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In this work, we analyse the linear stability of a frozen Lamb–Oseen vortex in a
fluid linearly stratified along the vortex axis. The temporal stability properties of
three-dimensional normal modes are obtained under the Boussinesq approximation
with a Chebychev collocation spectral code for large ranges of Froude numbers and
Reynolds numbers (the Schmidt number being fixed to 700). A specific integration
technique in the complex plane is used in order to apply the condition of radiation
at infinity. For large Reynolds numbers and small Froude numbers, we show that the
vortex is unstable with respect to all non-axisymmetrical waves. The most unstable
mode is however always a helical radiative mode (m =1) which resembles either a
displacement mode or a ring mode. The displacement mode is found to be unstable
for all Reynolds numbers and for moderate Froude numbers (F ∼ 1). The radiative
ring mode is by contrast unstable only for large Reynolds numbers above 104 and
is the most unstable mode for large Froude numbers (F > 2). The destabilization
of this mode for large Froude numbers is shown to be associated with a resonance
mechanism which is analysed in detail. Analyses of the scaling and of the spatial
structure of the different unstable modes are also provided.

1. Introduction
Vortices such as the Lamb–Oseen vortex are often considered as robust coherent

structures in homogeneous fluids. The goal of the current work is to demonstrate that
when such a vortex is placed in a stratified environment it becomes unstable.

Despite the number of works in the literature , the linear stability of a Lamb–Oseen
vortex in a homogeneous medium has been demonstrated only recently (Fabre, Sipp &
Jacquin 2006). Such a vortex, which has a Gaussian vorticity profile, is considered as
more realistic than other discontinuous vortex models such as the Rankine vortex,
which have often been used in the literature. As shown by Fabre et al. (2006),
the linear normal-mode perturbations of the Lamb–Oseen vortex exhibit special
properties owing to the continuous vorticity profile. In particular, many inviscid
waves, termed Kelvin modes, become damped because of the appearance of a critical-
point singularity (Briggs, Daugherty & Levy 1970; Le Dizès 2000, 2004; Schecter
et al. 2000; Le Dizès & Lacaze 2005). In a homogeneous fluid, the Lamb–Oseen
vortex is stable, and other effects such as axial flow (Lessen & Paillet 1974; Fabre &
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Jacquin 2004), strain field (Eloy & Le Dizès 1999) or other vortices (Le Dizès &
Laporte 2002; Meunier & Leweke 2005) have to be added in order to destabilize it.

The effect of stratification has mainly been considered in the context of
oceanography and atmospheric sciences under simplifying hypotheses. The first works
have been performed in the context of shallow-water flows (see for instance Satomura
1981; Hayashi & Young 1987; Knessl & Keller 1992). For vortices, the destabilizing
role of stratification was first demonstrated by Ford (1994). More recently, Schecter &
Montgomery (2004) have analysed the stability of a family of Rankine-like vortices
under a hydrostatic hypothesis and have obtained a formal expression for the
instability growth rate. They have also shown, using wave activity concepts, that
the instability is associated with internal gravity wave emission. Further studies have
also been performed in a more applied context (Schecter & Montgomery 2006;
Hodyss & Nolan 2008; Schecter 2008). The stability of a strongly stratified Rankine
vortex has also been considered in Billant & Le Dizès (2009). Asymptotic expressions
in the small-Froude-number limit have been derived.

The analysis of stratified Lamb–Oseen vortex started with the works of Miyazaki &
Fukumoto (1991) and Le Dizès (2008), who demonstrated the existence of neutral
radiative inviscid modes. The instability has been demonstrated only recently in
Le Dizès & Billant (2009; see also Le Dizès & Billant 2006). By using a large-
wavenumber asymptotic approach (Billant & Gallaire 2005; Le Dizès & Lacaze
2005), Le Dizès & Billant (2009) have shown how the emission of internal gravity
waves can become destabilizing in certain conditions and have moreover obtained
explicit formulae for the inviscid growth rate that compare very well to numerical
results for small Froude numbers. In the present work, this theory will also be used
to explain some of the characteristics of the instability for large Reynolds numbers.
Interestingly, we shall demonstrate that the Lamb–Oseen vortex is also unstable for
small Reynolds numbers and for large Froude numbers.

The effect of stratification on Taylor–Couette flows has been investigated for many
years. It was first thought that stratification stabilizes the centrifugal instability
(Withjack & Chen 1974, 1975; Boubnov, Gledzer & Hopfinger 1995). But it was
recently found that stratification can also have a destabilizing effect in certain
regions of the parameter space (Molemaker, McWilliams & Yavneh 2001; Yavneh,
McWilliams & Molemaker 2001; Le Bars & Le Gal 2007). This so-called strato-
rotational instability (SRI) is associated with a resonance of boundary modes. Such a
resonance mechanism has been obtained in several other contexts. Satomura (1981),
Hayashi & Young (1987) and Balmforth (1999) have demonstrated its occurrence
in shallow-water shear flows. Sakai (1989) and more recently Gula, Plougonven &
Zeitlin (2009) have analysed the different types of resonance for a two-layer channel
model. Interestingly, we shall demonstrate that in large-Froude-number regime, the
Lamb–Oseen vortex is also unstable because of a resonance of Kelvin and radiative
modes.

The works on acoustic modes in jets (Luo & Sandham 1997) and in vortices
(Broadbent & Moore 1979) and on accretion disks (Papaloizou & Pringle 1984;
Narayan, Goldreich & Goodman 1987) where the instability is also due to either
wave emission or wave resonance are also worth mentioning.

Finally, one has to note that the instability we shall consider here is different from
the so-called zigzag instability which occurs for vortex pairs in a strongly stratified
fluid (Billant & Chomaz 2000; Otheguy, Chomaz & Billant 2006).

The paper is organized as follows. In § 2, the base flow and the linear stability
equations are given. We also discuss the radiative boundary conditions to apply
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to the perturbations. We show that these boundary conditions can be implemented
with a spectral code to weakly damped modes by performing the integration in the
complex plane. The spectral collocation code is briefly presented in this section. In § 3,
the stability results are presented for the most unstable modes which correspond to
helical modes (m =1). Two types of modes are shown to become the most unstable.
Stability diagrams (growth rate contours) are obtained for each mode as functions
of the Reynolds and Froude numbers. The structure of the eigenmodes is provided,
and the role of the critical points in the damping of the modes is also discussed. An
important subsection is concerned with the mechanism of resonance which explains
the instability for large Froude numbers. A criterion for its occurrence is in particular
provided. Results for higher azimuthal wavenumbers m ! 2 are presented in § 4. The
last section provides a summary of the main results.

2. Framework and numerical method
2.1. Base flow and perturbation equations

We consider an axisymmetrical Lamb–Oseen vortex in a viscous fluid of kinematic
viscosity ν, stably stratified along the vortex axis. The stratification is assumed to
be linear with a constant Brunt–Väisälä frequency N =

√
−g∂zρ/ρ0 and a mass

diffusivity D. The vortex is characterized by its radius a and circulation Γ . It
satisfies the Navier–Stokes equations under the Boussinesq approximation (Boulanger,
Meunier & Le Dizès 2007) provided that the radius a increases in time according to
a =

√
a2

0 + 4νt . In this study, this weak diffusion is neglected such that the vortex is
assumed ‘frozen’ with a constant radius a.

Using a and 2πa2/Γ as characteristic spatial and temporal scales respectively, the
angular velocity profile of the vortex can be written as

Ω(r) =
1

r2

(
1 − e−r2

)
. (2.1)

Under the Boussinesq approximation, the base flow is then defined by the three
parameters, namely the Reynolds number Re, the Froude number F and the Schmidt
number Sc, given by

Re =
Γ

2πν
, (2.2a)

F =
Γ

2πNa2
, (2.2b)

Sc =
ν

D
. (2.2c)

Whereas the Froude number and the Reynolds number will be varied in a large range
of values, the Schmidt number will be fixed to 700, a value commonly used for salted
water.

Infinitesimal disturbances of the velocity, pressure and density fields are considered
in the form of normal modes,

(u′, v′, w′, p′, ρ ′) = [u(r), v(r), w(r), p(r), ρ(r)] exp(ikz + imθ − iωt), (2.3)

where u′, v′ and w′ are the radial, azimuthal and axial velocities; r is the radial
coordinate; k and m are the axial and azimuthal wavenumbers; and ω is the complex
frequency. The normal-mode amplitudes satisfy the following equations obtained by
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linearizing the Navier–Stokes equations under the Boussinesq approximation:

iΦu − 2Ωv = −dp

dr
+

1

Re

(
∆u − u

r2
− 2im

r2
v

)
, (2.4a)

iΦv +

(
2Ω + r

dΩ

dr

)
u = − imp

r
+

1

Re

(
∆v − v

r2
+

2im

r2
u

)
, (2.4b)

iΦw = −ikp − 1

F 2
ρ +

1

Re
∆w, (2.4c)

iΦρ = w +
1

ReSc
∆ρ, (2.4d)

1

r

d(ru)

dr
+

imv

r
+ ikw = 0, (2.4e)

where ∆ =(∂2/∂r2) + (1/r)(∂/∂r) − k2 − (m2/r2) is the Laplacian operator written in
cylindrical coordinates and

Φ = −ω + mΩ. (2.5)

This system can be further reduced by eliminating pressure and axial velocity to obtain
a third-order system of the form ωA f = B f for f =[u(r), v(r), ρ(r)]. This reduced
system together with adequate boundary conditions at the origin and at infinity defines
a generalized eigenvalue problem for the frequency ω, for fixed base-flow parameters
(Re, F, Sc) and fixed real axial wavenumber k and azimuthal wavenumber m. The
two symmetries of the equations (m, ω, k, u, v, w, ρ, p) → (m, ω, −k, u, v, −w, −ρ, p)
and (m, ω, k, u, v, w, ρ, p) → (−m, −ω̄, k, ū, v̄, −w̄, −ρ̄, p̄) allow us to limit the study
to positive axial wavenumber k and positive azimuthal wavenumber m. Standing
waves are obtained as combinations of m and −m, k and −k modes. Our goal is
to determine the unstable eigenmodes which are those with a positive growth rate
Im ω, when all the parameters (except Sc) are varied. Because we want to provide
the marginal curves of the unstable modes, we will also consider neutral and weakly
damped eigenfrequencies.

2.2. Boundary conditions and numerical method

The boundary conditions that we shall apply to the perturbations are prescribed
by causality. Because the fluid is at rest at infinity, we should be able to form the
perturbations from a compact initial condition. This condition implies that when
the medium can sustain waves at infinity, these waves must propagate outward. The
condition of causality is thus in this case a condition of radiation. The difficulty with
this condition is that it does not necessarily imply that the solution vanishes at infinity
when the modes are neutral or damped (Im ω < 0).

In order to express the condition of radiation, it is necessary to determine the
possible behaviours of the perturbations at ∞. These can be easily derived by
manipulating (2.4a–e) in the large-r limit. We obtain eight independent solutions
with an asymptotic behaviour of the form rαj e±iβj r , where the radial wavenumbers βj

satisfy the equation

[(
(β2 + k2)2

Re2Sc
− iω

(β2 + k2)

Re

(
1 +

1

Sc

)
− ω2

)
(β2 + k2) +

β2

F 2

] (
(β2 + k2)

Re
− iω

)
= 0.

(2.6)
Two of the solutions of this equation, say ±β1, can be considered as ‘non-viscous’

and are such that β1 = kω/
√

F −2 − ω2 + O(1/
√

Re). The other six are associated
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with diffusion processes and depend on the Reynolds number at leading order. The
condition of radiation means that the perturbations should be only composed of
waves propagating outward at infinity. The property of these waves is that they are
spatially damped as r increased when they correspond to a positive growth rate
Im ω > 0. The condition of radiation thus imposes that the solutions should behave
near ∞ as

f ∼
4∑

j=1

fj r
αj eiβj r , (2.7)

where the radial wavenumbers βj have been chosen such that Imβj > 0 when Im ω > 0.
When Im ω " 0, βj should be obtained by analytical continuation from their definition
for Imω > 0. When Imω > 0, the above condition is equivalent to the vanishing of the
solution at ∞. But this is not always the case for Imω " 0. In particular, if one Im βj

has changed sign, the solution prescribed by the condition of radiation is no longer
bounded but increases exponentially as r goes to infinity. In that case, the condition of
radiation means that the inward wave corresponding to the exponentially decreasing
behaviour rαj e−iβj r as r goes to ∞ should not be part of the solution near infinity.
This is a priori a condition difficult to implement numerically with a spectral code.
With the spectral code we shall use, the condition we shall implicitly apply is that the
solution vanishes at infinity. As a consequence, we would not be able to provide the
eigenfrequencies in frequency domains in which the physical condition of radiation is
not equivalent to the vanishing of the solution.

To get round this difficulty, we consider the problem on a complex path of the
form r = seiθ , s ∈ Re with a small fixed value of θ . The boundary conditions are
then implemented in the complex plane by assuming that the behaviour prescribed
by the condition of radiation is also valid along the complex path as s goes to ∞.
By doing so, we modify the frequency domain in which the condition of radiation is
equivalent to the spectral condition of vanishing and therefore change the frequency
domain which can be resolved numerically.

This domain of the complex ω plane is delimited by curves which define the
so-called continuous spectrum. These curves can be obtained by solving (2.6) with
respect to ω. They are defined by the parametric expressions

ω = −i
β2 + k2

Re
, (2.8a)

ω = −i
β2 + k2

2Re

(
1 +

1

Sc

)
±

√

− (β2 + k2)2

4Re2

(
1 − 1

Sc

)2

+
β2

F 2(β2 + k2)
. (2.8b)

When we stay on the real axis, the continuous spectrum is obtained by varying β
with Imβ = 0. On a complex path of the form r = seiθ , β should be varied with the
condition Imβeiθ = 0. In figure 1, we have represented the continuous spectrum for
typical parameters for a real path and for a complex path with θ = π/10. As discussed
above, these curves delimit the ‘unphysical’ frequency domain in which the vanishing
of the solution at ∞ does not correspond to the condition of radiation. This figure
illustrates the interest of using a complex path. We clearly see the deformation of
the continuous spectrum and the enlargement of the domain in which the condition
of radiation can be correctly prescribed by the spectral code. Note in particular that
the frequency domain of interest indicated in grey is far from the unphysical domain
only if the integration is performed in the complex plane.
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Figure 1. Continuous spectrum (solid lines) and ‘unphysical’ domain (indicated by the letter
‘U’) for Re = 200, F = 0.9, k =3. (a) Real path θ = 0; (b) complex path θ = π/10.

It is worth mentioning that this technique could be used in other contexts where
unbounded solutions are physically relevant. For instance, Healey (2006) has obtained
new convectively unstable modes in the rotating-disk boundary layer, which exhibit
exponential growth normal to the disk. We may argue that such modes could probably
be obtained with a spectral code by integrating the Rayleigh equation in the complex
plane.

On the real axis or on the complex path, the numerical resolution of the eigenvalue
problem mainly follows the analysis which was performed by Fabre & Jacquin (2004)
for a vortex in a non-stratified fluid. We use a similar Chebychev spectral collocation
code, which was, for the present analysis, initially developed by Antkowiak & Brancher
with Matlab for non-stratified fluids. As in Fabre & Jacquin (2004), we have used
the parity properties of the solutions and have implemented these symmetries on
the Chebychev decomposition to speed up the calculation. We have also used a
similar mapping from s ∈ [−∞; ∞] to the Chebychev domain ξ ∈ [−1; 1] to avoid the
treatment of the regular singularity at the origin. With this mapping, the complex
radial coordinate is connected to the Chebychev variable by the relation

r =
(
H ξ/(1 − ξ 2)

)
eiθ . (2.9)

We have usually taken values of H between 1 and 12 and of θ between 0 and π/10.
Fabre & Jacquin (2004) have shown that the eigenvectors automatically satisfy the
boundary conditions at the origin, and we refer to their paper for more details. The
number Np of polynomials was varying between 80 and 500. In practice, Np = 80
was often sufficient to describe correctly the modes. Larger values of Np were mainly
used to test the convergence of the eigenvalues.

The numerical spectrum obtained with Np = 400 and H =12 for the parameters of
figure 1 is shown in figure 2. With these figures, we want to show that the genuine
eigenfrequency ω ≈ 0.128 − 0.028i, indicated by an arrow in figure 2(b), can only be
obtained with a complex path. The behaviour of the corresponding eigenmode at
infinity is eβ1r with β1 ≈ 0.348 − 0.077i. With a real path, this frequency is behind
the continuous spectrum and is not obtained by the code. It is also interesting to
note that for both cases, most of the numerical eigenvalues align very well along
with the curves of the theoretical continuous spectrum, and this provides confidence
that our numerical eigenvalue computation is correct. There is a discrete eigenvalue
near ω ≈ 0.1 − 0.05i, which is close to the correct eigenfrequency but inside the
unphysical domain. This unphysical mode is not linked to the correct eigenvalue at
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Figure 2. Close view of the numerical spectrum (dots) and theoretical continuous spectrum
(solid grey lines) near a correct damped eigenvalue (indicated by the arrow) for the parameters
of figure 1 and Np =400 and H = 12. (a) Real path θ = 0; (b) complex path θ = π/10.

ω ≈ 0.128 − 0.028i. It disappears, in figure 2(b), as the continuous spectrum sweeps
across its location.

Before presenting the results, we would like to mention a second advantage in
performing the integration along a complex path. In the inviscid limit, the perturbation
equations possess critical-point singularities where −ω+mΩ(r) = 0 or −ω+mΩ(r) = ±
1/F . When ω is real, these singularities can be on the real axis. By integrating along
the line r = seiθ with θ = π/10, these singularities are thus avoided. Moreover, for the
eigenvalues that we will consider, which will satisfy 0<ωr < m for m > 0 (see the grey
region in figure 1b), the way they are avoided corresponds to the prescription obtained
by causality. The critical points are indeed in the negative imaginary half-plane when
Im ω > 0: they should therefore be avoided in the positive imaginary half-plane. In
the presence of a small amount of viscosity, the singularities disappear, but viscous
scales appear close to the critical points, as well as in large domains of the complex
plane (Le Dizès 2004). By integrating in the complex plane, these viscous regions are
avoided. The eigenmode structure then remains mainly non-viscous on the integration
contour. It can therefore be better resolved with a small number of polynomials. The
interest of such an approach has also been demonstrated by Fabre et al. (2006).

3. Instability of helical modes (m =1)
Unstable modes have been obtained for m =1, 2, 3 but not for m =0. The helical

modes (m = 1) have been found to be the most unstable. They are presented first.

3.1. Unstable-mode characteristics

Results in the inviscid and strongly stratified limits have been obtained and discussed
in Le Dizès & Billant (2009). They have used a shooting method to obtain the
dispersion relation of the unstable helical modes (m = 1). For small Froude numbers,
they have shown that the Lamb–Oseen vortex exhibits an infinite number of unstable
inviscid modes and that the frequencies of these modes depend only on the product
kF . Their results are compared with the present spectral-code results for a Froude
number F = 0.9 in figure 3. Only the first four unstable branches have been plotted.
The good agreement with an error smaller than 1 % constitutes a validation of the
code.

The first mode, which is the most unstable for these parameters, is special, as it is
unstable in a finite interval of kF (kF ∈ [0, 8] in figure 3). It also exhibits a special
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Figure 3. (a) Frequency ωr and (b) growth rate ωi of the first four more unstable modes for
Re = ∞, F = 0.9. The symbols represent our results with Np = 150, H = 3, θ = π/10. The lines
represent results obtained by the shooting method of Le Dizès & Billant (2009). Only the
unstable modes have been plotted.
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Figure 4. Density structure of the first two most unstable helical modes for F = 0.9 and
Re = ∞. (a) First mode obtained for k = 2.5, ω = 0.126 + i0.0078; (b) second mode (first ring
mode) obtained for k = 22.1, ω = 0.055 + i0.00206. The solid lines (respectively dashed lines)
are the positive (respectively negative) contours.

structure which, compared with the other modes, is mainly localized in the vortex core
(see figure 4a). In contrast, all the other modes are unstable in an infinite-wavenumber
interval [kn, ∞[. As shown in Le Dizès & Billant (2009), the properties of these modes,
as well as the instability mechanism, can be understood by using a large-wavenumber
Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) analysis. They have demonstrated that
all these modes exhibit the same structure. They are mainly localized in a ring
region and discretized by the number of half-oscillations in this region. Following
the terminology introduced in Le Dizès & Lacaze (2005), we shall call these modes
ring modes. All modes including the first mode (non-ring mode) exhibit a radiative
part, composed of internal gravity waves, which extends to infinity and which is
responsible for the destabilization. The density structure of the second mode, which
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Figure 5. Variation of the first two branches with respect to the Froude number in the weakly
stratified case for m= 1 and Re = ∞. (a) Frequency ωr and (b) growth rate ωi versus k, for
F = 0.1 (dotted line), F = 1 (solid line), F = 2 (dashed line) and F = 3 (dash-dotted line).

corresponds to the first ring mode is plotted in figure 4(b). Both the localization in a
ring and the radiative part are visible in this figure. Note also that the amplitude of
the ring mode is negligible in the vortex core, in contrast with the first mode shown in
figure 4(a). In the geophysical fluid dynamics community, the ring modes correspond
to the so-called vortex Rossby waves (Schecter & Montgomery 2004) because they
are weakly retrograde waves and are mainly localized in the region in which the
(potential) vorticity varies. They differ from the three-dimensional Kelvin modes of
vortices in homogeneous fluid (Kelvin 1880), which disappear or become strongly
damped for small Froude numbers.

The effects of the viscosity and of the stratification on the first two modes are
shown in figures 5 and 7. In figure 5, inviscid characteristics are displayed for
various Froude numbers. We clearly see that the frequency and the growth rate are
mainly functions of kF for all F . For small F , this property is in agreement with
the results of Le Dizès & Billant (2009). Note, however, that for moderate Froude
numbers, the growth rate of the modes starts to be affected, especially the first mode.
In particular, the growth rate of the first mode strongly decreases as F increases
above 1 and becomes negative when F > 2.5. The second mode is, by contrast, less
damped by an increase of F . It becomes the dominant mode when F > 2. For F = 3,
we can however note that the growth rate curve changes and exhibits oscillations.
As we shall see below, these oscillations are associated with a phenomenon of
resonance.

As mentioned above, the eigenmodes possess critical-point singularities where either
−ω +mΩ(r) = 0 (type I) or −ω +mΩ(r) = ± 1/F (type II). When the mode becomes
neutral some of these singularities are on the real axis. They do not affect the
numerical resolution because they remain far from the complex integration contour.
For small F , only type I critical points are present. The role of these critical points was
discussed in Schecter & Montgomery (2004) in the limit of vanishing Froude numbers.
For large F , both types of critical points can be present. Here, the critical points
which tend to have a stabilizing effect are of type II. These critical points have the
same effects as the regular critical points in non-stratified vortices (Le Dizès & Lacaze
2005; Fabre et al. 2006). In two dimensions, they are known to damp the modes with
a damping rate proportional to the vorticity gradient at the critical point (Briggs
et al. 1970; Le Dizès 2000; Schecter et al. 2000). These modes, which are quasi-modes
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Figure 6. (a) Density and (b) vorticity structure of the first helical mode (m= 1) for F = 1.5,
Re = 105, k = 1.6, ω = 0.136 + 0.00538i. The critical radius is here rc ≈ 0.68.

in the inviscid limit, intervene in the rapid axisymmetrization process of perturbed
vortices (Schecter et al. 2000; Hall, Bassom & Gilbert 2003). In the geophysical
context, the critical-layer damping has also been used to interpret the spontaneous
alignment of quasi-geostrophic vortices (Schecter, Montgomery & Reasor 2002). In
contrast, critical points of type I tend to have a destabilizing role (Le Dizès & Billant
2009).

In the present study, it is the appearance of type II critical points which can explain
the progressive stabilization of the eigenmodes when F is increased above 1. The trace
of such a critical point is visible in the eigenmode structure, as illustrated in figure 6.
Compare, in particular, figures 6(a) and 4(a) which display the density structure of
the first mode respectively with and without the critical layer. Note also the phase
change of the vorticity structure across the critical layer (see figure 6b). Such a phase
change is typical of viscous critical layers.

A critical point of type II is also present in the second mode when F exceeds 1,
but it has a weaker stabilizing effect. More precisely, its stabilizing effect is delayed to
higher values of the Froude number. This difference is associated with the different
structure of the second mode which is not localized in the vortex core. Critical point
II indeed reaches the region in which the second mode is localized for much larger
values of F . We shall come back to this point in § 3.3, where the properties of the
second mode will be analysed in more detail.

The effect of the Reynolds number on the first two branches is shown in figure 7.
We can first notice that the frequencies are almost unaffected by Reynolds number
variations. However, as expected, viscosity is stabilizing; moreover, the larger the
wavenumber, the stronger the damping. Note for instance that for Re = 3000, the
second mode is completely stable, and the instability band of the first mode has
moved to smaller wavenumbers. Surprisingly, we shall see below that viscosity does
not kill the instability and that the first mode remains unstable however small
the Reynolds number. This small-Reynolds-number behaviour is reminiscent of the
Kelvin–Helmholtz instability which is also active for Reynolds numbers of order 1
(Esch 1957). Note, however, that for small Reynolds numbers, viscous diffusion of
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viscous diffusion of the base flow is expected to affect the results.

the base flow is no longer negligible. The unstable character of the ‘frozen’ base flow
for small Reynolds numbers may not be useful in practice.

3.2. Instability properties of the first helical mode

We now detail how the properties of the first helical mode vary with F and Re
when it is the most unstable mode. The maximum-growth-rate contours (maximum
over all k) of the first helical mode in the (Re, F ) plane are shown in figure 8. We
have also indicated in this figure the parameter region in which the first mode is no
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Figure 9. Characteristics of the most unstable first helical mode for Re = ∞ (solid line),
Re = 106 (dashed line), Re =3000 (dash-dotted line), Re = 200 (dotted line) as a function of
the Froude number F . (a) Frequency ωr ; (b) growth rate ωi; (c) product kF .

longer dominant. Maximum-growth-rate curves for fixed Reynolds numbers are also
shown in figure 9(b). The corresponding frequency ωr and the product kF of the most
unstable mode are displayed in figure 9(a, c). A first point to note is that for Re > 200,
the frequency of the most unstable mode does not vary much with respect to the
Froude number and is always between 0.1 and 0.14. The plots of figure 9(c) confirm
the scaling mentioned above: the most unstable mode has a wavenumber kmax which
scales as k−

c (Re)/F for small Froude numbers and large Reynolds numbers, where
k−

c (∞) ≈ 2.3 (from figure 9c). Note, by contrast, that for large Froude numbers, the
most unstable wavenumber is mainly constant.

Figure 9(b) demonstrates that only in the inviscid limit, the mode is most unstable
for small Froude numbers. Its maximum growth rate ωmax

i ≈ 8.75 × 10−3 is obtained
in the inviscid limit for F → 0. The scaling kmax ∼ k−

c (Re)/F explains the stabilization
of the mode for small Froude numbers at a finite Reynolds number. This damping
is a viscous effect which becomes more and more important as F decreases because
of the divergence of the most unstable wavenumber for vanishing F . For arbitrarily
large but finite Reynolds numbers, we therefore expect a stabilization for sufficiently
small Froude numbers. For instance, for Re =106, the first helical mode becomes
stable at F =0.015.

The stabilization for large F owes to the appearance of a critical point of type II.
As explained above, the first mode is more affected by this critical point because it
appears when F is increased above 1 in the region in which this mode is localized.
This also explains why the second mode can become more unstable than the first
mode for large Froude numbers. The region of the parameters in which the second
mode is the most unstable has been indicated in figure 8. More details on this mode
are given below.

Figure 8 shows that the first mode is not stabilized by viscosity and remains
unstable for small Reynolds numbers in a large domain of Froude numbers. The
peak of instability of the Lamb–Oseen vortex is reached for a small Reynolds number
Re = 26. The characteristics of the most unstable mode over all the parameters are
the following: ω = 0.0198 + 0.00879i, k = 0.385, Re = 26 and F =1.15. The vorticity
structure of this mode is given in figure 10(a). It is different from the most unstable
mode obtained for infinite Reynolds number and the same Froude number (see
figure 10b). It has a simple dipolar structure and resembles a displacement mode.
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Figure 11. Characteristics of the most unstable first helical mode as function of F and Re.
(a) Isocontours of the frequency ωr ; (b) isocontours of the product kF .

Interestingly, the structure of the modes changes continuously from figure 10(b) to
figure 10(a) as the Reynolds number is decreased. This is illustrated in figure 10(c),
where we have plotted the vorticity field of the eigenmode obtained at an intermediate
Reynolds number Re = 80. The continuous variation is also visible in figure 11, where
we have displayed the isocontours of the frequency and of the product kF of the most
unstable first mode in the (F, Re) plane. We clearly see that there is no discontinuity
and therefore no jump from one mode to another when either the Reynolds number
or the Froude number is varied.

When Re goes to zero, both the frequency and the wavenumber of the most
unstable mode tend to zero as seen in figure 11. Because the numerical method is not
adapted to compute very small-wavenumber modes, we have stopped the calculation
at k = 0.05. The left marginal curve obtained in figures 8 and 11 thus corresponds
to the marginal curve for a fixed wavenumber k = 0.05. We suspect that there is no
critical Reynolds number if k is allowed to go to zero.

3.3. Instability properties of the second helical mode

As discussed in § 3.1, there is an infinite number of unstable helical modes in the
inviscid limit. In the previous section, we have given the property of the first mode
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and Re =106 (dashed line) as a function of the Froude number F . (a) Frequency ωr ;
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which is the most unstable mode in a large range of parameters. However, we have
also seen that the second mode, which is the first in the family of ring modes, can
become more unstable for large Froude numbers. In this section, we provide more
information on this mode in this regime.

The maximum-growth-rate contours for this mode as function of the base-flow
parameters are shown in figure 12. This plot must be compared with figure 8 which
shows the characteristics of the first mode. In contrast with the first mode, the second
mode possesses a critical Reynolds number Rec ≈ 104 below which it is stable for
all Froude numbers. On the other hand, for supercritical Reynolds numbers, the
instability domain of the second mode extends to much larger values of the Froude
number than the first mode. A large domain of the parameters, which is above the
upper dashed line in figure 12, is then dominated by the second helical mode.

As for the first mode, we have represented in figure 13 the frequency and the
wavenumber of the most unstable mode for fixed values of the Reynolds number
as a function of the Froude number. The first point to note is that the growth rate
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curves of the second mode shown in figure 13(b), though they extend to larger Froude
numbers, are similar to those of the first mode for the same large Reynolds numbers
(see figure 9b). The maximum growth rate is also obtained in the inviscid limit as F
goes to 0. It is equal to ωmax

i ≈ 0.002. In this domain of parameters (small Froude,
large Reynolds), the second mode is however always less unstable than the first mode.

An interesting aspect of the second mode is seen in figure 13(a, c): the frequency
and wavenumber curves exhibit discontinuities as F varies. No such behaviour
was observed for the first mode. These discontinuities are associated with mode
jumps. They can be understood by looking at figure 14, where the growth rate of
the second mode is plotted versus k for different Froude numbers. We see in this
figure that the growth rate curves exhibit oscillations which become more and more
pronounced as F increases. These oscillations are limited to small values of k, but
they become sufficiently important for large F to change qualitatively the form of
the instability domain. For large F , the second mode becomes unstable in instability
bands centred on fixed wavenumbers which are independent of the Froude number.
Each discontinuity observed in the frequency and wavenumber curves in figure 13
corresponds to a change in the most unstable peak.

The origin of these instability peaks can be attributed to a phenomenon of
resonance. In figure 15, we have considered a large-Froude-number case in which
this phenomenon is clearly visible. We have plotted in figure 15(a) the frequencies
of the modes involved in the resonance. The almost vertical dotted lines correspond
to damped Kelvin modes. The solid oscillating curve corresponds to the second
helical mode. This radiative mode is also damped except when its frequency matches
the frequency of one of the Kelvin modes. This is clear evidence of a mechanism of
resonance. Note in particular that the axial group velocities (∂ωr )/(∂k) of both kinds of
modes are opposite. At the crossing point, the energies of the waves are also expected
to be opposite in agreement with the condition of instability by resonance (for details,
see Cairns 1979; Fukumoto 2003). The Kelvin modes can also be destabilized by a
resonance with the third helical mode (which is not plotted in figure 15a because it
is too strongly damped). This leads to the bands of instability plotted as the dotted
lines in figure 15(b). The fact that the two types of modes simultaneously exist can
be understood by using the results of the asymptotic theory performed in Le Dizès &
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Lacaze (2005) and Le Dizès & Billant (2009). In Le Dizès & Lacaze (2005), it
was shown that for infinite Froude number, inviscid Kelvin modes with frequencies
0 <ωr < 0.13 do exist. These modes are localized in the vortex core between the centre
and a (turning) point rt (ωr ) defined by ωr =ω−(rt ) with

ω−(r) = mΩ(r) −
√

2Ω(r)
(
2Ω + r

dΩ

dr

)
. (3.1)

When stratification is introduced, these Kelvin modes are still present and not
immediately affected by the critical point rc of type II which appears in their structure.
As explained in Le Dizès & Lacaze (2005), the Kelvin modes are expected to remain
quasi-neutral as long as this critical point is outside the region in which the mode
is localized, that is to say as long as rt (ωr ) <rc(ωr , F ). This is always the case when
F < 2.59. However, when F > 2.59, this limits the frequency of the quasi-neutral
Kelvin modes to an interval (0, ωl(F )), where ωl(F ) is defined by rt (ωl) = rc(ωl , F )
(see figure 16). For the radiative modes, we have the opposite problem. As shown
by Le Dizès & Billant (2009), these modes are known to be quasi-neutral in the
strongly stratified case. In this limit, they possess similar frequencies, 0 <ωr < 0.13, as
Kelvin modes in the non-stratified case and are localized in the ring region delimited
by the two turning points where ωr = ω−(r). The left turning point of this region
corresponds to the turning point delimiting the Kelvin mode region. Therefore, both
modes are localized in different regions. As for the Kelvin modes, we expect the
radiative modes to remain quasi-neutral as long as the critical point does not enter
the region in which the mode is localized. When F > 2.59, this provides a constraint
on the allowed frequencies which must satisfy ωl(F ) <ωr < 0.13. With these large-
wavenumber analysis arguments, both types of modes are thus expected to remain
quasi-neutral in distinct frequency intervals having the frequency ωl(F ) as common
boundary (see figure 16). It is therefore around this frequency that we expect a possible
mechanism of resonance. This is in agreement with the numerical results obtained
for F = 8. For this value of F , we have ωl(8) ≈ 0.114, which is close to the value for
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which the mechanism of resonance is the most efficient (see figure 15). Using these
arguments, we predict that the mechanism of resonance is active on the helical ring
modes for F satisfying 2.59 <F < 18.5. Above F =18.5, the critical point is within the
domain in which the ring modes are localized whatever their frequency. The modes
are therefore expected to be too strongly damped to be resonantly excited.

The resonance mechanism is also visible in the structure of the modes. In
figure 17(b–d ), we have plotted the density of the eigenmodes for (c, d ) two
resonant wavenumbers and (b) one non-resonant wavenumber for a particular set of
parameters. The frequency of these modes has been indicated in figure 17(a). In order
to plot these modes in the physical space, especially the stable mode (b), we have
used a particular integration path which is real up to r = 20 and then complex on the
line r = 20 + seiθ to satisfy the condition of radiation. To facilitate the comparison of
the different profiles, we have normalized the density of the eigenmodes such that its
maximum amplitude in the radiative domain r ∈ [5; 20] is equal to 1. By doing so, we
can remark that the amplitude of the mode in the core region r < 1.6 is greater for the
unstable cases. The stable mode is by contrast more localized in the critical layer. It is
also interesting to compare the number of wavelengths in the core region for the two
successive resonant modes shown in figure 17(c, d ). We can notice that there is one
more half-wavelength in figure 17(d ) than in figure 17(c). This is in agreement with
the fact that the resonance occurs with two successive Kelvin modes which possess
this particular property (Le Dizès & Lacaze 2005).

4. Instability of higher azimuthal wavenumbers: m =2, 3, . . .

For higher azimuthal wavenumbers (m ! 2), unstable modes have also been
obtained. Their structure and properties resemble those of the helical ring modes.
In figures 18 and 19, we have plotted the first unstable branches for an inviscid

and strongly stratified case for m = 2 and m =3 respectively. As for the helical ring
modes, there are an infinite number of unstable inviscid modes, which are all unstable
in semi-infinite-wavenumber intervals. The frequency of each mode increases from
zero to a finite value which is 0.4 for m =2 and 1 for m =3 as the wavenumber
increases. However, the growth rate of each mode reaches its maximum for a finite
wavenumber. As for the m =1 case, we have also observed that for small Froude
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Figure 18. (a) Frequency ωr and (b) growth rate ωi for m= 2, Re = ∞ and F = 0.3

numbers, the dependence with respect to the Froude number appears only via a
rescaled wavenumber kF .

The density and vorticity structure of an unstable mode m =2 has been illustrated
in figure 20. We can notice in figure 20(a) the radiative zone which extends far
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Figure 20. Structure of the eigenmode m= 2, k = 19.8 and ω = 0.244 + i0.00173 for F = 0.4
and Re = ∞. (a) Density contours; (b) axial vorticity contours.

from the vortex. In the vorticity plot (figure 20b), we also observe near rc ≈ 2.9 the
trace of a critical point of type I. In contrast with the helical modes m =1, the
mode m =2 extends into the core region. This property can be understood from
the large-wavenumber asymptotic theory already used above. Using this theory, we
expect the eigenmodes to be localized between two turning points corresponding to
zeros of the function ω−(r) defined in (3.1). As the left turning point is closer to the
centre than for the modes m =1, the extension of the mode towards the centre is
thus more important. For higher azimuthal wavenumbers m ! 3, the left turning point
disappears, and all the modes become core modes. For m =2, the two turning points
merge for ω ≈ 0.4. For m =3, the right turning point collapses to the centre for ω ≈ 1.
We therefore do not expect eigenmodes above these frequencies in agreement with the
numerical results shown in figures 18 and 19. With this argument, we can also predict
that there exist radiative core modes for all m ! 3 with frequencies between 0 and
m − 2.
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Figure 22. Characteristics of the most unstable mode m= 2 as a function of the Froude
number for Re = ∞ (solid line), Re = 106 (dashed line). (a) Frequency ωr ; (b) growth rate ωi;
(c) product kF .

For the m =2 case, the most unstable mode is the first mode (see figure 18). The
instability diagram for this azimuthal wavenumber can therefore be obtained by
considering the first mode only. In figure 21, we have plotted the maximum-growth-
rate contours of this first mode as functions of Re and F . If we compare this diagram
with the one obtained for the second helical mode (see figure 12), we can notice that
the characteristics of the growth rate contours with respect to these parameters are
similar. For m =2, however, the growth rate values are smaller; the critical Reynolds
number is larger; and the maximum growth rate tends to be reached for a Froude
number around 0.5 instead of 1 for the modes m =1. Yet, in the inviscid limit, the
maximum growth rate is also reached for vanishing Froude numbers (see figure 22b).
A similar scaling of the most unstable wavenumber with respect to the Froude
number is obtained: kmax is constant for large F but proportional to 1/F for small
F . The mechanism of resonance is also active for the modes m =2 as can be seen in
figure 23. This leads to discontinuities in the plots of the most unstable frequency and
wavenumber (see figure 22a, c). However, using the theoretical arguments mentioned



Stability of a stratified Lamb–Oseen vortex 275

5 10 15 20
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

k

ωi

(× 10–3)

Figure 23. Maximum growth rate versus k of the first mode m= 2 for Re = ∞. F = 0.5
(thick solid line), F = 0.75 (dotted line), F =1 (dash line), F =1.5 (solid line)

above, we predict that resonance is possible for Froude numbers between 0.5 and 2.8
only.

For m =3 and for larger m, similar characteristics are obtained, but the modes are
less unstable and therefore become destabilized only for larger Reynolds numbers.
The large-wavenumber asymptotic theory also predicts that the unstable radiative
modes are all core modes and that no phenomenon of resonance is possible at any
Froude number.

5. Conclusion
In the current work, we have obtained the stability characteristics of a Lamb–Oseen

vortex stratified along its axis for a large range of the Froude and Reynolds numbers.
We have shown that for moderate Froude number the vortex is unstable at any
Reynolds number, with respect to a helical perturbation (m =1) which resembles a
displacement mode with a radiative structure. For large Reynolds numbers (Re > 104)
and large Froude numbers (F > 2), the vortex becomes more unstable with respect
to another helical radiative mode which is localized in a ring. Moreover, we have
shown that the instability for large Froude numbers is boosted by a mechanism of
resonance. We have demonstrated that the radiative mode can enter in resonance with
vortex Kelvin modes for particular frequencies in a specific range of Froude numbers.
This mechanism selects particular wavenumbers which were found to be independent
of the Froude number and which make the vortex unstable up to F ≈ 10. Unstable
perturbations with larger azimuthal wavenumbers were also found. All these modes
are less unstable than the helical ring mode and exhibit a larger critical Reynolds
number. The mechanism of resonance has also been shown to be present for m =2
but not for larger azimuthal wavenumbers.

The results obtained in the present paper could have important consequences for
geophysical applications. We have shown that the generic vortex model of the Lamb–
Oseen vortex is unstable for large Reynolds numbers in a very large range of Froude
numbers. We have also shown that the radiative instability concerns a very large
band of wavenumbers. This implies that flat vortices (oceanic vortices, large-scale
atmospheric vortices) could still be affected by the instability. In particular we have
seen that for F > 1, helical ring modes are inviscidly unstable for all kF larger than 8.
Note also that in the same Froude number regime, these vortical structures are also
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affected by another instability mechanism as soon as they are slightly tilted with
respect to the direction of stratification (Boulanger et al. 2007; Boulanger, Meunier &
Le Dizès 2008).

It is worth mentioning that background rotation has not been considered in the
present work. Weak negative background rotation is known to be destabilizing: the
vortex becomes unstable with respect to the centrifugal instability. Positive background
rotation could by contrast have an opposite effect if inviscid theoretical predictions
hold true (Schecter & Montgomery 2004; Le Dizès & Billant 2009). It will therefore
be interesting to quantify this stabilizing effect and determine whether it can suppress
the present instability.

It is important to emphasize the radiative nature of the unstable modes. We have
demonstrated that the geostrophic motion associated with the Lamb–Oseen vortex
is able to emit spontaneously internal gravity waves. This phenomenon is a clear
illustration that balanced geostrophic motions and unbalanced oscillating motions are
strongly coupled and that the evolution of the vortex could not have been predicted by
filtering out the unbalanced motions associated with internal gravity waves. Similar
interactions between balanced and unbalanced motions have been documented in
several recent studies (Molemaker, McWilliams & Yavneh 2005; Williams, Haine &
Read 2005; Vanneste & Yavneh 2007; Gula et al. 2009).
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