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Inviscid waves on a Lamb–Oseen vortex
in a rotating stratified fluid: consequences
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The inviscid waves propagating on a Lamb–Oseen vortex in a rotating medium for
an unstratified fluid and for a strongly stratified fluid are analysed using numerical
and asymptotic approaches. By a local Lagrangian description, we first provide the
characteristics of the local plane waves (inertia–gravity waves) as well as the local
growth rate associated with the centrifugal instability when the vortex is unstable.
A global WKBJ approach is then used to determine the frequencies of neutral
core modes and neutral ring modes. We show that these global Kelvin modes only
exist in restricted domains of the parameters. The consequences of these domain
limitations for the occurrence of the elliptic instability are discussed. We argue that
in an unstratified fluid the elliptic instability should be active in a small range of
the Coriolis parameter which could not have been predicted from a local approach.
The wavenumbers of the sinuous modes of the elliptic instability are provided as
a function of the Coriolis parameter for both an unstratified fluid and a strongly
stratified fluid.

1. Introduction
Waves on vortices have been known for many years to be responsible for several

rich dynamical behaviours. They can be the source of strong nonlinear phenomena
when they interact, leading sometimes to vortex bursting. They can be resonantly
excited by the background flow as in the elliptical instability. The purpose of this
work is to provide some information on these waves for a smooth vortex in a rotating
and stratified fluid. The paper focuses on a vortex with a Gaussian vorticity profile
(the Lamb–Oseen vortex), but the analysis can be applied to any other vortex.

Fabre, Sipp & Jacquin (2006) have provided a comprehensive study of the linear
viscous waves propagating on a Lamb–Oseen vortex in a unstratified and non-
rotating fluid. They have shown that the Lamb–Oseen vortex possesses different types
of waves, characterized by their structure, direction of propagation and damping rate.
In particular, they were able to show that the inviscid Kelvin waves which were
known to exist in a Rankine vortex were also present in the viscous spectrum of the
Lamb–Oseen vortex in the frequency range where there is no critical point. These
inviscid waves have also been studied by a WKBJ method in Le Dizès & Lacaze
(2005) for arbitrary vortex profiles. Le Dizès & Lacaze (2005) have shown that, for
small azimuthal wavenumbers, their frequencies can be obtained with good precision
by an asymptotic formula expressing that the eigenfunction exhibits a discretized
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number of radial oscillations in the vortex core. A similar theory will be used here in
the framework of rotating and stratified fluids.

The effect of stratification on the inviscid spectrum of axisymmetrical waves for the
Lamb–Oseen vortex has been analysed by Miyazaki & Fukumoto (1991). They have
shown that no axisymmetrical wave exists when the fluid is strongly stratified. We
shall see here that axisymmetrical waves may exist if the vortex is in an anticyclonic
rotating environment.

A Lamb–Oseen vortex in a rotating environment can become unstable by the
centrifugal instability. The characteristic features of this instability have been known
for many years (see Drazin & Reid 1981). The instability mode is stationary (ω = 0)
and axisymmetric (m = 0). The instability mechanism is inviscid and a necessary
condition for instability is that the local generalized Rayleigh discriminant becomes
negative (Kloosterziel & van Heijst 1991; Billant & Gallaire 2005). The centrifugal
instability is also active in a stably stratified fluid (Billant & Gallaire 2005), but
stratification tends to inhibit the axisymmetric centrifugal mode (Withjack & Chen
1974; Boubnov, Gledzer & Hopfinger 1995). For general vortices, the centrifugal
instability can be in competition with other instabilities such as the shear instability
(e.g. Afanasyev & Peltier 1998) or the elliptical instability if the vortex is in a non-
axisymmetrical environment (Afanasyev 2002). However, the Lamb–Oseen vortex is
not affected by the shear instability (Saffman 1992).

The elliptical instability has been studied in detail for an unstratified non-rotating
fluid (Kerswell 2002). For a Lamb–Oseen vortex, the most unstable mode has been
shown to be a stationary sinuous mode corresponding to the combination of two
helical Kelvin modes m =1 and m = −1. The selected axial wavenumber depends
on the Kelvin mode characteristics while the instability growth rate is apparently
predicted well by a local estimate calculated from the characteristics of the vortex
near its centre only (Le Dizès & Laporte 2002). Such a local estimate for the
instability growth rate is based on an inertial wave decomposition (Bayly 1986;
Waleffe 1990). The effects of background rotation and stratification on this estimate
have already been calculated (Craik 1989; Miyazaki & Fukumoto 1992; Miyazaki
1993). In particular, it has been shown that anticyclonic rotation can stabilize the
elliptic instability in an unstratified fluid for a specific range of Coriolis parameters
(Craik 1989; Le Bars, Le Dizès & Le Gal 2007) while strong stratification can be
destabilizing in the same Coriolis parameter range (Leblanc 2003). However, very few
results are known on the instability when the global geometry of the flow is taken
into account. In a rotating but non-stratified fluid, Afanasyev (2002) demonstrated
experimentally that the elliptic instability was active in the weakly anticyclonic vortex
of a vortex pair. A similar observation was made by Stegner, Pichon & Beunier (2005)
in the anticyclonic vortices of a Bénard–von Kármán vortex street. Le Bars et al.
(2007) have considered the flow inside a rotating cylinder. They have analysed how
the finite radial and axial extents of the flow select the global Kelvin modes involved
in the instability when the Coriolis parameter is modified. In that case, the flow is
uniform and there are no critical layers and they have been able to show that the
local instability approach provides a very good estimate for the instability growth
rate.

When the vortex has a non-uniform vorticity profile, the local approach does
not always provide relevant results. The main reason comes from the presence of
critical points which damp some of the global modes. As the elliptic instability results
from the resonance of neutral global Kelvin modes, when the global modes become
damped, the elliptic instability disappears. This phenomenon explains the stabilization
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of the sinuous mode of the elliptic instability for a Lamb–Oseen vortex when a weak
axial flow is added (Lacaze, Ryan & Le Dizès 2007). It also probably explains
the stabilization of this mode when a weak stratification is added, as observed for
co-rotating vortex pairs (Otheguy, Chomaz & Billant 2006b).

In the present paper, we shall obtain the characteristics of global Kelvin modes
when the Coriolis parameter is varied in an unstratified fluid and in a strongly
stratified fluid and provide new necessary conditions for the occurrence of the elliptic
instability.

It has been discovered that in a strongly stratified fluid, two interacting vortices can
also be made unstable by another instability called the zigzag instability (see Billant &
Chomaz 2000a–c). This instability, whose wavelength scales with the distance between
the two vortices, is the analogue of the Crow instability affecting counter-rotating
vortices in an unstratified fluid (Crow 1970). In a strongly stratified fluid, it also affects
co-rotating vortex pairs (Otheguy et al. 2006a, b). This instability can be linked to the
coupling of the translating modes of each vortex (Billant, Chomaz & Otheguy 2005).
Because these modes are mainly two-dimensional (their wavelength is much larger
than the vortex core size), we will not be able to capture them by our analysis which
uses a large-wavenumber approach.

The paper is organized as follows. In § 2, the local stability properties of an
axisymmetrical vortex in a rotating and stratified fluid are provided. The centrifugal
instability criterion is recovered. The local stability properties of a Lamb–Oseen
vortex are determined. The characteristics of neutral inertia gravity waves are also
provided. In § 3, the asymptotic approach used to describe the global Kelvin modes
is briefly presented and is applied to the Lamb–Oseen vortex. The frequency range
of the global Kelvin modes is determined as a function of the Coriolis parameter
for different azimuthal wavenumbers in the unstratified and strongly stratified cases.
In the last section, the consequences of the global Kelvin mode characteristics on
the elliptical instability are discussed. The evolution of the axial wavenumber of the
sinuous modes is in particular determined as the Coriolis parameter is varied for the
unstratified case and the strongly stratified case.

2. Framework and local stability properties
We consider a stationary axisymmetrical vortex of angular velocity Ω0(r)ez with

Ω0(r) =
1 − exp(−r2)

r2
, (2.1)

in a fluid rotating at the angular velocity f ez and linearly stratified along the vortex
axis with a constant Brunt–Väisälä frequency N =

√
−g∂zρ0/ρ0. Viscous diffusion of

the vortex is neglected. All the variables are non-dimensionalized using the maximum
angular velocity, the core size of the vortex, and the mean density of the fluid. Note
that, with our normalization, the Rossby and Froude numbers are Ro = 2/f and
Fr = 2/N , respectively.

In an inviscid and Boussinesq framework, the linear perturbations of velocity u,
pressure p and density ρ are governed by the system of equations:

∂u
∂t

+ (U0 · ∇)u + (u · ∇)U0 + 2f ez × u = − ∇p − N2ρez, (2.2a)

∂ρ

∂t
+ (U0 · ∇)ρ − u · ez = 0, (2.2b)

∇ · u = 0, (2.2c)
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where U0 = (0, rΩ0(r), 0) is the vortex velocity field in cylindrical coordinates in the
rotating frame.

The goal of the present paper is to obtain information on the linear perturbations,
especially their frequency. We now first analyse the local stability characteristics of
the perturbations using the Lagrangian approach developed by Lifschitz & Hameiri
(1991). In this framework, the local stability properties of the vortex are obtained by
considering local plane wave solutions

(u, p, ρ) = (ul , pl, ρl) exp(ik · x) (2.3)

along a streamline trajectory of the vortex in the limit of large |k| (Lifschitz &
Hameiri 1991; Friedlander & Lipton-Lifschitz 2003). In this limit, the phase factor
k · x is found to be conserved along the fluid trajectories and k is given on the fluid
trajectory x = (r cos(Ω0(r)t), r sin(Ω0(r)t), z) by

k = (k cos θ cos(Ω0(r)t), k cos θ sin(Ω0(r)t), k sin θ), (2.4)

where the inclination angle θ and the wavevector amplitude k = |k| are constants.
The perturbation amplitudes are found to satisfy an equation which admits solutions
varying as exp(iωlt) provided that the local frequency ωl satisfies the relation

ω2
l = 2(Ω0 + f )(ζ0 + 2f ) cos2 θ + N2 sin2 θ, (2.5)

where ζ0(r) = 2Ω0(r) + rΩ ′
0(r) is the vorticity of the vortex. The absolute vorticity

is then ζ0(r) + 2f . The frequency ωl is a ‘Lagrangian’ frequency. It provides the
frequency in the frame moving with the fluid particle, that is rotating at the angular
velocity Ω0(r) + f . The relation (2.5) is well-known in the context of uniformly
rotating flows as it corresponds to the dispersion relation of inertia-gravity waves
(see Staquet & Sommeria 2002). In a non-uniformly rotating flow, (2.5) extends the
inertia–gravity wave relation but is valid only locally as both Ω0 and ζ0 depend on
the radial coordinate r .

Equation (2.5) provides the Rayleigh criterion for centrifugal instability which states
that

2(Ω0(r) + f )(ζ0(r) + 2f ) < 0 (2.6)

is a necessary and sufficient condition for inviscid instability. From (2.5), we can
deduce that the local wave whose wavevector is perpendicular to the rotation axis
(θ = 0) has a growth rate which is given by

σl =
√

−2(Ω0(r) + f )(ζ0(r) + 2f ) (2.7)

on the streamlines where the Rayleigh criterion is satisfied.
For the Lamb–Oseen vortex, there exists a streamline where the Rayleigh criterion

(2.6) is satisfied as soon as the Coriolis parameter f is such that

−1 <f < 0. (2.8)

For a given streamline, the local maximum growth rate is

σmax(r) = − 1
2
rΩ ′

0(r), (2.9)

which is reached when

f = fmax(r) ≡ −
(
Ω(r) + 1

4
rΩ ′

0(r)
)
. (2.10)

The variations of σmax and fmax versus r are given in figure 1(a). For a given Coriolis
parameter f , the local stability properties vary from one streamline to the other.
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Figure 1. Local centrifugal instability growth rate of Lamb–Oseen vortex in a rotating fluid.
(a) Maximum growth rate (solid line) and most dangerous Coriolis parameter (dashed line)
versus the radial coordinate. (b) Maximum growth rate (solid line) and most unstable radius
(dashed line) versus the Coriolis parameter.
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Figure 2. Frequency range of the local waves of azimuthal wavenumber m in the rotating
frame as a function of the Coriolis parameter f for a unstratified Lamb–Oseen vortex (N = 0).
(a) m= 0, (b) m= 1, (c) m= 2, (d) m= 3. Light grey: Frequency range for the waves in the
vortex centre only.

The variations of the most unstable radius rmax(f ) and its corresponding growth rate
σmax(f ) are shown in figure 1(b). This figure shows that the centrifugal instability is
very strong for small negative values of f . Note in particular that σ > 0.1 as soon as
−0.85 < f < −0.02. We therefore expect the centrifugal instability to be a dominant
feature of the dynamics of the vortex in almost the whole range of f between −1
and 0.

When f is not in the interval (−1, 0), the Rayleigh criterion is never satisfied and
the local Lagrangian frequency ωl defined by (2.5) is real for all r . If we want to
determine the corresponding frequency in a fixed frame, we have to take into account
the azimuthal variation of the wave. For instance, if the perturbation amplitude
possesses a variation with azimuthal wavenumber m, the frequency of the local wave
in a fixed frame would be ω =ωl + mf + mΩ0(r).

In figures 2 and 3, we have plotted the domains covered by the local frequencies
in the frame rotating at the angular frequency f for m =0 to m =3, for the Lamb–
Oseen vortex in the unstratified case and in the strongly stratified case, respectively. To
obtain these plots, we have varied the inclination angle from 0 to π/2 and changed the
radial coordinate r . The pale grey regions correspond to the domains covered by the
local frequencies for the waves located in the vortex centre (r =0). The white regions
indicate the frequency domains which are not accessible by any wave anywhere in
the fluid. For instance, we can say from figure 3(a) that in a strongly stratified fluid
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Figure 3. Same as figure 2, but for a strongly stratified vortex (large N ).

there exist axisymmetrical local waves (m = 0) of frequency ω =1 for −3/2 < f < 1/2
only, and none are localized in the vortex centre for −1/2 < f < 1/2.

Upon comparing figures 2 and 3, we can see that the frequency domains of the
local waves in an unstratified fluid and in a strongly stratified fluid are very different.
They are complementary when we consider the local frequency at a given point (in
the centre for instance). We can also see that for the Lamb–Oseen vortex, there exist,
for all m, local frequencies which can be present in both the unstratified and the
strongly stratified case.

Local frequencies are the frequency of local perturbations, that is of perturbations
which are sufficiently localized near a given streamline. In the next section, we
shall analyse how these frequencies are connected to the frequencies of global mode
perturbations. We shall see that when the transverse structure of the perturbation is
taken into account, the range of the possible frequencies becomes much smaller.

3. Global Kelvin modes
In this section, we consider linear normal mode perturbations (called global Kelvin

modes) of the form

(u, p, ρ) = (uK, pK, ρK ) exp(ikzz + imθ − iωt), (3.1)

where kz and m are axial and azimuthal wavenumbers and ω is the frequency.
The perturbation equations (2.2a)–(2.2c) for such a solution can be reduced to a

single equation for the pressure amplitude pK :

d2pK

dr2
+

(
1

r
−

∆′
f

∆f

)
dpK

dr
+

(
2m

rΦf ∆f

(Ω ′
0∆f − (Ω0 + f )∆′

f ) +
k2

z∆f

Φ2
f − N2

− m2

r2

)
pK = 0,

(3.2)
where

Φf (r) = −ω + m(Ω0(r) + f ). (3.3a)

∆f (r) = 2(ζ0(r) + 2f )(Ω0(r) + f ) − Φ2
f (r). (3.3b)

In contrast with local solutions, global Kelvin modes are subject to boundary
conditions: pK must be finite at zero, and must be either an outgoing wave or
exponentially small at infinity. These conditions applied to the solutions of (3.2)
define the eigenvalue problem for ω (assuming kz and m are fixed) that we want to
solve.

Without stratification and background rotation (that is N = f = 0), Le Dizès &
Lacaze (2005) have shown that, for small m, a good approximation of the dispersion
relation and of the eigenmode could be obtained by considering a large kz asymptotic
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approach. We shall see below that the same result is also true in the presence of
stratification and background rotation.

The main idea of Le Dizès & Lacaze (2005) is to use a WKBJ approach in which
only the term in k2

z is retained at leading order in (3.2). This permits us to define a
local radial wavenumber β(r) given by

β(r) = kz

√
∆f

Φ2
f − N2

. (3.4)

The regions where β is real are the regions where the eigenfunction is oscillating.
These regions are delimited either by the origin or by a (turning) point where β

vanishes. Le Dizès & Lacaze (2005) have shown that core modes (modes localized
between the origin and a turning point) and ring modes (modes localized between
two turning points) are selected by a condition similar to the Bohr–Sommerfeld
quantization rule of quantum mechanics (Landau & Lifchitz 1967). For core modes,
this condition reads ∫ r1

0

β(r)dr = (n + |m|/2)π (n= 0, 1, 2 . . .), (3.5)

while for ring modes, it is∫ r2

r1

β(r)dr = (n + 1/2)π (n= 0, 1, 2 . . .), (3.6)

where r1 and r2 are turning points (β(rl) = 0, l =1, 2). These conditions lead to a
discretization of the axial wavenumber for fixed m and ω. They also imply that the
distance between two consecutive selected axial wavenumbers for fixed m and ω is
constant.

The solutions to (3.2) are also known to exhibit critical-point singularities. In a
rotating stratified fluid, these singularities occur at the locations where the frequency
of the mode in the frame moving with the local angular velocity vanishes or equals
the Brunt–Väisälä frequency, that is where Φf (r) = 0 or Φf (r) = ±N .

In an unstratified fluid, both types of singularity merge and viscous effects can
be added in order to smooth the singularity (Le Dizès 2004). However, an inviscid
dispersion relation can still be obtained by integrating (3.2) in the complex r-plane
(Sipp & Jacquin 2003). In the WKBJ framework, Le Dizès & Lacaze (2005) have
shown that the frequencies of these singular modes were still given by a relation of
the form (3.5) or (3.6) but applied in the complex plane. These results were confirmed
by Fabre et al. (2006) using a viscous code.

Unfortunately, with stratification, very few results are known on the singular global
Kelvin modes and we shall not try to analyse the effects of critical-point singularities
here. We shall consider only configurations where there is no critical point and such
that (3.5) and (3.6) can be applied on the real axis. We shall consider the unstratified
case (N = 0) and the strongly stratified case (N large) such that the critical-point
singularities are associated only with zeros of Φf and defined by

ω − mf = ω0(r) ≡ mΩ0(r). (3.7)

The strongly stratified case means that we consider only frequencies such that −N +
m < ω−mf <N (for positive m). When N is large (and m moderate), most frequencies
of interest are described by the strongly stratified case. In the Appendix, we briefly
discuss how weakly stratified cases can be analysed.
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Figure 4. Functions ω±(r) (solid lines) and ω0(r) (dashed line) versus r . (a) m= 0,
f = −1.2; (b) m= 1, f = −0.85; (c) m= 1, f = −1.2; (d) m= 2, f =1.

As mentioned above, the existence of core or ring modes is linked to the existence of
a finite interval where β is real. In the unstratified case, such an interval corresponds
to a region where ∆f > 0. In the strongly stratified case, it is the opposite: they
correspond to a region where ∆f < 0. The condition of existence of core and ring
modes can therefore be analysed easily by locating the zeros of ∆f which are defined
by

ω − mf = ω±(r) ≡ mΩ0(r) ±
√

2(ζ0(r) + 2f )(Ω0(r) + f ). (3.8)

By plotting the functions ω±(r) and ω0(r) versus r , we can easily determine the
frequencies in the rotating frame ω − mf for which ∆f can change sign. We can then
deduce the frequency intervals in which eigenmodes are expected for both unstratified
and strongly stratified cases.

Four different examples of variations of ω0 and ω± are displayed in figure 4. Figure
4(a) corresponds to a case with m = 0 for which there is no critical point. In that
case, ∆f changes sign only if −2f − 2 < ω < − 2f or 2f <ω < 2f + 2 and for these
frequencies, ∆f is negative between 0 and a turning point rt , and positive for larger r .
It follows that there is no mode in the unstratified case, but there are two frequency
intervals (−2f − 2, −2f ) and (2f, 2f + 2) where core modes are expected in the
strongly stratified case. This is confirmed in figure 5(a) where the frequency of the
first global Kelvin modes is plotted versus kz/N . The numerical results are obtained
by a shooting method. It is worth mentioning that the large kz asymptotic theory
provides good estimates for the frequencies up to kz = 0. That property, which was
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Figure 5. Dispersion relation of the first inviscid global Kelvin modes. Solid line, (3.5) or
(3.6) with n � 1; dashed line, (3.5) or (3.6) with n= 0; symbols, inviscid numerical results.
(a) m= 0, f = −1.2, N = 5; (b) m= 1, f = −0.85, N =5; (c) m= 1, f = −1.2, N =5; (d) m= 2,
f = 1, N = 5. In (b), the Kelvin modes possess a critical-layer singularity for 0< ω < 1: the
numerical modes are (very) slightly damped by this singularity.

already noticed in Le Dizès & Lacaze (2005) for the unstratified non-rotating case, is
apparently valid whatever the stratification and the background rotation.

Results for m =1 and N = 5 are shown in figures 5(b) and 5(c) for f = −0.85
and f = −1.2, respectively. The functions ω± and ω0 for these two cases are plotted
in figures 4(b) and 4(c). The agreement between the asymptotic formula and the
numerics is also good in these cases. In figures 5(b)–5(c), the dashed line corresponds
to the asymptotic formula with n= 0. This branch is present on the upper side only.
The first branch on the lower side starts with the label n= 1. This property was also
observed in the unstratified non-rotating case for m =1 (Le Dizès & Lacaze 2005) but
the branch n= 0 was in that case obtained on the lower side only and was associated
with the translating mode for kz = 0. It was also remarked that the agreement with
the numerics is less good for this branch. For f = −0.85 (figures 4b and 5b), both
core modes and ring modes exist. The ring mode frequencies are between 0.7 and 1.3
in the middle interval delimited by dotted lines in figure 5(b). For frequencies between
1.3 and 1.7, the eigenmodes are core modes. They exhibit a singular behaviour near
ω − mf ≈ 1.7: the wavenumbers of all the branches tend to zero. The theory predicts
a behaviour like kz/N ∝ 1/| log(δω)|, which is difficult to capture numerically. Note
also that there is a larger discrepancy than in the other cases around the frequency
ω − mf ≈ 1.3. This frequency corresponds to the change of core modes into ring
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modes. Close to this frequency, a turning point is then close to the origin and this
was not taken into account in the analysis.

For frequencies between 0 and 1, the eigenmodes exhibit a critical-layer singularity.
In the theory, this singularity does not affect the discretization rule. By contrast, this
singularity is a problem for the inviscid numerical integration: it must be avoided in
the complex plane in the region where the inviscid approximation is expected to be
valid. The method is explained in Sipp & Jacquin (2003), for instance. The numerical
results shown in figure 5(b) for the frequencies in (0, 1) have been obtained by this
method. Note that the agreement with the asymptotic formula is also good for these
frequencies. The critical-point singularity apparently does not affect the eigenmode
selection. Moreover, no significant damping rate has been obtained in the numerics.
This could be connected to the property that the critical point is far from the vortex
core in a region where the eigenmode is exponentially small.

In figure 5(d), results for m =2 have been plotted. They correspond to the functions
ω± shown in figure 4(d). In that case, only ring modes are obtained. Again, all the
asymptotic branches are recovered by the numerics. However, the agreement between
the numerics and the asymptotic formula is not as good as for the previous cases,
especially for small kz. For larger m, the discrepancies become even more important.
As already pointed out in Le Dizès & Lacaze (2005), this can be associated with
neglected terms in (3.2) such as m2/r2 becoming more important as m increases.

In figure 5, the intervals of frequency obtained from the analysis of the functions ω±

in which the asymptotic formula can be applied have been indicated by dotted lines. In
all these cases, we have been able to demonstrate that there do exist real eigenmodes
in the expected frequency intervals. To prove that there is no eigenmode outside these
intervals is by contrast a more difficult problem. We can provide some elements of
response in our framework. In particular, we can easily prove (see Le Dizès & Lacaze
2005) that if for a given real frequency, there is no critical point and no finite interval
where the radial wavenumber β is real, we cannot construct any eigenmode using
the WKBJ framework. This implies that there should not exist neutral modes with
such a frequency with a large axial wavenumber. However, we cannot say anything
concerning the frequency of the modes with a small axial wavenumber and for which
the WKBJ analysis does not apply a priori.

When there is a critical point, it is also difficult to conclude anything. We have seen
above that a critical-point singularity can have no effect on the dispersion relation of
the mode if this singularity is far from the region where the mode is localized. We
expect this property to apply in an unstratified fluid. However, Le Dizès & Lacaze
(2005) have also shown that when the critical point becomes close to the region of
localization of the mode (between 0 and r1 for the core modes, or between r1 and r2 for
the ring modes), the mode becomes strongly damped. In a strongly stratified fluid, the
critical-layer singularity which is associated with Φf = 0 has a different nature and its
effect is not well known. This singularity is weaker than the critical-point singularity
in unstratified fluid as it does not affect the leading-order WKBJ approximation of
the eigenmode. Moreover, the numerical simulations of Le Dizès & Billant (2006)
tend to show that this singularity could have a weak destabilizing role. Here, we shall
not address this issue which is considered in another work (Le Dizès & Billant 2007).

In figures 6 to 9 are indicated, in the (f, ω−mf )-plane, the regions of the parameter
where core modes and ring modes are expected for m ranging from 0 to 3 in both the
unstratified case (figures 6a, 7a, 8a and 9a) and the strongly stratified case (figures 6b,
7b, 8b and 9b). The dotted vertical lines located at f = − 1 and f =0 delimit the
interval of Coriolis parameters where the centrifugal instability is active. The dotted
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Figure 6. Frequency range of global Kelvin modes as a function of the Coriolis parameter,
as predicted by the asymptotic theory. (a) m= 0, N = 0; (b) m= 0, large N . Light grey, core
modes; dark grey: ring modes.
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Figure 7. Same as figure 6 for (a) m= 1, N = 0; (b) m= 1, large N . The horizontal dashed
lines delimit the parameter region for which a critical-layer singularity is present. The thick
solid lines delimit global mode regions of negative energy in (a) and of positive energy in (b).

horizontal lines located at ω−mf =0 and ω−mf = m delimit the frequency interval
where a critical-point singularity is present. The plots of figures 6 to 9 have to
be compared to the plots for the local frequencies (figures 2 and 3). As expected,
global frequencies are within the local frequency domains. Moreover, frequencies of
core modes are also within the domain of the local frequencies calculated in the
vortex centre (pale grey regions in figures 2 and 3). However, the domain of global
frequencies is much smaller than the domain of local frequencies. This demonstrates
that the condition of existence of a global Kelvin mode is very restrictive.

We shall see in the next section (see figure 13a, b) that some of the global modes
can possess a scattered wave structure. This occurs when the eigenmode is oscillating
both in a finite interval (in which the eigenfrequency is selected) and in a semi-
infinite interval extending to infinity. Le Dizès & Billant (2007) show that this
scattering property is analogous to the radiative property of the bounded states of
an atom. Here, it is easy to determine when scattering is present: the condition of
scattering is that the radial wavenumber is real at +∞. For non-stratified fluids, this
happens when −2|f | <ω − mf < 2|f |. The scattered wave is in that case an inertial
wave. For strongly stratified fluids, scattering happens in the intervals ω − mf > 2|f |
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Figure 8. Same as figures 6 and 7 for (a) m= 2, N = 0; (b) m= 2, large N .
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Figure 9. Same as figures 6 and 7 for (a) m= 3, N = 0; (b) m= 3, large N .

or ω − mf < − 2|f |. The scattered wave is in that case a gravity wave. In general, this
scattering phenomenon is (slightly) stabilizing. Yet, for the strongly stratified case, it
can also become (slightly) destabilizing (see Le Dizès & Billant 2007).

For the elliptic instability we shall discuss below, it is also useful to define the energy
of the global Kelvin mode in the rotating frame. As explained by Cairns (1979), the
mode energy can be obtained from the dispersion relation D(kz, ω) = 0 of the global
Kelvin mode by a formula of the form

E = 1
4
(ω − mf )

∂D

∂ω
× (wave amplitude)2. (3.9)

Here, in the WKBJ framework, we have a simple expression for the dispersion relation
(see (3.5) and (3.6)) such that the sign of the mode energy is given by the sign of

Er =(ω − mf )

∫
I

(
∆f + Φ2

f − N2
)
Φf

|∆f |1/2
∣∣Φ2

f − N2
∣∣3/2 , (3.10)

where the interval I is (0, r1) for the core modes, and (r1, r2) for the ring modes. It
is worth mentioning that the above expression does not depend on the wavenumber
kz: all the global Kelvin modes of the same frequency and azimuthal wavenumber
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have therefore the same energy sign. Expression (3.10) shows that in the unstratified
case (N = 0) or in the strongly stratified case (large N) the sign of the energy depends
only on the signs of (ω − mf ) and of Φf in the interval I . If both are positive, the
energy of the mode is positive in the unstratified case, but negative in the strongly
stratified case. Thus, we can easily deduce that in the unstratified case, all the modes
have a positive energy except for m = 1 when 0 <ω − mf < 1 and for m =2 when
0 < ω − mf < 0.4. (Naturally, there are symmetric intervals for negative m.) These
negative energy modes are within the domains delimited by the thick solid lines in
figures 7(a) and 8(a). In the strongly stratified case, it is the opposite: all the modes
have a negative energy except some modes whose frequency is in the critical-layer
interval. These positive energy modes are within the domains delimited by the thick
solid lines in figures 7(b), 8(b) and 9(b).

In the next section, we analyse the consequences of these results on the elliptic
instability of the Lamb–Oseen vortex when the latter is placed in a strain field
rotating with the background flow. We obtain new conditions for the occurrence of
the elliptic instability which could not have been obtained by the local approach.

4. Consequences on the elliptic instability
The elliptic instability can become active when the vortex is elliptically distorted by

a background strain field. Here, we shall assume that this strain field is stationary in
the rotating frame. Rotating strain field can be treated by a similar method.

If the strain field is weak, the elliptic instability can be analysed by a perturbation
approach: the modification induced by the strain field is considered as a small
disturbance of azimuthal wavenumber m =2. The elliptic instability mechanism can
then be described by both a local and a global approach.

Locally, the strain disturbance acts on a Lagrangian particle as a temporal forcing
of frequency ωf = 2Ω0(r). This temporal forcing can resonantly couple two local

plane waves if the difference between their local frequencies ω
(1)
l and ω

(2)
l differ by ωf .

Moreover, these two waves must also possess the same wavevector, that is the same
cos θ . This implies that the condition of local resonance is ω

(1)
l = − ω

(2)
l = Ω(r). On a

given radial location r , this condition is not satisfied for all f . We can easily show
that in the strongly stratified case, f must be within an interval (f−(r),f+(r)) where

f±(r) = −
(
Ω0(r) + 1

4
rΩ ′

0(r)
)

±
√

1
4
Ω2

0 (r) + 1
16

(rΩ ′
0(r))

2, (4.1)

and, in the unstratified case, f must be outside this interval. The functions f−(r)
and f+(r) for the Lamb–Oseen vortex, together with the limit of the centrifugal
instability region are plotted in figure 10. The consequences for the Lamb–Oseen
vortex are the following: in the unstratified case, there always exists a streamline on
which the condition of local resonance can be satisfied whatever f ; in the strongly
stratified case, the condition of local resonance can be satisfied somewhere only for
−3/2 < f < fmax ≈ 0.036. Moreover, in that case, if −1/2 < f < fmax , this condition is
not satisfied in the vortex centre, but on a streamline located far from the centre.

The inviscid growth rate associated with a local plane wave resonance can be
calculated by a perturbation method (see for instance Le Dizès 2000). Leblanc (2003)
has provided the local growth rate for the resonance in the vortex centre. A similar
expression can be obtained on any streamline, but we shall not continue in this
direction. Instead, we now discuss the constraints on the elliptic instability obtained
from the global approach.
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Figure 10. Variation of f± with respect to the radial coordinate r for a Lamb–Oseen vortex.
Also indicated are the limits of the centrifugal instability region (dashed lines) and the most
unstable Coriolis parameter fmax(r) (dotted line).

In the global approach, the elliptic instability is also interpreted as a resonance
phenomenon. Two global Kelvin modes are coupled through the correction induced by
the strain field when their axial wavenumber, azimuthal wavenumber and frequency
in the rotating frame satisfy

ω1 − m1f = ω2 − m2f, (4.2a)

k1 = k2, (4.2b)

m1 = m2 + 2. (4.2c)

Using Cairns (1979), Fukumoto (2003) has argued that the resonance must also
involve global Kelvin modes of opposite energy to imply instability. We have seen
above that, in the WKBJ framework, the sign of the energy of the mode can easily be
obtained. As neither the frequency domain nor the sign of the mode energy depend
on the wavenumber, the condition of resonance can be examined by looking at the
intersection of frequency domains of modes of azimuthal wavenumber m and m + 2
and opposite energy sign. The result obtained by looking at these intersections is shown
in figure 11 for the unstratified and the strongly stratified case. The labels indicate
the azimuthal wavenumbers of the resonant global Kelvin modes. For instance, the
solid line with the label (−1, 1) in figure 11(a) delimits the region where a resonance
between two modes m = −1 and m =1 of opposite energy is possible. All the possible
resonances have been considered. The consequences of these plots are as follows.

(i) In the unstratified case (figure 11a): only the mode couples (−1, 1) and (0, ±2)
can be resonantly excited by the strain field. Moreover, instability is possible only
for a very limited range of Coriolis parameter: −1/2 <f <fmax ≈ 0.036 for the
(−1, 1) resonance, −0.016 < f < 0.09 for the (0, ±2) resonance. Note that except for
the resonance of modes (−1, 1) at ω − mf = 0, one of the two resonant modes always
possesses a critical-point singularity. This singularity is located far away from the
region where the mode is localized and therefore has a very weak stabilizing effect.

(ii) In the strongly stratified case (figure 11b): only the couples (−1, 1), (0, ±2),
(±1, ±3) and (±2, ±4) can be resonantly excited by the strain field. Except for the
couples (±2, ±4) which are possibly unstable for −3/2 <f < −0.45 only, all the other
couples can be unstable in the whole range −3/2 < f < 0. The mode couples (−1, 1)
can also be resonantly excited in a small interval of positive Coriolis parameters up
to f = fmax ≈ 0.036.
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Figure 11. Domain in the (f, ω − mf )-plane in which the elliptic instability is possible.
The labels indicate the azimuthal wavenumbers of the global Kelvin modes involved in the
resonance. (a) N = 0; (b) large N .

It is worth mentioning that for the strongly stratified case, the same unstable
range of Coriolis parameter is obtained as in the local approach. By contrast, for
the unstratified case, instability is predicted in a much smaller range of Coriolis
parameter f . Local instability was expected whatever f , while here we have shown
that instability is only possible in the interval −1/2 < f < 0.09.

The wavenumber of the resonant configurations can a priori be computed by
searching the crossing points of two azimuthal branches m and m + 2 in the
(kz, ω − mf )-plane. Because of a symmetry of the dispersion relation with respect
to the transformation (ω, m) → (−ω, −m), some resonant points can be computed
easily: they are the stationary modes of azimuthal wavenumber m =1 which are
automatically resonant with the stationary modes of azimuthal wavenumber m = −1.
These two global Kelvin modes, owing to the symmetry, are perfectly in phase, such
that their resonance is particularly efficient. When they have the same amplitude, their
combination forms a sinuous mode which has been observed in several experiments
(see Leweke & Williamson 1998; Afanasyev 2002; Meunier & Leweke 2005; Stegner
et al. 2005). Theoretical arguments have also been provided to explain why they
should be the most unstable (Le Dizès 2000; Le Dizès & Laporte 2002).

Here, the characteristics of these particular resonant modes can be easily computed
from the WKBJ expression (3.5) or (3.6) of the dispersion relation. The results are
shown in figure 12 for the unstratified case and a strongly stratified case (N = 5).
As above, the agreement between the asymptotic results and the numerics is very
good. In the unstratified case, the stationary sinuous modes are core modes. Their
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Figure 12. Variation of the axial wavenumber of the first stationary sinuous modes of the
elliptical instability. (a) N = 0; (b) N = 5. WKBJ theory, solid and dashed lines; numerics,
symbols. The dashed line corresponds to the branch with n= 0 in the WKBJ formula. The
eigenmodes associated with black symbols are represented in figure 13.

wavenumbers diverge as f tends to −1/2. It is important to recall that the centrifugal
instability is active for negative f . The characteristics of the sinuous modes are thus
expected to be relevant from an experimental point-of-view only for the largest value
of f : for positive f when the vortex is stable with respect to the centrifugal instability
or for small negative f when the centrifugal instability may not be sufficiently strong
to dominate the elliptical instability.

In the strongly stratified case, the stationary sinuous modes are core modes for
−3/2 <f < −1/2 and ring modes for −1/2 < f < 0.036. Again, the wavenumbers
diverge for the smallest value of f . What is surprising, however, is the very rapid
variation of the wavenumber for positive f . Note also the branch switching near
f = 0: the numerical results move from the branch n + 1 to the branch n (n is
the index appearing in (3.5) and (3.6)) as f changes from negative to positive. In
particular, the branch n= 0 exists for positive f , but not for negative f . In figure 12(b),
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Figure 13. Typical variations versus r of the pressure derivative amplitude of the sinuous
modes (m= 1, ω = f ) obtained by numerical integration. The vertical dashed lines indicate
the position of the turning points as predicted by the WKBJ theory. (a) k = 6.70, f = −0.25,
N =0; (b) k = 6.57, f =0.02, N =0; (c) k/N = 19.85, f = −0.25, N = 0; (d) k/N = 57.15,
f = 0.02, N = 5.

a particular value of N has been considered. We have tried other values of N and
observed that the results are almost invariant with respect to N as soon as N > 1.

In both figures 12(a) and 12(b), we have not plotted the particular sinuous mode of
zero wavenumber. This two-dimensional mode exists for all f in both the unstratified
case and the strongly stratified case. It corresponds to the translation mode which
intervenes in the zigzag instability (Billant & Chomaz 2000a). It cannot be captured
by the WKBJ approach.

It is worth mentioning that the sinuous modes in the unstratified case have a specific
structure (except when f = 0): their eigenmode has an oscillating radial structure far
from the vortex as illustrated in figures 13(a) and 13(b). In these plots is displayed
the radial structure of the first eigenmode (n= 1) for f = −0.25 (figure 13a), and
of the fourth eigenmode (n= 4) for f = 0.02. The location of the turning points
where the spatial structure is expected to change from evanescent to oscillatory is
also shown. In the core region (between the origin and the first turning point), the
eigenmode is oscillatory and possesses one zero in figure 13(a) and four zeros in
figure 13(b) in agreement with the indexes n= 1 and n= 4 of the branch of the
dispersion relation in each case, respectively. The eigenmode is also oscillatory after
the second turning point. As already discussed in § 3, this oscillatory structure far
from the vortex corresponds to the scattering of an inertial wave. This phenomenon
is slightly stabilizing. For the mode shown in figure 13(b), the damping rate
is −0.008.

In figures 13(c) and 13(d) are shown two sinuous modes in the strongly stratified
case (N =5, here) corresponding to f = −0.25 and f =0.02, respectively. In both
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cases, the eigenmodes are ring modes localized between two turning points. We can
check that the number of zeros of the eigenmode corresponds to the branch label:
n=3 in figure 13(c) and n= 2 in figure 13(d). However, contrarily to the unstratified
case, there is no scattering in those cases.

Afanasyev (2002) has analysed experimentally the stability of a vortex pair in
a rotating unstratified environment corresponding to values of f in the intervals
(−1.5, −0.1) and (0.1, 1.5). He found that only the anticyclonic vortex was destabilized.
When the vortex was weakly deformed (the starting vortex) the centrifugal instability
was active for f ranging from −1 to −0.3. When the vortex was strongly deformed
(the stopping vortex), he found that the elliptic instability was the dominant feature.
He observed the sinuous mode for f ranging from −1/2 to −1/6. These experimental
observations are perfectly in agreement with our analysis. Afanasyev (2002) also
measured the instability wavelength, but unfortunately he did not measure the
characteristic radius of the vortices which would have permitted us to plot his data
in figure 12(a). Yet, we can note that the growth of the sinuous mode wavelength he
observed for increasing f is in agreement with the theory. Stegner et al. (2005) observed
the elliptic instability in the anticyclonic vortices of a rotating von-Kármán vortex
street and obtained the same qualitative features as Afanasyev (2002). However, none
of these authors has reported the peculiar wave scattering structure of the instability
modes. It would be interesting to determine whether these scattered waves are present
in the experiments. Both Afanasyev (2002) and Stegner et al. (2005) reported elliptic
instability for −1 <f < −1/2 which cannot be justified by the present theory. This
extension of the elliptic instability domain is probably due to the large strain fields. It
is also worth noting that centrifugal instability is active for these Coriolis parameters
and that the unstable modes of the centrifugal instability are expected to be localized
in the vortex core (see figure 1b: rmax < 1 for f < −1/2). Interaction with centrifugal
instability could thus also provide an explanation for the elliptic instability for
f < −1/2. This would be in agreement with the observations by Afanasyev (2002)
who noticed that the instability characteristics are different from the classical elliptical
instability in that Coriolis parameter range.

Experiments in a strongly stratified medium have been performed by Billant &
Chomaz (2000a) and Otheguy et al. (2006b) for counter-rotating and co-rotating
vortex pairs. Unfortunately, they only observed the zigzag instability and were not able
to see the elliptic instability for the Froude and Reynolds numbers they considered.
It would be interesting to perform new experiments in a fluid layer sufficiently thin
to suppress the zigzag instability.

5. Conclusion
In this work, we have considered the local and global characteristics of inviscid

waves on a Lamb–Oseen vortex in a rotating environment for an unstratified fluid and
a strongly stratified fluid. We have first provided the local instability characteristics
of the Lamb–Oseen vortex with respect to the centrifugal instability and shown that
the local growth rate was superior to one tenth of the maximum angular velocity for
the whole range of Coriolis parameter between −0.85 and −0.02. The characteristics
of the global Kelvin modes have been analysed using a WKBJ approach. We have
first shown by comparing typical asymptotic results with numerical results that our
approximate dispersion relation can be trusted for small azimuthal wavenumbers. Our
approach has permitted us to determine the frequency domains where global modes
are expected as the Coriolis parameter is varied for azimuthal wavenumbers m = 0
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Figure 14. Frequency range of global Kelvin modes as a function of the Coriolis parameter
for N = 1.5. (a) m= 0, (b) m= 1. Light grey, core modes; dark grey, ring modes.

to m =3. We have shown that these domains are much smaller than the frequency
domains of the local plane waves. The sign of the energy of the global modes has
also been determined using the WKBJ approach.

These results have been discussed in the context of the elliptic instability and
new necessary conditions for instability have been obtained. In particular, we have
been able to demonstrate that the sinuous modes resulting from the coupling of the
stationary helical modes m =1 and m = −1 could be excited by the elliptic instability
only if −1/2 < f < 0.036 in the unstratified case and only if −3/2 < f < 0.036 in the
strongly stratified case. The variation of the wavenumbers of the first sinuous modes
has been provided in these ranges.

Appendix A. Weakly stratified fluid
We have limited our analysis to either unstratified fluid or strongly stratified fluid.

For weakly stratified fluid, the analysis is more complicated because of the presence of
an additional critical-point singularity where the inertial frequency of the mode equals
the Brunt–Väisälä frequency. Nevertheless, the WKBJ approach can still be used if
we exclude the frequency intervals where such a critical point is present. This means,
that the frequency intervals (−N, −N + m) and (N, N + m) have to be discarded.
For frequencies smaller than −N or larger than N + m, the global mode domains
are then given by the analysis for an unstratified fluid. For frequencies in the interval
(−N + m, N) (if not empty), the global mode domains are given by the analysis for
a strongly stratified fluid. To illustrate the method, we have provided in figure 14,
the global mode domains obtained for N =1.5 and for m = 0 (figure 14a) and m =1
(figure 14b). Note that there is no critical-layer interval for m = 0 such that we jump
directly from an unstratified configuration to a strongly stratified configuration as ω

passes N . For m =1 and N =1.5, two frequency intervals (−1.5, −0.5) and (1.5, 2.5)
where a critical layer exists are present. In these intervals, the global modes are
expected to be damped by a mechanism similar to that in an unstratified fluid (see
Schecter & Montgomery 2004; Fabre et al. 2006).
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