
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

This content was downloaded by: pubad

IP Address: 89.202.245.164

This content was downloaded on 06/10/2014 at 11:46

Please note that terms and conditions apply.

Spatio-temporal development of the pairing instability in an infinite array of vortex rings

View the table of contents for this issue, or go to the journal homepage for more

2014 Fluid Dyn. Res. 46 061405

(http://iopscience.iop.org/1873-7005/46/6/061405)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1873-7005/46/6
http://iopscience.iop.org/1873-7005
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Spatio-temporal development of the pairing
instability in an infinite array of vortex rings

H Bolnot1,2, S Le Dizès1 and T Leweke1

1Aix Marseille University, CNRS, Centrale Marseille, IRPHE UMR 7342, Marseille,
13384, France
2Aerodynamics Department, Airbus Helicopters, Marignane, 13725, France

E-mail: ledizes@irphe.univ-mrs.fr

Received 29 August 2013, revised 11 April 2014
Accepted for publication 17 April 2014
Published 3 October 2014

Communicated by Y Fukumoto

Abstract
In this paper, we study the linear stability of an infinite vortex ring array with
respect to the pairing instability, using a spectral code. The base flow solution,
obtained after a short relaxation process, is composed of rings with a Gaussian
azimuthal vorticity profile. The temporal stability properties are first obtained
and compared to the theoretical predictions obtained by Levy and Forsedyke
(1927 Proc. R. Soc. Lond. A 114 594–604). The spatio-temporal evolution of a
localized perturbation is then computed. The growth rate σ v( ) of the pertur-
bation in the frame moving at the speed v is obtained for all v. The variation of
σ v( ) with respect to the parameters of the flow is provided.

(Some figures may appear in colour only in the online journal)

1. Introduction

Vortex pairing is a process occurring in arrays of identical concentrated vortices, whereby
small perturbations of their initially equidistant positions are amplified in such a way that
neighboring vortices approach each other and group in pairs. It occurs, for example, in shear
layers, as a secondary instability of the Kelvin-Helmholtz instability (Winant and Bro-
wand 1974). Pairing is distinct from merging of two vortex cores of like-signed vorticity into
a single one, which occurs when the two initial vortices come sufficiently close to each other
(see, for example, Meunier et al 2005). Merging may take place during the late stages of the
pairing instability in arrays of real (distributed) vortices.

The pairing instability has been mainly studied in a two-dimensional (2D) framework for
infinite arrays of straight vortices. Von Kármán (1912) analyzed the stability of various
arrangements of point vortices. He found that single arrays, double symmetric or alternate
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arrays were all unstable whatever the spacing between the vortices. Interestingly, he found a

same maximum growth rate for all cases, equal to σ πΓ= ( )h4 2 where Γ is the circulation

of the vortices and h the vortex spacing along the array (Lamb 1932). Pierrehumbert and
Widnall (1982) and Brancher and Chomaz (1997) studied the effect of a finite core size in a
single array by considering the exact solution obtained by Stuart (1967). Pierrehumbert and
Widnall (1982) showed that the array could also be unstable with respect to three-dimensional
(3D) perturbations. Brancher and Chomaz (1997) analyzed the spatio-temporal development
of the pairing instability and described its absolute/convective character.

3D configurations were less studied, mainly due to the lack of analytic base flow solu-
tions. Levy and Forsdyke (1927) used a filament approach to analyze the stability of an
infinite array of ring vortices. It will be shown here that their results, obtained in the limit of
small core size, provide a good approximation of the numerical stability properties in a large
range of parameters.

The pairing instability is also expected to occur in the context of helical vortices formed
in the wake of wind turbines (Alfredsson and Dahlberg 1979), propellers (Felli et al 2011) or
helicopter rotors (Leishman 2006). Using a filament approach, Widnall (1972) predicted the
existence of instabilities in a single helical vortex. These instabilities are related to the 2D
pairing instability, as they possess a comparable growth rate. Widnallʼs work was further
extended to the case of multiple interlaced helical vortices by Gupta and Loewy (1974) and
Okulov (2004). Recent experiments and simulations attempt to evidence these instabilities in
realistic helical wakes (see Walther et al 2007, Ivanell et al 2010, Leweke et al 2013).

Since realistic wakes are (weakly) spatially developing, the stability properties obtained
for an infinite array of identical vortices, or for uniform helical vortices, can only be con-
sidered as ‘local’. The ideas developed by Huerre and Monkewitz (1990) have to be used to
connect the observed global behavior to the local stability properties of the wake. As
explained by Huerre and Monkewitz (1990), the ability of the perturbations to grow at the
place where they are generated (absolute instability) instead of being advected (convective
instability) is of particular interest, as this local property is often the signature of a global
transition of the flow. For instance, both the transition to the periodic regime in a cylinder
wake (Hammond and Redekopp 1997) and the transition to dripping in a capillary jet (Le
Dizès 1997) have been associated with the appearance of a region of absolute instability in the
flow. We suspect that the so-called vortex ring state (VRS) transition (MeijerDrees and
Hendal 1951), which is observed in the steep-descent regimes of helicopters, could be
interpreted in a similar way, and be related to the transition from convective to absolute of the
pairing instability of the vortices generated by the helicopter rotor blades. The present study,
which fully characterizes the convective/absolute nature of the pairing instability in a sim-
plified axisymmetric model of a rotor wake, can then be considered as the first building block
of a global theory explaining the VRS transition.

The paper is organized as follows. In section 2, the numerical tool and the flow para-
meters are introduced. In section 3, we describe the base flow solution and its properties. In
section 4, we first perform a temporal stability analysis of the pairing instability and compare
our results to the theoretical predictions of Levy and Forsdyke (1927). Then, a spatio-
temporal stability analysis is carried out following the approach of Brancher and Chomaz
(1997). The results are compared to the predictions obtained for point vortices.
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2. Framework

2.1. Description of the flow

We consider as base flow an infinite array of identical axisymmetric vortex rings of circu-
lation Γ , radius R and core size a, separated by a distance h in an incompressible fluid of
kinematic viscosity ν (see figure 1). The azimuthal vorticity profile of each ring is chosen to
be Gaussian, so the base flow is mainly characterized by the two scale ratios R a and h a, and

the Reynolds number Γ πν= ( )Re 2 of the system. The Reynolds number is assumed large,

so that the time evolution of the system associated with viscous diffusion can be neglected. In
practice, we freeze the base flow after a short relaxation process, needed to obtain a quasi-
steady solution, in order to perform the stability calculation. The parameters R a and h a are
assumed larger than 2, so that most of the vorticity remains confined within each vortex ring.
The stability of the base flow is analyzed in a frame of reference where the fluid is at rest at
infinity. We shall use as a characteristic spatial scale the separation distance h, and as a

characteristic time scale τ Γ= ( )h2 2 . As shown below, this time scale is related to the time

needed for the ring array to travel the distance h by its self-induced motion. In the following,
dimensionless variables are noted with a star.

2.2. Numerical details

In all the simulations, the flow is assumed to remain axisymmetric. It is governed by the
Navier-Stokes equations, which are written for the azimuthal vorticity and streamfunction in a

cylindrical domain θ( )r z, , . The spatial domain is discretized using a pseudo-spectral

method. In the axial direction, a Fourier formulation with equally spaced collocation points is
used, in order to ensure periodic boundary conditions. In the radial direction, a Chebyshev

polynomial formulation, together with a nonlinear mapping from −( )1, 1 to −∞ +∞( , ), is

used. As in Antkowiak (2005), the parity properties of the Chebyshev polynomials are taken

into account to limit the Chebyshev domain to ( )0, 1 and easily implement the boundary

conditions at the origin and at infinity. The nonlinear mapping, which is typically of the form
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Figure 1. Schematic representation of a vortex ring array and associated azimuthal
vorticity contours (in the (r, z) plane), computed by DNS for =R a 23 and =h a 6.4
at =Re 2000.
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with β = 7 for =R a 100, is chosen such that at least 16 radial collocation points are present

within the ring core − +( )R a R a, . Typically, 100 points are used in the radial direction and

h a16 points per period in the axial direction.
The time evolution of the flow is computed using a second-order Adams-Bashforth

predictor-corrector algorithm. The same code is used to get the base flow and to analyze its
stability. The base flow is obtained by integrating the full nonlinear equations in a box of axial
dimension h. The evolution of the perturbation is analyzed by considering the equations
linearized around the base flow. Except in section 4.3, where viscous effects are considered,
the Reynolds number is fixed to 2000. This value is large enough to guarantee that the viscous
diffusion of the vortex rings can be neglected in the perturbation analysis and that the stability
characteristics are close to the large Reynolds number limit.

3. Base flow calculation

No analytical solution of an array of vortex rings exists, so the base flow has to be computed
numerically. This is possible with the present DNS code, because the pairing instability can
be filtered out by considering a small axial domain with only one period. In such a small
domain, the imposed periodicity forbids the movement of one ring towards its neighbor, and
therefore inhibits the pairing instability.

3.1. Relaxation process

The simulation is started with a single vortex ring of core size ao and radius R, placed at
middle height of a box of size h, as initial condition. A Gaussian profile is chosen for the
azimuthal vorticity in the ring:

ω Γ
π

=θ
− − +⎡

⎣⎢
⎤
⎦⎥

a
e

4
. (2)( )

o

r R z ao
2 2 2

During the first instants, the vortex ring deforms owing to the effect of vortex images. As
explained by Le Dizès and Verga (2002), this process is a non-viscous relaxation process that
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Figure 2. Azimuthal vorticity contours of a vortex ring (a) at initial time and (c) after

the relaxation process at time Γ π =( )t a2 90o
2 . (b) The corresponding evolution of the

local ellipticity for =R a 100o , =h a 6o and =Re 2000.



mainly depends on the initial vorticity profile. For a Gaussian profile, the relaxation process is
particularly fast. It can be characterised by plotting the local ellipticity ϵi of the streamlines
near the vortex center. As shown in figure 2(b), the local ellipticity relaxes to a mean value
which evolves on a slower viscous time scale. The relaxed state has typically the form
illustrated in figure 2(c): its vorticity contours have been elliptically deformed with a large
principal axis aligned with the z-axis when <h R. It continues to evolve but on a viscous time
scale. The azimuthally averaged vorticity profile in the ring remains Gaussian, and its radius
is found not to vary: =R Cst. As long as the vortices are well-separated, the time evolution is
mainly associated with the growth of the core size, which follows the viscous law:

ν= +a t a t( ) 4 . (3)o
2

3.2. Core size measurement

When the vortex rings are close to each other (small h a), a small part of the vorticity is
advected away, which may affect the measurement of the core size. In figure 3(a), we show
that when the core size is computed from the second-order moment of vorticity,

∬
∬

ω

ω
=

− + − θ

θ

( )
a

r r z z r z

r z

( ) ( ) d d

d d
, (4)

c c
2 2

where rc and zc are, respectively, the radial and axial position of the centroid of vorticity, a
departure from the viscous law (3) is observed when <h a 15. The second-order-moment
formula tends to overestimate the core size. This effect can be associated with the advection
of some vorticity away from the vortex core during the relaxation process. Although the
quantity of vorticity (circulation) pulled away is not visible, it has a large impact on the
second-order moment. However, the vortex core is almost not modified. Another definition of
the core size, which is not affected by events occurring far away from the vortex, could then
be more appropriate.
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Figure 3. Time evolution of the core size of the vortices ( =R a 100o ) measured by (a)
the second-order moment of vorticity for =h a 7o (dots), 10 (dash-dot) and 15 (dash)
and (b) a Gaussian fit of the vorticity field (dash) and the maximum of the azimuthally

averaged velocity profile (dots) for =h a 7o . The viscous evolution, ν= +a a t4o
2 , is

plotted in solid lines on both figures.



In figure 3(b), we have plotted the evolution of the core size using two other definitions:
1) one involving the position rmax of the maximum of the azimuthally averaged azimuthal
velocity (using =a r 1.12max for a Gaussian vortex); and 2) the core size obtained from a
Gaussian fit of the azimuthally averaged vorticity profile. As observed, these curves are much
closer to the viscous prediction than the second-order moment curve. They are both below the
theoretical prediction, which is not surprising since some vorticity has been stripped away.
Note, however, that the difference remains smaller than 2%. In the following, we shall use the
viscous prediction to estimate the core size of the vortex after the relaxation process. The
above consideration demonstrates that this provides a reasonable estimate of the core size.

3.3. Advection speed

The fluid is at rest at infinity, but the vortex ring array is moving at constant speed in the axial
direction. This advection velocity mainly depends on the geometrical characteristics h a and
R a of the system. Using an inviscid filament approach, Levy and Forsdyke (1927) provided
an expression for the advection speed of the form = +v U Vadv , where U is the self-induced
velocity of a single vortex ring and V is the velocity induced by all the other rings:

Γ
π

= −
⎛
⎝⎜

⎞
⎠⎟U

R

R

a4
ln

8 1

4
, (5)

R

∑Γ
π

α α α= −
=

∞ ⎡⎣ ⎤⎦( ) ( )V
R

K E
4

. (6)
n

k k k

1

2 2

In (6), K and E are the complete elliptic integrals of first and second kind, respectively

(Abramowitz and Stegun 1970), and α = +
−⎡⎣ ⎤⎦( ) ( )kh R1 2k

2 2 1 2

. The self-induced velocity

U depends on the rings’ vorticity profile. The above expression is valid for rings with constant
vorticity (Rankine vortex of radius aR). As shown by Widnall et al (1971), this expression can
be modified to account for a different vorticity profile and the presence of an axial flow, by
replacing aR by an equivalent core size ae defined by

= · − +a a e , (7)e
X Y1 4

where a is a characteristic variation length scale for the azimuthal and axial velocity fields ϕv

and vx within the vortex, and

∫ ∫π
Γ

ρ π
Γ

= ¯ ¯ ¯ − = ¯ ¯ ¯
ρ

ρ

ϕ→∞

∞⎡
⎣⎢

⎤
⎦⎥X rv r r

a
Y rv r rlim

4
( ) d ln and

8
( ) d . (8)x

2

2
0

2
2

2
0

2

We recover =a ae R for a Rankine vortex and obtain ≈a a1.36e for a Gaussian vortex
with a defined by (4) (Leweke and Williamson 2011). This leads, for a Gaussian vortex
without axial flow, to the expression given in Saffman (1992) for the induced velocity:

Γ
π

= −⎜ ⎟⎛
⎝

⎞
⎠U

R

R

a4
ln

8
0.558 . (9)

This expression is used in the following.
When both R h and R a are large, the advection velocity reduces to Γ∼ ( )v h2adv which

is the value obtained for a double row of straight identical vortices (Von Kármán 1912). In
figure 4, we compare the advection velocity computed numerically with the theoretical
predictions. As expected, we observe that Levy and Forsdykeʼs formula provides a good
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estimate of vadv when h a and R a become large. We also note that the 2D limit is recovered
for the largest R a.

4. Stability analysis

In this section, we analyze the evolution of linear perturbations to the base flow obtained in
the previous section. As mentioned above, for this purpose, the Navier-Stokes are linearized
around a base flow frozen after the end of the relaxation process. The weak diffusion of the
base flow is then neglected and therefore, in the frame moving at the advection speed of the
rings, the base flow solution is stationary. This simplification guarantees that perturbations
can be sought in the form of temporal modes (proportional to ωei t, where ω is a complex
frequency), and that we can define a maximum growth rate σ ω= −[ ]max imag ( )max . This

simplification is also justified on a physical ground, since our goal is to apply the results to
flows with a much larger Re, where viscous diffusion is indeed negligible. Note, however,
that we still include the effect of viscous diffusion on the perturbations, but this effect is small
for =Re 2000, because of the inviscid nature of the pairing instability. We first consider the
temporal stability characteristics by searching the most unstable temporal normal mode. Then,
we analyze the spatio-temporal development of the perturbations by considering a localized
initial perturbation.

4.1. Temporal evolution

The temporal stability of an infinite vortex ring array has been studied theoretically by Levy
and Forsdyke (1927) using a filament approach. They have obtained a formula for the growth
rate of the pairing instability for uniform-vorticity rings. This formula is given in appendix A,
together with a more general expression to account for a different vortex profile and the
presence of vortex stretching.

The theoretical formula for the pairing instability growth rate is plotted and compared to
the numerical results in figure 5. The latter are obtained by considering the time evolution of
perturbations initiated for a white-noise initial condition in a box of height h2 . At sufficiently
large time, the most unstable mode corresponding to the pairing instability emerges, and its
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Figure 4. Advection speed Γ= ·* ( )v v h2adv adv of a vortex ring array as a function of
the vortex spacing for radii ≃R a 4.6, 9.2, 13.8 and 92.1 (from top to bottom).
Theoretical predictions (lines) of Levy and Forsdyke (1927) and numerical calculations
(♦) at =Re 2000.



growth rate can easily be estimated. The maximum growth rates are plotted as functions of
h a and h R in figure 5. In figure 5(a), we observe good agreement between the numerical and
analytical predictions for >h a 10. For < <h a4 10, there is a visible effect of the core
size: the theoretical predictions systematically underestimate the numerical results. When

<h a 4, a strong fall of the numerical growth rate is observed. This behavior may be not
relevant, since the base flow never really reaches a quasi-stationary state for such small values
of h a. It is worth mentioning that for small h R Levy and Forsdykeʼs prediction is very close

to the 2D prediction *σ π= 2 obtained for point vortices. This 2D result therefore provides a
very good estimate of the numerical growth rate for large R a (typically >R a 25), if h R is
smaller than 0.5. This is important for applications involving helicopter or wind turbine
wakes, which are typically in this range of parameters.
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Figure 5. Comparison of the temporal growth rates calculated by Levy and Forsdyke
(1927) (solid lines) and the numerical simulations (symbols) for =R a 4.6, 9.2, 13.8
and 92.1 (from bottom to top), as a function of (a) h a and (b) h R. The dashed red line
represents the 2D point vortex prediction σ π=* 2max .

Figure 6. Vorticity contours of the linear perturbation superimposed on the base flow,

as a function of time Γ=* ( )t t h2 2 for =h a 6, =R a 92.1 and =Re 2000. The
amplitude of the perturbation is renormalized in each plot for presentation purposes.



4.2. Spatio-temporal evolution

In order to analyze the spatio-temporal development of the perturbations, the domain of
simulation is extended to at least h30 along the axial direction. The simulation is started with
a localized initial condition in the form of a Gaussian envelope for the streamfunction per-
turbation. The size and location of the initial perturbation have been varied. It cannot be made
too small, owing to our finite spatial resolution. A good choice was found to be a perturbation
of size a 2, placed close to the middle point between two rings. Such an initial perturbation
gives rise to a wave packet growing in time and in space, as illustrated in figure 6.

From the axial velocity signal, a mean amplitude of the wave packet is extracted along

each ray * * *=z v t for a fixed speed *v , following the procedure used by Brancher and
Chomaz (1997). We filter out all axial wavenumbers higher than π h2 and use the Hilbert
transform to obtain an amplitude at each radial position. A mean amplitude is then obtained
by taking the average over all r. As explained by Brancher and Chomaz (1997), this pro-
cedure avoids a Floquet analysis and readily provides, after having waited for a sufficiently
long time, an amplitude which grows exponentially in time on any ray propagating at a speed

between two critical values, *
−v and *

+v . A typical evolution of the amplitude in this regime is

illustrated in figure 7(b). For each value of * * *=v z t , one obtains a measure of a (temporal)

growth rate * *σ ( )v . In practice, the simulation is stopped when the wave packet has reached

an asymptotic regime but before its width exceeds half the height of the domain in order to
avoid mirror effects due to the periodic boundary conditions.

In all cases, the maximum of * *σ ( )v is reached at * ≈v 1 and is close to the maximum

temporal growth rate, as expected. The growth rate * *σ ( )v has been obtained as a function of

the different parameters (R a, h a) of the system. The results are plotted in figure 8(a) for a
large ratio =R a 92.1 for different values of h a. This figure shows that, when the growth

rate is normalized using Γ ( )h2 2 , * *σ ( )v becomes almost independent of h a for >h a 5.
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Figure 7. (a) Spatio-temporal evolution of the axial velocity perturbation u r z( , )z and its
envelope (bold lines) at r = R as a function of the axial coordinate ( =*z z h) and time

( Γ=* ( )t t h2 2 ) for =h a 4.6, =R a 92.6 and =Re 2000. (b) Example of the

amplitude evolution for a particular value of *v , represented on a log scale for graphical
convenience.



For small values of h a, the growth rate becomes significantly smaller. For the smallest value
that we were able to consider ( ≈h a 3.7), the vortices are so close that they almost form a
shear layer. The dashed red line in figure 8(a) represents the theoretical prediction for a double
array of point vortices, which corresponds to the limit of large R a and large R h. As written
in Lamb (1932) [section 156], the dispersion relation for 2D perturbations of wavenumber k
in such a flow is given by:

σ Γ
π

= −⎜ ⎟⎛
⎝

⎞
⎠( )k

h
k

kh

2
1

2
(10)D2

As explained by Huerre and Monkewitz (1990), the growth rate of the wave packet moving at

the group velocity v is then given by σ ( )k v( )D o2 , where k v( )o is defined by

σ∂
∂

=( )
k

k v. (11)D
o

2

In terms of our non-dimensional variables, we then obtain:

σ π= −* * * *( ) ( )v v v
2

2 . (12)D2

As observed in figure 8(a), this theoretical prediction provides a very good estimate of the

numerical results. Note in particular that for ⩾h a 7, the critical speeds *
−v and *

+v of the
wavepacket are very well predicted by the point vortex theory: the rear of the wave packet
stays in the vicinity of the initial perturbation location, whereas the front propagates at about
twice the characteristic convection speed.

The variation of *
−v , *

+v and *vmax with h a is shown for different values of the ratio R a in
figure 8(b). We note that R a has to be of order 5 or smaller to observe any effect. As

mentioned above, the instability is weaker for small values of h a, so *
−v increases and

*
+v decreases.

In the absolute/convective terminology (Huerre and Monkewitz 1990), the results can be

interpreted as follows. In any frame moving at a speed within the interval * *
− +( )v v, , the
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Figure 8. (a): Growth rate of the wave packet envelope as a function of the group
velocity *v for ≃h a 4, 5, 7, 8, 10, at =R a 92.1 and =Re 2000. The analytical
prediction for straight vortices in the two-dimensional case (equation (12)) is plotted
with a red dashed line. (b) Values of ▾*

−v ( ), ▴*
+v ( ) and ♦*

σ σ=* * ( )v
max

versus h a
for =R a 13.8, 46, 92.1.



wavepacket grows at the place it has been created, the instability is therefore absolute. In the
other cases, the wavepacket moves away as it grows, the instability is convective.

4.3. Reynolds number effects

In the previous sections, the Reynolds number was fixed at a value of 2000. In this section,
the effect of viscosity on the stability results is assessed. The results are summarized in
figure 9. In figure 9(a), we see that the maximum temporal growth rate is less than 1% from
the inviscid limit for >Re 300. In figure 9(b), no visible effect on the three characteristic

velocities *
−v , *

+v and *vmax is observed as the Reynolds number is varied from Re between 100
and 2000. These plots have been obtained for a given set of parameters. We have tried other
values of R a and h a and similar observations have been made.

The conclusion is that the dependence on the Reynolds number of the stability properties
becomes negligible for Re above a few hundred. This is not a surprising result, since the
mechanism of instability is non-viscous and therefore marginally affected by viscosity when
the Reynolds number is sufficiently large. All the results obtained for =Re 2000 can be
considered as almost inviscid.

5. Conclusion

In this paper, we have analyzed the stability properties of an infinite array of vortex rings with
a Gaussian vorticity profile. Finite core sizes have been considered in order to extend previous
results obtained by Levy and Forsdyke (1927). We have first considered the base flow and
computed the advection velocity of the vortex system for various R a and h a. Good
agreement with the theoretical results was found for large R a and h a. The temporal stability
properties of the pairing instability have been computed, and the effect of the different
parameters has been analyzed. An effect of the finite core size has been evidenced for small
R a or small h a. The spatio-temporal development of the pairing instability has also been
considered. An important result is that, as soon as R a is larger than 10 and h a larger than 7,
the development of the instability is almost independent of these parameters when h and

Γh2 2 are chosen as spatial and temporal scales. In these cases, the growth rate * *σ ( )v of the
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Figure 9. Evolution of (a) the maximum growth rate σ*
max and (b) velocities ▾*

−v ( ),
▴*

+v ( ) and ♦*
σ σ=* * ( )v

max
as a function of the Reynolds number for =h a 6

and =R a 46.



most unstable perturbation along the ray * * *=z v t is very close to the theoretical formula
(12) obtained for an array of points vortices. The effect of viscosity has also been analyzed
and shown to have no visible impact on the stability properties for >Re 300.
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Appendix. Temporal growth rate expression

In this section, we provide the temporal growth rate formula obtained by Levy and Forsdyke

(1927). Using our notation and the normalization by Γ ( )h2 2 , their expression can be written

(after having corrected the misprint appearing in their expression of B) as

σ
π

= + + −* ( )h

R
C G C H B2 , (A.1)o

2

2

with
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2
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2 1 2

The functions K and E are the complete elliptic integrals of the first and second kind,
respectively (Abramowitz and Stegun 1970, p. 590). The term Ho is associated with the radial
variation of the self-induced velocity of a single ring: =H dU dRo . Levy and Forsdyke
(1927) gave its expression for a ring with a uniform vorticity profile, which in our notation
reads

= −⎜ ⎟⎛
⎝

⎞
⎠H

R

a

1

2

5

4
ln

8
. (A.6)o

As mentioned in section 3.3, an expression for U can be obtained for any type of vortices
by considering an equivalent radius ae, as defined by (7). Moreover, the vortex ring is subject

to vortex stretching. Therefore a is expected to vary with respect to R as −R 1 2, in order to
conserve the total circulation. This effect was not considered by Levy and Forsdyke (1927). It
adds a constant 1 2 in the parenthesis such that
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= −
⎛
⎝⎜

⎞
⎠⎟H

R

a

1

2

7

4
ln

8
, (A.7)o

e

which now takes into account both the change of the vorticity profile and the effect of vortex
stretching.
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