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AND STÉPHANE LE DIZÈS
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The structure of a columnar vortex in a stably stratified fluid is studied experimentally
and theoretically when the vortex axis is slightly tilted with respect to the direction
of stratification. When the Froude number of the vortex is larger than 1, we show
that tilting induces strong density variations and an intense axial flow in a rim
around the vortex. We demonstrate that these characteristics can be associated with a
critical-point singularity of the correction of azimuthal wavenumber m =1 generated
by tilting where the angular velocity of the vortex equals the Brunt–Väisälä frequency
of the stratified fluid. The theoretical structure obtained by smoothing this singularity
using viscous effects (in a viscous critical-layer analysis) is compared to particle image
velocimetry measurements of the axial velocity field and visualizations of the density
field and a good agreement is demonstrated.

1. Introduction
Small intense vortices, characterized by large Froude and Rossby numbers, are

present in both the atmosphere and the ocean. The goal of the present paper is to
determine their structure when the vortex axis is slightly tilted with respect to the
direction of stratification.

In the atmosphere, the dynamics is often governed by large-scale motion induced
by the baroclinic instability of thermal fronts. However, secondary instabilities have
also been evidenced (Neiman, Shapiro & Fedor 1993) and they may lead to the
formation of small intense cyclones (Polavarapu & Peltier 1993; Garnier, Métais &
Lesieur 1996). These vortices are often too small to be described by meteorological
models, but they can be very damaging during strong storms (Lesieur, Métais &
Garnier 2000). Understanding the dynamics of these structures constitutes one of
the motivations of this work. The most intense of these structures are columnar
vortices with large Froude numbers (their maximum angular velocity is larger than
the Brunt–Väisälä frequency of the fluid). We think that the analysis performed in
this paper could provide some information on their dynamics, when their axis is tilted
with respect to the direction of stratification.

Vortices are also observed in the ocean. For instance, they can form close to islands
or near headlands by a barotropic instability of the flow generated by the tide. The
resulting vortices are generally strongly tilted owing to the weak slope of coastal
regions (Pawlak et al. 2003) and it has been argued that this could be the cause of
intense vertical mixing (Farmer, Pawlowicz & Jiang 2002). Here, we shall see that,
if the vortices are sufficiently intense, tilt angle need not be important in inducing
strong vertical displacements.
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The effect of a stable stratification on the dynamics and stability of vortices has
been the subject of numerous works. The inviscid criteria for two-dimensional shear
instability and centrifugal instability are not affected by stratification (see for instance
Hopfinger & van Heijst 1993). However, other instabilities usually active when several
vortices interact are modified: the elliptic instability is stabilized (Kerswell 2002) and
the Crow instability is replaced by a new zigzag instability (Billant & Chomaz 2000)
when the stratification is sufficiently strong. For a single vortex with a large Froude
number, Cariteau & Flór (2003) also reported a new instability characterized by a rim
region of strong vertical mixing, but they did not propose any instability mechanism
(see Cariteau 2005). We shall argue below that this instability was probably due to a
misalignment of the vortex axis with the direction of stratification.

As far as we know, the effects of vortex tilting have not been studied in the
laboratory. When the vortex axis is tilted with respect to the direction of stratification,
the azimuthal symmetry of the vortex is broken and non-axisymmetric corrections of
azimuthal wavenumber m =1 are created. For large Reynolds numbers and Froude
numbers greater than 1, we shall see that these corrections are characterized by strong
density variations and intense axial flow near a particular radial location. We shall
associate this location with the critical-point singularity where the angular velocity
of the vortex is equal to the Brunt–Väisälä frequency of the fluid. These singularities,
which appear in the inviscid description of linear perturbations, are known to play
an important role in shear instabilities (Drazin & Reid 1981; Maslowe 1986), and
internal wave propagation (e.g. Booker & Bretherton 1967). They have also been
shown to be present in the analysis of the deformation of a vortex by a rotating strain
field (Le Dizès 2000). In this case, the critical-point singularity occurs in the m = 2
azimuthal correction at the location where the angular velocity of the vortex is equal
to the angular frequency of the strain. Le Dizès (2000) showed that the singularity
can be smoothed by introducing either viscous or nonlinear effects in the critical-layer
region as for planar shear flows.

The theoretical description of the correction induced by tilting will be obtained
by a similar method. We shall demonstrate that the characteristics obtained by
smoothing the critical-point singularity with viscous effects allows the reproduction
of the experimental observations and measurements.

The paper will be organized as follows. In § 2, the experimental set-up is presented
and the characteristics of the vortices when the axis is not tilted are discussed. In
§ 3, experimental evidence for the critical-layer region is given and the theoretical
framework is introduced. In § 4, the viscous critical-layer analysis is performed and
the theoretical predictions for axial flow velocities are compared to particle image
velocimetry (PIV) measurements. In the last section, the main results of the paper are
briefly summarized. We also introduce the instability which develops in the critical-
layer region and which is the subject of a companion paper (Boulanger, Meunier &
Le Dizès 2007).

2. Experimental set-up and base flow
2.1. Experimental details

The experimental set-up is represented schematically in figure 1. The experiments are
performed in a 1.50 m long, 0.75 m wide and 0.50 m high Plexiglas tank. The tank is
filled with linearly stratified fluid up to a height of 0.45 m. The linear stratification is
established by the two-tank method, using clear water in the first tank and salt water
with a density varying between 1100 kg m−3 and 1190 kg m−3 in the second tank. The
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Figure 1. Experimental set-up. The rotation of the grey plate around its upper edge
generates a vortex inclined at an angle α with respect to the vertical.

density gradient is deduced from density measurements of small samples of fluid every
5 cm, using a densitometer Anton Paar DMA 35N with an accuracy of 0.1 kg m−3.
By varying the effective depth of fluid between 0.2 m and 0.45 m, we have been able
to obtain a Brunt–Väisälä frequency ranging from 1.5 rad s−1 to 3 rad s−1. For small
depth of fluid, a uniform layer of maximal density (1190 kg m−3) and 0.10 m thickness
was added under the linearly stratified fluid in order to avoid bottom effects.

The vortex is created by impulsively rotating a flap in the fluid initially at rest. This
generates a two-dimensional shear layer detaching at the edge of the flap and rolling-
up in a vortex. This method is convenient since it creates a laminar two-dimensional
vortex. It has been used frequently for the study of three-dimensional instabilities
(Crow, elliptic, zigzag or centrifugal) of vortices (see Leweke & Williamson 1998;
Billant & Chomaz 2000; Meunier & Leweke 2005). In our set-up, the flap is made
of aluminium and has dimensions 0.1 × 0.6 m2, and is sharpened at its free edge,
i.e. where the shear layer detaches. It is rotated by a computer-controlled step-motor
as in Meunier & Leweke (2005). The motion of the flap has been chosen carefully,
through empirical improvements, to create a nearly Gaussian vortex, and to avoid
roll-up instabilities (Kelvin–Helmholtz instabilities of the shear layer) and stopping
vortices. The motion profile (angular velocity as function of angle in degrees) that
was finally adopted is

Θ̇ = Θ̇max

0.42

Θ + 0.017

[
1 + e−(Θ/0.26)5/4]

, (2.1)

and consists of a rapid acceleration of the flap, followed by a gradual slow-down
up to the angle of π/2 rad. The circulation of the vortex is varied by modifying the
maximum angular velocity Θ̇max between 0.01 and 0.5 rad s−1. The inclination of the
vortex is obtained by tilting the flap with respect to the vertical in the initial plane of
the flap (see figure 1).

Quantitative measurements of velocity fields are obtained by PIV. The flow is
seeded with particles of variable density so that they are homogeneously distributed
through the whole depth. We have used Sphericel hollow glass spheres 110P8 (Potter
Industries), with a density of approximately 1.1, and a diameter ranging from 11 to
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18 µm. The particles are illuminated by a luminous sheet of 3–5 mm thickness, created
by a continuous 5 W argon-ion lasr. Image pairs are recorded by a digital PIV camera
(Kodak Megaplus Es 4.0) with a resolution of 2048 × 2048 pixels at a rate of 5 fields
per second, and treated by a cross-correlation algorithm (Meunier & Leweke 2003).

Measurements have been made in three different planes. The first one is perpendi-
cular to the vortex axis and provides the characteristics of the initial vortex. The other
two planes correspond to two orthogonal longitudinal planes, one plane being vertical
(θ = 0) and the other being tilted (θ = π/2) (figure 1). In the vertical longitudinal plane,
the vortex appears tilted in the images, whereas in the tilted longitudinal plane, the
vortex appears vertical in the images. The displacement of the flap also induces a
weak background velocity field which slowly moves the vortex away from the flap.
This slow translating movement is used to scan the complete vortex volume without
moving the plane of measurement. It allows the determination of the axial component
of the velocity field in the whole three-dimensional space.

Shadowgraph visualizations were also carried out, to observe the two-dimensional
and three-dimensional spatial distribution of density inside the vortex. For this
purpose, the stratified fluid is illuminated by a large beam of parallel light, created
by an intense light placed behind a small diaphragm located 2 m from the tank. Since
the refraction index of the fluid depends on its density, the rays are bent toward the
larger densities. To first order, the rays are thus deviated toward the floor. To second
order, they will be deviated according to the spatial distribution of density inside the
vortex. By placing a large lens (of diameter 0.3 m and of focal distance 0.5 m) behind
the tank, it is thus possible to obtain an image of the density distribution. These
images are recorded by a 2000 × 2000 pixels grey-scale camera located behind the
focal point of the lens. For better visualizations, a small disk of 1 mm diameter has
been positioned exactly at the focal point of the lens. This process, called strioscopy,
allows us to mask the rays which are not deviated by the density perturbations of
the vortex, and enhances the contrast of the images. In strioscopy measurement, it
can be shown that the intensity of the images is proportional to the Laplacian of the
refraction index, i.e. of the density. However, this property will not be used. In our
experiments, we will simply use strioscopy to reveal the qualitative features of the
flow.

2.2. Vortex characteristics

Figure 2(a) shows a typical velocity field obtained by PIV measurements in a
horizontal plane, when the vortex axis is exactly vertical. The velocity field is very
close to axisymmetric. The spatial resolution is very high (approximatively 20 vectors
within the vortex core) such that the uncertainties on the velocity field are small. In
figure 2(a), the spatial resolution has been reduced by a factor 2 for visualization
purposes. The uncertainties on the vorticity field are larger, but still remain lower than
5%. Figure 2(b) presents the velocity profiles obtained from an angular averaging of
the velocity field shown in figure 2(a). The velocity profile is approximated well by
the profile of a Gaussian vortex (Lamb–Oseen), whose angular velocity is given by:

Ω0(r) =
vθ (r)

r
=

Γ

2πr2

(
1 − e−r2/a2)

. (2.2)

In our experiments, the circulation was varied between 17 and 42 cm2 s−1. The core
size a is slowly varying with time between 0.9 and 1.1 cm owing to viscous effects, but
this dependency can be neglected on the time scale we are considering.
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Figure 2. Velocity field of the vortex as obtained by PIV measurement in a horizontal
cross-section. (a) Two-dimensional velocity field and vorticity contours. (b) Azimuthal velocity
profile measured by PIV and fitted by (2.2) for a Gaussian vortex (solid line). Here, Re =370.

We will non-dimensionalize lengths by the vortex core size a, since it is the only
relevant length scale of the flow. Moreover, the inverse of the angular velocity at
the centre of the vortex Ω0(r = 0) = Γ/2πa2 will be used as the time scale of the
flow. This leads to non-dimensionalizing the velocity by aΩ0(0). Finally, we will
non-dimensionalize densities by the density of the fluid ρf at z = 0.

Our system is characterized by five non-dimensional parameters α, Re, F , Sc and
L. The first parameter α is the tilt angle between the vortex and the vertical. It was
varied between 0 and 0.26 rad. The Reynolds number Re characterizes the strength
of the vortex: it is defined from the circulation of the vortex by Re= Γ/(2πν)
(ν being the kinematic viscosity of the fluid) and ranges from 240 to 800. The
stratified fluid is characterized by its Brunt–Väisälä frequency N =

√
−(g/ρ)(∂ρ/∂z)

from which we define the Froude number F =Ω0(0)/N . In our experiments, the
Froude number ranges from 1.5 to 5. The Schmidt number Sc= ν/κ is the ratio
between the viscous diffusivity and the diffusivity of the salt; it is roughly equal to
700 for salted water, which renders the diffusion of salt negligible. The last parameter
L compares the vertical stratification length to the vortex core size: L = ρ/(a∂ρ/∂z).
In our experiments, this parameter ranges between 100 and 400.

3. A critical layer in tilted vortices
3.1. Experimental evidence

Figure 3(a) shows a side view of the vortex by strioscopic visualizations for an
inclination angle α = 0.12 rad. This photograph reveals two white strips going from
the bottom to the top of the image, with the same angle α = 0.12 rad. They are nearly
symmetrically located around the vortex axis, which is a barely visible blurry bright
line going through the centre of the image. These white strips appear progressively
during the vortex formation, and become brighter and brighter as time evolves. After a
saturation time of a few seconds they remain stationary during the whole experiment,
if the Reynolds number is sufficiently small. These strips reveal a strong density
variation (stronger than the radial variations induced by the vortex) concentrated in a
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(a) (b)

Figure 3. View of the vortex approximately five rotation periods after its formation, in a
vertical longitudinal plane. (a) Density contrast visualized by strioscopy (Re= 720, F = 5,
α = 0.12 rad and rc = 2.2a). (b) Instantaneous velocity field measured by PIV (Re=450,
F = 3.2, α = 0.07 rad and rc =1.7a). The grey-scale contours correspond to the vertical velocity
component.

thin region at the periphery of the vortex, which we shall see below can be attributed
to a critical-layer singularity.

Figure 3(b) represents the velocity field superimposed on the axial velocity contours
in the same vertical longitudinal plane as in figure 3(a), but with a smaller tilt angle
α = 0.07 rad. For a vertical vortex, the axial velocity is equal to zero. Here, for this
small value of the tilt angle, we observe a strong axial velocity field. This axial velocity
field is concentrated in two strips located symmetrically with respect to the vortex
axis. The velocity is downward on the upper side of the vortex and upward on
the lower side. These strips create a pattern similar to the density variation pattern
observed in figure 3(a).

This strip-like pattern is not observed for a vertical vortex. For large Reynolds
numbers, it appears as soon as the inclination angle is above 2◦–3◦. It is also observed
for moderate Froude numbers between 1 and 5, only. It is possible to measure the
radial position where these strips are located in both shadowgraph visualizations and
PIV velocity fields. This position is indicated by symbols in figure 4 as a function of
the inverse of the Froude number 1/F = N/Ω0(0). The solid curve gives the location
of the critical-point singularity rc at which the angular velocity Ω0(rc) is equal to the
Brunt–Väisälä frequency N . As can be observed, the symbols are very close to the
curve. This is the first indication that the strips could be associated with a critical-layer
phenomenon. We shall see below that this observation will allow the construction of
a theoretical model to describe the flow in the neighbourhood of the critical point.

This link between strips and critical points readily explains why strips have been
observed only for moderate Froude numbers above 1. When the Froude number is
smaller than unity, there is no critical-point singularity, so no strip is expected to
appear. When the Froude number is increased above unity, the critical point moves
away from the vortex centre and the strength of the singularity decreases. Density
variations and axial flow generation are thus expected to become weaker and to move
progressively outside the observation domain.
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Figure 4. Theoretical prediction (solid line) and experimental measurements (×) of the
position of the critical layer on shadowgraph visualizations, versus the inverse of the Froude
number 1/F = N/Ω0(0) for a Gaussian vortex. Here, α = 0.07 rad and Re varies between 240
and 560 with a fixed Brunt–Väisälä frequency N = 1.5 rad s−1.

3.2. Theoretical formulation of the problem

Our goal is to provide the basic flow solution for a vortex in a stratified fluid, whose
axis is tilted with an angle α with respect to the gravity (i.e. the density gradients). The
flow is governed by the Navier–Stokes equations together with the density equation
and the incompressibility condition, which are in dimensional form:

Du
Dt

= − 1

ρ
∇p − gez + ν
u, (3.1a)

Dρ

Dt
= κ
ρ, (3.1b)

∇ · u = 0. (3.1c)

As was discussed at the end of § 2.2, the non-dimensional problem is defined by
the angle α, the Froude number F , the length ratio L, the Reynolds number Re
and the Schmidt number Sc. In particular, note that the dimensionless form of the
acceleration due to gravity g is L/F 2.

To determine the tilted vortex solution, the main idea is to use the new variables:

x ′ = x − tan αz, y ′ = y, z′ = z. (3.2)

Equations (3.1) can then be written, in cylindrical coordinates, as:

Du

Dt
− v2

r ′ − w tan α
∂u

∂x ′ − w
tan α sin θ ′

r ′ v = − 1

ρ

∂p

∂r ′ +
(
′u)r

Re
, (3.3a)

Dv

Dt
+

uv

r ′ − w tan α
∂v

∂x ′ + w
tan α sin θ ′

r ′ u = − 1

ρr ′
∂p

∂θ ′ +
(
′u)θ

Re
, (3.3b)

Dw

Dt
− w tan α

∂w

∂x ′ = − 1

ρ

∂p

∂z′ +
tan α

ρ

∂p

∂x ′ − L

F 2
+


′w

Re
, (3.3c)



450 N. Boulanger, P. Meunier and S. Le Dizès

Dρ

Dt
− w tan α

∂ρ

∂x ′ =

′ρ

Re Sc
, (3.3d)

1

r ′
∂(r ′u)

∂r ′ +
1

r ′
∂v

∂θ ′ +

(
∂

∂z′ − tan α
∂

∂x ′

)
w = 0, (3.3e)

with

D

Dt
=

(
∂

∂t
+ u

∂

∂r ′ +
v

r ′
∂

∂θ ′ + w
∂

∂z′

)
,

∂

∂x ′ = cos θ ′ ∂

∂r ′ − sin θ ′

r ′
∂

∂θ ′ .

In these equations, u and v are the radial and azimuthal components of the horizontal
velocity field in the polar coordinate system (r ′, θ ′) deduced from (x ′, y ′) while w is the
velocity component along the direction of the gravity field (z-axis). In the following,
the primes are dropped.

When the vortex is not tilted (α = 0), we recover the classical equations for the
dynamics of a vertical stratified vortex. A stationary axisymmetric solution is known
to exist in the form (u, v, w, p, ρ) = (0, rΩ0(r), 0, p0(r, z), ρ0(r, z)) provided that

rΩ2
0 =

1

ρ0

∂p0

∂r
, − 1

ρ0

∂p0

∂z
=

L

F 2
. (3.4a, b)

These two equations express the cyclostrophic and the hydrostatic equilibrium with
no interaction between the density field and the velocity field. If we further assume
that the stratification length L is independent of z, the general solution is found, for
any angular velocity profile Ω0(r) as:

ρ0 = e−z/L exp

(
F 2

L2

∫ r

r ′Ω2
0 (r

′) dr ′
)

, (3.5a)

p0 = N2L2 e−z/L exp

(
F 2

L2

∫ r

r ′Ω2
0 (r

′) dr ′
)

. (3.5b)

This solution has been obtained in the absence of the Boussinesq approximation.
We now wish to solve these equations for a finite tilt angle α.

3.3. Expansion for small tilt angles

For small α, inclination is expected to modify the flow field only weakly. Thus, it is
natural to use a perturbation approach. Velocity, pressure and density fields are thus
expanded as:

u = u0 + tan αu1 + · · · , (3.6a)

p = p0(1 + tan αp1(F/L)2 + · · ·), (3.6b)

ρ = ρ0(1 + tan αρ1/L + · · ·), (3.6c)

where (u0, p0, ρ0) is the vertical solution and (u1, p1, ρ1) is the non-dimensional
first-order correction due to inclination with α � 1 so that tan α ∼ α.

The introduction of (3.6) into (3.3) and linearizing with respect to α yields, at
leading order, a solution (u0, p0, ρ0) given by (3.5), as in the vertical case. At order α,
equations (3.3) become:(

∂

∂t
+ Ω0

∂

∂θ

)
u1 − 2Ω0v1 = −∂p1

∂r
− rΩ2

0

(
ρ1

L
− p1F

2

L2

)
+

(
u1)r
Re

, (3.7a)

(
∂

∂t
+ Ω0

∂

∂θ

)
v1 + ω0u1 = −1

r

∂p1

∂θ
+

(
u1)θ
Re

, (3.7b)
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∂

∂t
+ Ω0

∂

∂θ

)
w1 = −∂p1

∂z
− ρ1

F 2
+ rΩ2

0 cos θ +
p1

L
+


w1

Re
, (3.7c)

(
∂

∂t
+ Ω0

∂

∂θ

)
ρ1 = w1 − rΩ2

0F
2u1

L
+


ρ1

Re Sc
, (3.7d)

1

r

∂(ru1)

∂r
+

1

r

∂v1

∂θ
+

∂w1

∂z
= 0, (3.7e)

where ω0 = (1/r)(d(r2Ω0)/dr) is the vorticity of the vortex. Note that the only forcing
term in these equations corresponds to rΩ2

0 cos θ , which is a buoyancy force generated
by the inclination of the isolevels of pressure. This term can guide us to determine
the form of the solution.

To simplify the analysis, we shall now apply the Boussinesq approximation. This ap-
proximation amounts to considering the limit L → ∞ in the above equations. The first-
order corrections induced by non-Boussinesq effects are provided in the Appendix.
Under the Boussinesq approximation, a simple inviscid and stationary solution (that
is if we assume also Re → ∞) can be obtained as

u1 = v1 = p1 = 0, w1 =
rΩ3

0

Ω2
0 − F −2

sin θ, ρ1 = − rΩ2
0

Ω2
0 − F −2

cos θ. (3.8a, b, c)

This solution shows that inclination affects the axial component of the velocity and the
density field only. However, it can be noted that this solution diverges at the critical
point where the angular velocity Ω0(r) is equal to the Brunt–Väisälä frequency N .
This singularity can be understood as a resonance of the forcing created by the tilt of
the vortex with the natural oscillating frequency of the fluid. Note also that the axial
velocity in the vertical longitudinal plane (i.e. for θ = 0) should always be zero. This
is not what has been observed in the experiments (see figure 3b). We shall see below
that this can be explained by considering viscous effects in the neighbourhood of the
critical point.

4. Critical-layer region
4.1. Viscous critical-layer analysis

The critical-layer singularity which is observed in the linear inviscid solution (3.8)
can be smoothed by introducing additional effects such as viscosity, diffusivity or
nonlinearity. For small angles, it is natural to consider viscosity as the main effect
(we shall provide a more precise justification below by estimating the first nonlinear
terms). The structure of the solution near the critical-point singularity is thus provided
in a viscous critical layer. Viscous critical layers have been studied for many years in
shear flows (see Drazin & Reid (1981) for details and references).

The idea is to introduce a new local variable r̃ = (r −rc)Re1/3 on which are captured
the viscous variations. The critical-layer solution is then searched in the form

u1 = v1 = p1 = 0, w1 = Re1/3w̃1(r̃) eiθ + c.c. (4.1a, b)

ρ1 = Re1/3ρ̃1(r̃) eiθ + c.c., (4.1c)

where the condition of matching with the inviscid solution (3.8) requires that for
large r̃

w̃1 ∼ rcΩ
2
0c

2iΩ ′
0cr̃

, ρ̃1 ∼ − rcΩ0c

2Ω ′
0cr̃

. (4.2a, b)
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Figure 5. (a) Real part and (b) imaginary part of the critical-layer solution Hi(iξ ) versus ξ .

In the above expressions, the index c indicates values taken at rc; Ω ′
0c denotes the

derivative of Ω0(r) evaluated at rc. Note that the critical-layer condition implies
Ω0c = 1/F .

The equations for w̃1 and ρ̃1 are obtained by substituting (4.1) into (3.7) with
L = ∞ and by considering the leading order in the power of Re−1/3. This gives

ρ̃1 = −i
w̃1

Ω0c

, (4.3)

and (
1 +

1

Sc

)
d2w̃1

dr̃2
− 2iΩ ′

0cr̃w̃1 = −rcΩ
2
0c. (4.4)

Equation (4.4) is an inhomogeneous Airy equation. As explained in the Appendix
of Drazin & Reid (1981), the solution of (4.4) which has the asymptotic behaviour
(4.2a) is a ‘balanced’ generalized Airy function Bk(Kr̃, 1). This solution can also be
expressed in terms of the Scorer’s function Hi(ξ ) (see Abramowitz & Stegun 1965,
p. 448) which satisfies

d2Hi

dξ 2
− ξHi =

1

π
, (4.5a)

Hi(ξ ) ∼ − 1

πξ
as |ξ | → ∞ with |arg(ξ )| >

π

3
. (4.5b)

The axial velocity amplitude w̃1 thus reads

w̃1(r̃) =
πrcΩ

2
0c

|2Ω ′
0c|2/3

Hi
(
i|2Ω ′

0c|1/3r̃
)
, (4.6)

where we have implicitly assumed Sc= ∞. The same solution is also obtained when
the diffusion of the density is taken into account by multiplying the Reynolds number
by the factor (1 + 1/Sc)−1.

Equation (4.3) tells us that the density amplitude ρ̃1 exhibits the same variations as
the axial velocity but with a π/2 phase shift. The Scorer function Hi with a complex
argument has both a real and an imaginary part. Their variations with respect to its
argument are shown in figure 5. These variations imply that contrarily to the inviscid
outer solution, axial velocity and density are now expected to exhibit radial variations
in all angular directions. In the vertical longitudinal plane (θ = 0), the axial velocity
varies as Im(Hi(iz)) (figure 5a), while density varies as Re(Hi(iz)) (figure 5b). In the
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tilted longitudinal plane (θ = π/2), it is the opposite. These typical variations do not
depend on the vortex profile. However, the local value at the critical point rc of the
angular velocity and its radial derivative intervenes in the solution as scaling factors.

A few characteristic features of the solution in the vertical and tilted longitudinal
planes can easily be provided. In the vertical longitudinal plane, the axial velocity has
a jet-like profile. If we return to initial variables, the maximum velocity and the width
at mid-height of the jet are given, respectively, by

w( jet)
max = 0.81

rcΩ
2
0c

|Ω ′
0c|2/3

Re1/3 tan α, (4.7a)

δ( jet) =
2.3

|ReΩ ′
0c|1/3

. (4.7b)

In the tilted longitudinal plane, the axial velocity has a shear-layer profile. The maxi-
mum absolute velocity and the distance between minimum and maximum velocities
are, respectively,

w(shear)
max = 0.56

rcΩ
2
0c

|Ω ′
0c|2/3

Re1/3 tan α, (4.8a)

δ(shear) =
2.65

|ReΩ ′
0c|1/3

. (4.8b)

For instability considerations, it is also useful to compute the maximum vorticity of
the jet and shear-layer profiles. They are given by

ω( jet)
max = 0.6

rcΩ
2
0c

|Ω ′
0c|1/3

Re2/3 tan α, (4.9a)

ω(shear)
max = 0.74

rcΩ
2
0c

|Ω ′
0c|1/3

Re2/3 tan α. (4.9b)

For large Reynolds numbers or important α, viscosity may not be the dominant
effect in the critical layer. Nonlinearity may become more important. The importance
of nonlinear effects in the viscous critical-layer can be estimated by introducing the
viscous critical-layer solution into the governing equations (3.3) rewritten with the
viscous critical-layer variable. Under the Boussinesq approximation, the radial velocity
is deduced from (3.3e):

ũ = α2Re1/3Re(w̃1(r̃) eiθ ) + O(α2). (4.10)

This expression permits us to show that the dominant convective term αw∂x simplifies
with u∂r such that the nonlinear terms in the (3.3c) for w are only O(α3Re2/3). These
terms have to be compared to the viscous term 
w/Re which is O(α). They are
therefore negligible as long as αRe1/3 � 1. In view of (4.7), this condition is equivalent
to assuming that the amplitude of the axial velocity correction remains small. This
condition is therefore not restrictive, as a fully nonlinear regime is expected for O(1)
amplitudes. It is worth mentioning that a different conclusion is reached in classical
critical-layer studies (see for instance Maslowe 1986) where a nonlinear regime is
obtained for small amplitudes of order Re−2/3.

4.2. Experimental measurements

In this section, experimental measurements are compared to the theoretical profiles
predicted by the viscous critical-layer analysis performed in the previous section.
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Figure 6. Theoretical (solid line) and experimental (circles) axial velocity profiles in two
different longitudinal planes, (a) θ = 0, (b) θ = π/2. Re= 560, F = 4.3 and α =0.07 rad.
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Figure 7. (a) Theoretical and (b) experimental axial velocity contours in a plane
perpendicular to the vortex axis. Re= 450, F = 3.2 and α = 0.07 rad.

As explained in § 2.1, visualizations and PIV measurements are made in two
perpendicular longitudinal planes corresponding to the θ = 0 and θ = π/2 directions.
Figure 6 shows the axial velocity profiles measured in these two planes. These profiles
have been obtained by averaging the PIV measurements along the vortex axis. They
are compared to theoretical profiles obtained from the critical-layer analysis for
the experimental parameters. Both the jet and shear-layer profiles are observed in
the critical-layer region in the θ =0 and θ = π/2 planes, respectively, in qualitative
agreement with the theory. The theory slightly underestimates the largest velocities,
but it provides a good estimate of the widths of the jet and of the shear layer.
However, note that between the two critical-layer regions, the experimental velocity
profile is not as smooth as expected from the theory. We think that this is due to the
strong diffraction of the luminous rays across the critical layer, which makes the PIV
images blurred near the vortex centre and therefore less accurate. It is also worth
mentioning that for the experimental data shown in figures 6 and 7, the parameter
αRe1/3 which measures the strength of the nonlinear effects is not very small (it is
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close to 0.5). The discrepancies in the critical layer could therefore also be due to
nonlinear effects.

In figure 7, the isocontours of axial velocity in a plane perpendicular to the vortex
axis are shown. The theoretical plot is obtained by using (4.1) and (4.6) for θ varying
between 0 and 2π. The experimental plot has been obtained by constructing the
data from measurements made in a longitudinal plane. We have used the properties
that the vortex slowly moves away from the flap, so that the whole volume can be
scanned by a fixed plane if this plane is placed perpendicular to the direction of
displacement of the vortex. Measurements in this plane of the axial velocity have
been made at a rate of 5 velocity fields per second. A total of 48 vertical velocity
fields have been used to reconstruct the velocity field in figure 7(b). We have not
been able to scan a larger volume because of lack of computer memory. Despite this
limitation, the main features of the critical-layer solutions are clearly visible in the
experimental measurements. Note, in particular, that the azimuthal dependency of the
solution is reproduced well. This result, together with the good agreement observed
for the radial profiles, validates the theoretical description in terms of the viscous
critical-layer solution.

5. Conclusion
The dynamics of a vortex in a stratified fluid whose axis is slightly tilted with respect

to the direction of stratification has been investigated theoretically and experimentally.
For moderate Froude number Fr ≈ 1–5 and large Reynolds numbers Re= 240–800,
we have observed by using strioscopic visualizations and PIV measurements that
strong density and axial flow variations are generated around the vortex near a
particular radial location when the vortex is tilted by a few degrees. We have shown
that this location corresponds to a critical point where the angular velocity of the
vortex equals the Brunt–Väisälä frequency of the stratified medium.

A theoretical model has been constructed to describe these experimental observa-
tions. The critical point has been shown to correspond to a singularity of the linear
inviscid correction to the vortex induced by tilting. A viscous critical-layer analysis
has been performed to smooth the singularity and the critical-layer solution has been
demonstrated to describe correctly the measured axial velocity profiles. The theory has
also provided the main characteristics of the flow generated by tilting. In particular,
we have shown that density variations can be deduced from axial velocity variations
by a π/2 angular phase shift. The axial velocity variations exhibit a strong shear with
a maximum vorticity of order αRe2/3 in the tilted longitudinal plane (θ = π/2) and a
jet-like structure in the vertical longitudinal plane (θ = 0).

Note also that when the Froude number is smaller than 1, that is, the Brunt–Väisälä
frequency is larger than any angular velocity of the vortex, there is no critical-point
singularity and the linear inviscid solution (3.8) is expected to provide a description,
at least for small angles, of the correction induced by tilting at any point.

It is important to remember that we have focused on small inclination angles and
large Reynolds numbers. For large inclination angles, nonlinear effects should become
important. For Froude numbers larger than 1, these effects are expected to appear
first near the critical point where the correction amplitude is the largest. As explained
above, the nonlinear transition should occur when αRe1/3 becomes large, that is when
axial velocity corrections become O(1).

The stability of the tilted stratified vortex solution we have obtained has not
been addressed in this paper. Experimental observations do demonstrate that a
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Figure 8. Instability of a stratified tilted vortex. Strioscopic visualization of the
configuration shown in figure 3(a), 3.5 rotation periods later.

three-dimensional instability is indeed active under certain conditions. Figure 8 is a
typical visualization by strioscopy of the density variations when instability is present.
Coherent co-rotating vortical structures apparently develop in the critical-layer region.
The characteristics of the critical-layer solution allow at least two possible instability
mechanisms: the strong shear generated in the critical layer could be responsible
for a Kelvin–Helmholtz-like instability whereas density variations coupled with the
centrifugal force could be the source of a Rayleigh–Taylor instability. The compre-
hensive analysis of this instability is the subject of a companion paper (Boulanger
et al. 2007).

We would like to stress that both the generation of the strong axial shear and
density variation and its further destabilization occur for very small inclination
angles. For this reason, we believe that this phenomenon is a generic feature affecting
any intense vortex in a stratified fluid, provided its Froude number is larger than 1.
The experiments performed by Cariteau (2005) have confirmed this point, as the same
phenomenology has been observed although the vortex was not supposed to be tilted.

Appendix. Non-Boussinesq corrections
In this section, we provide the first-order correction to the tilted vortex solution

induced by non-Boussinesq effects.
Outside the critical layer, the density and axial velocity perturbations are provided at

leading order by (3.8c). These variations induced small perturbations of order 1/L for
the radial and azimuthal velocity and the pressure. If we expand these components as

u1 =
u

(1)
1 sin θ

L
+ O

(
1

L2

)
, v1 =

v
(1)
1 cos θ

L
+ O

(
1

L2

)
, (A 1a, b)

p1 =
p

(1)
1 cos θ

L
+ O

(
1

L2

)
, (A 1c)
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we obtain the following equations for u
(1)
1 , v

(1)
1 and p

(1)
1 :

Ω0u
(1)
1 − 2Ω0v

(1)
1 = −dp

(1)
1

dr
+

r2Ω4
0

Ω2
0 − F −2

, Ω0v
(1)
1 − ω0u

(1)
1 = −p

(1)
1

r
, (A 2a, b)

dru
(1)
1

dr
= v

(1)
1 . (A 2c)

This system can be reduced to a single equation for u
(1)
1 :

d2u
(1)
1

dr2
+

3

r

du
(1)
1

dr
−

(
3Ω ′

0

rΩ0

+
Ω ′′

0

Ω0

)
u

(1)
1 = − Ω3

0

Ω2
0 − F −2

. (A 3)

Since Ω0(r) is the solution to the homogeneous part of this equation, a general
solution can be obtained by the variation of the constant as

u
(1)
1 = −Ω0(r)

∫ r

c1

1

Ω2
0 (x)x3

∫ x

c2

Ω4
0 (y)y3

Ω2
0 (y) − F −2

dy dx, (A 4)

where c1 and c2 are constants. These constants may be different in the regions (0, rc)
and (rc, +∞). From the boundary conditions, we find that c1 = c2 = 0 in (0, rc)
and c2 = +∞ in (rc, +∞). The latter constant can be derived from a condition
of matching with the critical-layer solution. The components v

(1)
1 and p

(1)
1 can be

obtained using (A 2b, c) and similar arguments.
In the critical layer, pressure corrections and radial and azimuthal velocity correc-

tions are also created by non-Boussinesq effects. These corrections can be calculated
from (3.7) using the viscous radial variable r̃ = (r − rc)Re1/3 and keeping first-order
non-Boussinesq terms only. We find that the complex amplitude of pressure and
radial and azimuthal velocities expand as

u1 =
ũ

(1)
1 (r̃)

LRe1/3
eiθ + O

(
1

L2

)
, v1 =

ṽ
(1)
1 (r̃)

L
eiθ + O

(
1

L2

)
, (A 5a, b)

p1 =
p̃

(1)
1 (r̃)

L
eiθ + O

(
1

L2

)
, (A 5c)

and satisfy the relations

dp̃
(1)
1

dr̃
= −rcΩ

2
0cρ̃1, ṽ

(1)
1 = − p̃

(1)
1

rcΩ0c

,
dũ

(1)
1

dr̃
= −i

ṽ
(1)
1

rc

, (A 6a, b, c)

where ρ̃1 is given by (4.3) and (4.6). Note that the non-Boussinesq corrections of
order α may be smaller than Boussinesq corrections of order α2. For instance, the
radial velocity correction given by (4.10) is larger than the correction induced by
non-Boussinesq effects as soon as αRe2/3L is large.
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