D200 with a lens of
50 mm. As for PIV measurements, the frame rate of dye

visualizations and synthetic schlieren visualizations is

1 Hz.
Synthetic schlieren visualizations are made using the

method described in Sutherland et al. (1999). With this

purpose, a screen printed with black and white little dots is
pasted on the back of the tank (see Fig. 1). A digital camera

(Nikon D200) records images of the screen through the

tank during the experiment. The presence of density gra-
dients in the fluid contained in the tank creates deviations

of the light rays, since the refraction index is proportional

to the density gradient. Comparing the position of the dots

in the presence and in the absence of density gradients
gives a 2D field of the density gradient integrated along the

width of the tank. Different properties of the vortex can

thus be visualized, by looking at the vertical or horizontal
component of the density gradient. The algorithm used to

treat the images is a modified version of the PIV algorithm.

These synthetic schlieren visualizations can be made
simultaneously to the dye visualizations by treating only

the red component of the digital pictures, since the dye is

not visible in this component when the background is
white.

2.2 Vortex characteristics

Figure 3a shows a typical vorticity field obtained by PIV

measurements in a horizontal plane at mid-height of the
vortex. We can clearly identify an axisymmetric vortex,

which was created by a rotation of the flat plate (visible as

the thick black line). The vortex is almost motionless: it
moves with a velocity ten times smaller than the velocity of

the plate. It can be noted that there is no stopping vortex

with a vorticity larger than 0.4 s-1 (i.e. 10% of the
maximum vorticity of the primary vortex). In fact, there

is a weak stopping vortex, located at x = -7 cm and

y = -7 cm, i.e. 15 cm far from the primary vortex, and
its circulation was measured to be 10 times smaller than the

circulation of the primary vortex. This ensures that the

interaction of the primary vortex with possible stopping
vortices is weak enough, such that no elliptic or zig-zag

instabilities are present. In particular, our velocity field is

different from the field obtained by Cariteau and Flór
(2006) where the elliptic instability was the dominant

dynamical feature.

Figure 3b presents the radial profile of the mean azi-
muthal velocity vh. It is very well approximated by the

profile of a Gaussian vortex (Lamb–Oseen), whose azi-

muthal velocity is given by:

(a)
(b)

Fig. 2 Description of the
motion of the flat plate
generating the vortex for a
maximal velocity _Hmax ¼ 0:06
rad s-1. a Angular velocity of
the flap _h as a function of its
angle h. b Temporal evolution
of the angle h of the flap
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vhðrÞ ¼
C
2pr

ð1# e#r2=a2Þ: ð3Þ

This expression is used in a Matlab! program to make a

least-square fit of the vorticity field, in order to obtain the

evolution of the circulation C and of the core size a. This
procedure is very accurate for the circulation with an

uncertainty of 2%, but is less accurate for the core size,

with an uncertainty of the order of 5%, leading to an
uncertainty of 12% on the timescale 2pa2=C: The results of
this fitting for _Hmax ¼ 0:06 rad s-1 are given in Fig. 4a and

b. After the creation of the vortex (between t = 0 s and
t = 10 s), the circulation remains approximately constant

(within 5%): here, C ¼ 48 cm2 s-1. By redoing the

experiment with a different angular velocity of the plate,
we found that the circulation is proportional to the

maximum angular velocity _Hmax of the plate and is fairly

independent of the stratification and of the viscosity. This
leads to an empirical formula for the circulation of the

vortex C ¼ 769 _Hmax, if _Hmax is given in rad s-1 and C is in

cm2 s-1.
By contrast, the core size increases in time owing to the

viscous diffusion of vorticity. The square of the core size a2

increases linearly during the first 40 s, which is in agree-
ment with the evolution of the Gaussian vortex radius:

a2 ¼ a20 þ 4mt ð4Þ

where m = 0.0102 cm2 s-1 is the viscosity of the fluid.
After 40 s, the square of the core size increases faster due

to the presence of the instability, which will be described in
the next section. Considering all PIV experiments, we

notice that the initial core size a0 is independent of the

angular velocity _Hmax of the plate and of the stratification
(within the noise in the measurement) and is equal ap-

proximatively to a0 = 1.22 cm.

Now that the 2D velocity field of the vortex is correctly
known, we can define the non-dimensional parameters of

this base flow, which are the Reynolds number and the

Froude number. The Reynolds number is easily defined as

Re ¼ C
2pm

ð5Þ

and is almost independent of time as soon as the vortex is

created (t[ 15 s in Fig. 4a). However, the horizontal

Froude number, which is defined as

F ¼ C
2pNa2

ð6Þ

depends on time, since the core size a of the vortex

increases with time. The Froude number thus decreases

(a)

(b)Fig. 3 Description of the base
flow for _Hmax ¼ 0:06 rad s-1 at
t = 40 s. a PIV vorticity field
of the vortex. The plate is
showed as a black line in the
bottom left corner. b Mean
azimuthal velocity profile of the
vortex, obtained experimentally
(open circle) and by a fit (solid
line) with a Gaussian profile
defined by (3)

(a) (b)
Fig. 4 Temporal evolution of
the circulation (a) and of the
square of the core size (b) of the
vortex for _Hmax ¼ 0:06 rad s-1.
Symbols are obtained from a 2D
least-square fitting of the PIV
velocity fields. The dashed line
shows the viscous evolution (4)
for a Gaussian vortex
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with time for each experiment. For example, in an exper-

iment with N = 2.09 rad s-1, the Froude number decreases

from F = 1.5 at t = 20 s to F = 0.9 at t = 60 s. This
effect makes it difficult to compare the experimental results

with the numerical stability analysis obtained for a frozen

Lamb–Oseen vortex, that is for a = constant (Riedinger
et al. 2010). On the other hand, the time at which the

instability is observed gives a lower estimate of the Froude

number below which the flow becomes unstable.

3 Instability of a vertical stratified vortex

3.1 Dye visualization of a destabilization

Figure 5 shows a side view of the temporal evolution of the

vortex during an experiment, using the dye visualization
technique. At t = 0 s, the plate starts to move toward the

observer. At t = 10 s, the plate (still visible on the left of

the picture) has created a straight line of dye, which has
detached from the plate and marks the core of the vortex.

Between t = 20s and t = 40 s, the line of dye starts to

undulate, with an amplitude that grows very slowly in time.
Although this undulation remains weak, it is reproducible:

the time at which it appears and the wavelength do not vary

much from one experiment to the other, which proves that
it is not linked to residual motions in the tank. Moreover,

for the strong stratification case (for which the stratified

fluid column is sandwiched between two large homoge-
neous layers), the undulation of the vortex is visible only in

the stratified layer. This shows that this instability is

associated with the presence of the stratification. At
t = 50 s and t = 60 s, the growth of the undulation stops

and the deformation is not sinusoidal anymore, probably

due to the presence of harmonics. In most cases, the dye
line forms in fact a helical shape at late stages, although it

is not visible on these 2D photographs.

This deformation is the consequence of a weak desta-
bilization of the columnar vortex flow occurring in the

core. This structure is similar to the typical deformation

due to a displacement mode, also called ‘‘slow bending
waves’’ (Leibovich et al. 1986). This mode can become

unstable due to the interaction of several vortices in a
homogeneous fluid (Crow 1970) and in a stratified fluid

(Billant and Chomaz 2000a). It is striking to see that this

mode is unstable, even in the absence of a second vortex.
However, the growth rate is much smaller here than

for the zig-zag instability and it saturates at a lower

amplitude.
The wavelength of the undulation and the time of onset

of the instability are measured for each Reynolds number

and for the two stratifications that we have considered. The
results are compiled in Table 3.1 for a Reynolds number

varying from 360 to 960. For Reynolds numbers larger than

960, the vortex remains straight but the dye mark creates a
cloudy pattern, indicating that the vortex is turbulent. For

Reynolds numbers smaller than 360, the initial undulation

of the vortex does not grow in time. The wavelength seems
to be slightly increasing with the Reynolds number, but the

measurement of the wavelength is not very accurate, since

the deformation is weak and not perfectly sinusoidal. The
uncertainty is found to be of the order of 15% for the

wavelength. The time of onset of the instability seems also

to be increasing with the Reynolds number. This is sur-
prising because we would expect the instability to grow

faster at larger Reynolds numbers (Table 1). We will see in

Sect. 3.3 that it is in fact an effect of the Froude number.
The uncertainty on the time of onset is of the order of 10 s.

3.2 Synthetic schlieren visualization

Synthetic schlieren measurements were done simulta-

neously with the dye visualizations. An example of the
horizontal density gradient qq/qx is shown as pseudo-col-

ors in Fig. 6a at time t = 54 s and for Re = 600. The dye

is superimposed in black to the density gradient. The grey
area on the left of the image corresponds to the flat plate. It

is clear that the core of the vortex contains a sinusoidal

perturbation of the density gradient in the vertical direc-
tion. This perturbation is in phase quadrature with the

undulation of the vortex: the density gradient is maximum

or minimum (red or blue) between two peaks of the
undulation of the vortex centerline and not at a peak of the

undulation. This is exactly what is expected for a dis-

placement mode because the vorticity and the density are
in phase quadrature.

Fig. 5 Dye visualization of the destabilization of the columnar vortex
for Re = 480 and N = 2.09 rad s-1. The sideview images are taken at
t = 10/20/30/40/50/60s. The field of the view is approximately 45 cm
in height
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It can be noted that each central band of negative (resp.

positive) density gradient is surrounded by two bands of

positive (resp. negative) density gradient on each side. This
structure is once again in agreement with the structure of a

displacement mode, which is shown in Fig. 6b. It was

calculated numerically using the linear stability code of
Riedinger et al. (2010) at the same wavelength and Froude

number. The structure also corresponds to the isodensity

deformations of a tilted vortex because of the hydrostatic
equilibrium.

In this paper, we have shown that the displacement

mode also exhibits a spiral internal gravity wave structure
far from the vortex. However, the density gradient asso-

ciated with these internal waves far from the vortex is close
to zero as the radiated waves are almost horizontal. So we

have not been able to measure this wave structure. Some

internal waves have been observed inside the tank by
looking at the vertical density gradient. But they do not

seem to be related to the dynamics of the main vortex as

they are generated at the lower corner of the flat plate
during the creation of the vortex.

3.3 A radiative instability

We now try to understand why the undulation grows in

time. A first explanation would be that the bending of the
vortex is due to viscous effects at the bottom of the tank.

But the deformation would then be localized at the bottom

of the vortex and would not create a sinusoidal undulation
with two wavelengths affecting the whole vortex. We did

observe some deformations associated with boundary

effects for small Reynolds numbers but it could always be
differentiated from the growth of the vortex undulation

which, in our mind, is due to an instability.

In a stratified fluid, a vortex is known to be affected by
the so-called zig-zag instability when it is surrounded by

other vortices. In our first experiments when the motion of

the plate was not sufficiently optimized to avoid the for-
mation of a close stopping vortex, we did observe such an

instability. It was clear in the schlieren visualizations, but

the perturbation was mainly centered on the stopping
vortex and not on the main vortex. A growth of the per-

turbation on the main vortex was observed, but it occurred

clearly after the perturbation of the stopping vortex. After
optimization of the plate motion, we only observed a

unique perturbation, always centered on the primary vor-

tex. This was checked by simultaneous use of synthetic
schlieren and dye visualization. We therefore think that this

perturbation is not due to any trace of surrounding vorticity

but is instead the evidence of the radiative instability we
recently predicted (Riedinger et al. 2010). This instability

has been shown to affect solitary Gaussian vortices placed

in stratified environment. It can excite various modes, but
the most unstable mode for Re\ 1000 is the displacement

mode whose structure is in agreement with the experi-

mental observation. The numerical results are summarized
in Fig. 7, which shows the maximum non-dimensional

Table 1 Experimental parameters used for the different runs

_Hmaxðrad s#1) C (cm2

s-1)
Re F(t = 0) F(ti) k(cm) ti(s) ai(cm)

N = 2.09 rad s-1

0.03 23.1 360 1.18 0.67 9.1 28 1.62

0.03 23.1 360 1.18 0.7 21 25 1.58

0.04 30.8 480 1.57 0.86 18 30 1.65

0.05 38.4 600 1.97 0.94 14.6 40 1.77

0.05 38.4 600 1.97 0.77 16.8 57 1.95

0.06 46.1 720 2.36 1.12 20.9 40 1.77

0.07 53.8 840 2.75 1.04 16.8 60 1.98

0.07 53.8 840 2.75 1.16 20.5 50 1.88

0.08 61.5 960 3.15 1.19 21.7 60 1.98

N = 2.96 rad s-1

0.03 23.1 360 0.83 0.37 8.34 18 1.49

0.04 30.8 480 1.11 0.50 9.2 35 1.71

0.05 38.4 600 1.39 0.62 9.2 40 1.77

0.06 46.1 720 1.67 0.75 9.7 40 1.77

0.07 53.8 840 1.94 0.87 9.4 50 1.88

0.08 61.5 960 2.22 1 12 50 1.88

Wavelengths and instant of appearance of the undulation obtained
from dye visualization are also reported. The same angular velocity
may appear twice, meaning that the experiment has been done twice

Fig. 6 a Dye and synthetic schlieren visualizations of the instability
superimposed. Dark color corresponds to the dye and red (resp. blue)
color corresponds to positive (resp. negative) horizontal density
gradient. N = 2.09 rad s-1, t = 54 s, (Re = 600, F = 0.79). b
Horizontal density gradient obtained numerically for the displacement
mode at the same Froude and Reynolds number. The height of the
field of view is 34 cm
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growth rate r=ðC=ð2pa2ÞÞ of the radiative instability as a

function of Froude and Reynolds number. The unstable

band is centered around F = 1, which approximately cor-
responds to the experimental conditions. The growth rate

remains weak (\1% of the maximal angular velocity of the

vortex), which explains the slow growth of the undulation
in our experiments. To provide a more quantitative com-

parison between experiments and theory, we have indicated

with symbols on Fig. 7 the Froude and Reynolds numbers
at the time of onset of the instability. Almost all unstable

experiments fall into the unstable domain, although they

are mainly localized below the most unstable Froude
number. We have to recall that for each experiment, the

Reynolds number is fixed, but the Froude number slowly

decreases in time (as indicated by the arrow), starting from
an initial value located on the black line. This could explain

why the instability is visualized for Froude numbers

smaller than the most unstable Froude number, because the
Froude number has decreased by the time the undulation

has become visible. However, it would be difficult to

quantify the delay in the observation of the undulation
because it depends on the initial turbulence in the tank

before the experiment and on the orientation of the plane of

the undulation. This also explains why the instability
appears later at higher Reynolds numbers: the vortex

reaches the unstable domain later because its initial Froude

number is higher.
In Fig. 8, we plot the wavelengths k measured in the

experiment in dimensional units. The observed wavelength

always falls within the unstable band predicted numerically

(indicated as a grey area) except at low Reynolds numbers
where the growth rate of the instability was extremely

small. However, the observed wavelength is always larger

than the most unstable wavelength predicted numerically
(shown as solid lines). The discrepancy is small for the

strongest stratification (30%) but it is rather large for the

weakest stratification (by a factor two). This is not sur-
prising because the dimensional growth rate is smaller for

the weakest stratification. Indeed, the dimensional growth
rate is of order r ' 0:01C=ð2pa2Þ in the most unstable

region (i.e. where F ¼ C=ð2pNa2Þ' 1), which leads to

r & 0.01 N. It could be argued that the discrepancy comes
from the variation of the core size a and of the Froude

number in time which gives k = knd(F(t))a(t), where

knd(F) is the most unstable non-dimensional wavelength
obtained with the numerical code at a specific Froude

number F. But the two effects in fact balance each other

and lead to a very weak variation in the most unstable
wavelength. Indeed, we show numerically in Fig. 9 that it

varies by\15% during the first minute of the experiment.

However, even if the most unstable wavelength remains
constant, the structure of the unstable mode evolves during

the experiment and it might be less sensitive to the change

of a and F at large wavelengths than at small wavelengths.
This could explain the discrepancy.

3.4 Influence of a critical layer for F[ 1

We have observed a different structure at the beginning of

the experiments, for moderate and large Reynolds numbers
when F[ 1. This structure exhibits two thin vertical layers

of opposite sign density gradient (red and blue) on each

side of the vortex core. They can be distinguished in the
upper part of Fig. 10a. These vertical bands appear for high

enough Froude numbers and always merge toward the

center before disappearing when the Froude number
becomes smaller than one. They are probably related to a

critical layer which appears in the displacement modes for

F[ 1 (Riedinger et al. 2010) and which was also observed
in the dynamics of a tilted vortex (Boulanger et al. 2007).

Indeed as soon as F[ 1, the small frequency displacement

mode is known to possess a critical radius where the
angular velocity of the vortex is equal to the Brunt-Väisälä

frequency. At this critical radius, the vertical forcing cre-

ated by the displacement mode (or by tilting for a tilted
vortex) is in resonance with the Brunt-Väisälä frequency,

which generates a theoretical divergence of the vertical

velocity and of the density. In the linear regime, this crit-
ical layer is responsible for the damping of the mode for

large Froude numbers. In the experiments, the flow in the

critical layer becomes nonlinear and saturates. Due to the
variation of the Froude number, the critical radius moves

Fig. 7 Stability diagram of the radiative instability. Grey scale levels
correspond to the non-dimensionalized (using the maximal angular
velocity) growth rate of the instability found numerically for a
Gaussian vortex (Lamb–Oseen vortex). Symbols indicate the param-
eters at which the instability is observed experimentally for
N = 2.09 rad s-1 (open circle) and for N = 2.96 rad s-1 (open
diamond). The arrow shows the temporal evolution of the Froude
number during an experiment. The solid (resp. dashed) line gives
the Froude number at the beginning of the experiment for
N = 2.09 rad s-1 (resp. N = 2.96 rad s-1)
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inward during the experiment and disappears when F\ 1.

We suspect that the saturation of the flow in the critical

layer could delay the observation of the displacement mode
associated with the primary instability until the Froude

number gets smaller than one.

Otherwise, in the nonlinear regime, the critical layer can
also exhibit a different dynamic. In Boulanger et al. (2008),

it was shown that the strong shear that is created in the

critical layer can lead to a violent 3D instability when the
tilt angle of the vortex (which is here equivalent to the

amplitude of the displacement mode) is larger than Re-2/3.

In our mind, the horizontal lines of alternate density gra-
dients visible in Fig. 10b are the trace of such a secondary

instability. The small scale structures are organized in

bands and are present only for Reynolds numbers larger
than 960. We do not observe them in the experiments

presented in Figs. 7 and 8.

4 Conclusion

We have studied the evolution of columnar vortices for

Reynolds numbers\1,000 and for moderate Froude num-

bers in the range 0.2–2. Special attention has been paid to
create a single vortex, far from any other surrounding

vortex. This has allowed us to visualize for the first time

the radiative instability of a solitary vertical vortex in a

(a) (b)Fig. 8 Variation of the
dimensional wavelengths with
the Reynolds number. Symbols
correspond to experimental
measurements. Numerical
results are used to predict the
unstable band of wavelengths
for F = 1 (grey area) and the
most unstable wavelength along
time (solid line).
a N = 2.09 rad s-1,
b N = 2.96 rad s-1

Fig. 9 Temporal evolution of the most unstable wavelength, pre-
dicted numerically for two stratifications: N = 2.09 rad s-1 (solid
line) and N = 2.96 rad s-1 (dashed line). Re = 720

Fig. 10 Schlieren visualization of the critical layer obtained for
F[ 1 (a) and of its instability (b). Pseudo-colors correspond to
the horizontal (a) and vertical (b) density gradient. a Re = 600,
N = 2.09 rad s-1, t = 29 s. b Re = 1080, N = 1.6, t = 25s
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stratified fluid, which was theoretically predicted in Rie-

dinger et al. (2010). Dye visualizations and synthetic
schlieren visualizations have shown that it consists of a

displacement mode (or slow bending wave) as predicted by

the theory. The measured wavelength was found larger
than the most unstable wavelength predicted by the theory

but still within the theoretical instability band. Synthetic

schlieren visualizations have also revealed the presence of
a critical layer for Froude numbers larger than one which

could delay the undulation induced by the displacement
mode or be responsible of a secondary instability analo-

gous to the tilt-induced instability (Boulanger et al. 2008).

These results settle on the first experimental evidence
that a Gaussian vortex, which is known to be stable in a

homogeneous fluid can be destabilized in the presence of

stratification. This may have important consequences in
geophysical applications. Indeed, the small-scale atmo-

spheric cyclones can have Froude numbers of the order of

unity and large Rossby numbers and therefore be subject to
the radiative instability. Moreover, oceanic vortices shed-

ded behind coastal capes or promontories might also be

unstable via this mechanism. However, the growth rate of
this instability is weak so it is not clear whether this

instability will have time to develop in an evolving flow.

This instability is nevertheless a source of internal gravity
waves, which perhaps deserves to be considered in the

modeling of the upper atmosphere.
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