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The three-dimensional stability of an inflection-free boundary layer flow of length
scale L and maximum velocity U0 in a stably stratified and compressible fluid of
constant Brunt–Väisälä frequency N, sound speed cs and stratification length H is
examined in an inviscid framework. The shear plane of the boundary layer is assumed
to be inclined at an angle θ with respect to the vertical direction of stratification. The
stability analysis is performed using both numerical and theoretical methods for all the
values of θ and Froude number F = U0/(LN). When non-Boussinesq and compressible
effects are negligible (L/H � 1 and U0/cs � 1), the boundary layer flow is found to
be unstable for any F as soon as θ �= 0. Compressible and non-Boussinesq effects are
considered in the strongly stratified limit: they are shown to have no influence on the
stability properties of an inclined boundary layer (when F/ sin θ � 1). In this limit, the
instability is associated with the emission of internal-acoustic waves.
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1. Introduction
Tollmien–Schlichting waves are viscous perturbations which are usually responsible

for the destabilization of inflection-free boundary layers such as the Blasius boundary
layer. These unstable waves do not exist in an inviscid framework. However, in the
presence of stratification or compressibility, inflection-free boundary layer flows can
become unstable with respect to new inviscid instability modes. The goal of the
present study is to analyse the characteristics of such instability modes. We also want
to understand the effect of the inclination angle between the shear plane and the
direction of stratification on the stability properties.

The inviscid stability properties of boundary layers have been mainly studied in two
frameworks: supersonic flows and geophysical flows. When the fluid is compressible,
Mack (1969) explains that as soon as the flow becomes supersonic, there is an
additional sequence of modes. These additional modes were called higher modes when
first discovered by Mack (1965), in order to distinguish them from the mode that
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had been studied by Dunn & Lin (1955) and Lees & Reshotko (1962). At low Mach
numbers, this mode, called the first mode, represents the extension to compressible
flow of Tollmien–Schlichting (TS) waves. But as the Mach number approaches three
for adiabatic boundary layers, the viscous instability mechanism that is responsible
for TS waves vanishes, while unstable first-mode waves persist. In this Mach number
regime, the mechanism of instability of the first mode is inviscid and corresponds to
the extension in the presence of the temperature gradient of the Rayleigh inflectional
criterion (Lees & Lin 1946). The instability mechanism of higher modes is different
and associated with wave radiation, and for this reason the terminology ‘acoustic
modes’ has often been used (see discussion in Mack 1990). These unstable modes
have also been found in confined mixing layers (Tam & Hu 1989a), in compressible
two-dimensional jets (Mack 1990), in supersonic round jets (Tam & Hu 1989b; Luo &
Sandham 1997; Parras & Le Dizès 2010), and in vortices (Broadbent & Moore 1979;
Kopev & Leontev 1983).

In stratified fluids, most studies have considered configurations where shear and
stratification are aligned in the same direction. Moreover, they have mainly been
concerned with the effects of stratification on the shear instability in relation with the
Richardson criterion for instability (Howard 1961; Miles 1961). However, the presence
of a ground was also shown to create other less unstable modes (Davis & Peltier 1976;
Mastrantonio et al. 1976). The mechanism of instability associated with over-reflection
was further analysed by Lindzen & Barker (1985) and Smyth & Peltier (1989), among
others. Although the presence of an inflection point is not a necessary condition for
instability when a solid ground is present (Chimonas 1974), inflection-free profiles
have been found to be generally stable on the inviscid basis (Chimonas 2002). Only
combinations of inflection-free profiles with abrupt density variations have been shown
possibly to lead to instability (Churilov 2005, 2008). Nevertheless, the waves which
are often observed in atmospheric boundary layers are not easily explained by such
mechanisms. In the present work, we shall provide an alternative explanation where
the instability comes from the angle that shear and stratification could make with each
other. In the final discussion, we shall show that this instability could be active in
nocturnal atmospheric boundary layers when the angle exceeds 20◦.

We shall analyse both stratification and compressible effects by considering the
idealized configuration of a hyperbolic tangent profile with constant Brunt–Väisälä
frequency N and constant sound speed cs. The plane of the boundary layer will
be assumed to be inclined at an angle θ with respect to the vertical direction of
stratification. We shall see that when the boundary is inclined, the flow exhibits
unstable radiative modes owing to the stratification. These radiative modes, whose
unstable character is associated with the wave emission, are similar to the acoustic
waves of compressible flow mentioned above. They have also been obtained in shallow
water shear flows (see, for instance, Satomura 1981; Takehiro & Hayashi 1992; Ford
1994; Balmforth 1999; Dritschel & Vanneste 2006). In a continuously stratified fluid,
they have been found in columnar vortices (Schecter & Montgomery 2004; Billant
& Le Dizès 2009; Le Dizès & Billant 2009; Riedinger, Le Dizès & Meunier 2010a;
Riedinger, Meunier & Le Dizès 2010b), in rotating flows (Le Dizès & Riedinger
2010; Riedinger, Le Dizès & Meunier 2011) and in jets (Candelier 2010). The
instability mechanism is directly related to the mechanism of over-reflection (Basovich
& Tsimring 1984; Le Dizès & Billant 2009).

The paper is organized as follows. In § 2, the base flow and the perturbation
equations are provided. Both compressible and non-Boussinesq effects are considered
in the formulation. The strongly stratified limit (small F) is considered in § 3. In this
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limit, we show that compressible and non-Boussinesq effects have no influence on
the stability properties. In § 4, the weakly stratified limit (large F) is analysed.
In § 5, general results are provided when compressible and non-Boussinesq effects
are negligible. In the last section, an application to a stable nocturnal atmospheric
boundary layer is discussed.

2. Base flow and perturbation equations
We consider a two-dimensional boundary layer flow in a stably stratified,

compressible, non-rotating, inviscid fluid. The velocity field ug, pressure pg, density
ρg and potential temperature Θg of such a flow are assumed to be governed by the
Euler equations

Dug

Dt
= − 1

ρg
∇pg − geZ, (2.1a)

Dρg

Dt
+ ρg∇ ·ug = 0, (2.1b)

DΘg

Dt
= 0, (2.1c)

and the perfect gas law

Θg = pg

ρgR

�
p0

pt

�1−1/γ

, (2.2)

where g is gravity, eZ is the unit vector in the vertical direction, p0 is a pressure of
reference, R is the perfect gas constant and γ = cp/cv is the ratio of specific heats.

The potential temperature Θ(Z), pressure p(Z) and density ρ(Z) of the base flow
are assumed to depend on the vertical coordinate Z (oriented upward) only. The
fluid is then characterized by a sound speed cs, a Brunt–Väisälä frequency N, and a
stratification length H defined by

c2
s = γ p

ρ
, (2.3a)

N2 = g
Θ

ΘZ, (2.3b)

H = Θ

ΘZ
, (2.3c)

where ΘZ is the derivative of the potential temperature with respect to Z. In the
following, these three quantities are assumed to be constant. Note that the assumption
of constant sound speed implies that the gas is isothermal.

The base flow velocity field is assumed to be given by

u = U(z)ex = U0 tanh(z/L)ex, (2.4)

to mimic a boundary layer flow in a viscous fluid with no-slip boundary conditions.
The flow is two-dimensional and defined above the boundary z = 0. The (x, z) shear
plane of the base flow is assumed to make an angle θ with respect to the direction
of stratification Z, as shown in figure 1. With this definition, θ = 0 corresponds to the
flow over a horizontal surface, whereas θ = π/2 corresponds to the flow over a vertical
surface. For any angle θ , the base flow is aligned with the isopycnals. Note also that
the base flow velocity field does not possess any inflection point within the fluid. The



Stability of boundary layers 527

U0

g

L

x

x

y

y

z

z

FIGURE 1. (Colour online available at journals.cambridge.org/flm) Sketch of the base flow
and definition of the angle θ .

velocity field (2.4) with the pressure p, density ρ and potential temperature Θ defined
above satisfy (2.1a–c) and (2.2). In the following, we consider perturbations to this
base flow which satisfy slip boundary conditions at z = 0.

The velocities, lengths and pressure are non-dimensionalized by the maximal
velocity U0, the boundary layer scale L and ρ0U2

0 , respectively. The base flow
is then characterized by four dimensionless parameters: the angle θ , the Froude
number F = U0/(LN), the Mach number M = U0/cs and the non-dimensional
stratification length H̄ = H/L, from which it is useful to define the Eckart parameter
Γ = M2H̄/F2 − 1/(2H̄) (see Eckart 1960). Typical values of these parameters for
stable atmospheric boundary layers are F = 0.1–50, M = 0.005–0.1, H̄ = 10–1000 and
Γ = 0.001–0.1.

Local temporal stability properties are obtained by considering perturbations of
velocity u� = (u�, v�, w�), pressure p�, density ρ � and potential temperature Θ � as a plane
wave

(u�, p�, ρ �, Θ �) = ρ1/2(u, p/ρ, ρ/ρ, Θ/Θ) exp(ikxx + ikyy − iωt), (2.5)

where kx and ky are real wavenumbers in the streamwise and spanwise directions and
ω = ωr + iωi is the complex frequency. The real part ωr is the oscillation frequency and
the imaginary part ωi defines the growth rate. The perturbation equations are obtained
by linearizing equations (2.1a–c) around the base flow defined by (2.3a–c) and (2.4).
By taking into account that (2.2) implies Θ = M2p − ρ, these equations can be written
as

−iφu + Uzw + ikxp = 0, (2.6a)
−iφv + ikyp − Γ sin θp − sin θb = 0, (2.6b)

−iφw + dp
dz

+ Γ cos θp + cos θb = 0, (2.6c)

−iφb + sin θ

F2
v − cos θ

F2
w = 0, (2.6d)

−iφM2p + ikxu + ikyv + dw
dz

− Γ sin θv + Γ cos θw = 0, (2.6e)

where φ = ω − kxU is the inertial frequency of the perturbation, Uz is the derivative
with respect to z of the base flow velocity U, and b = −(gL/U2

0)Θ is the amplitude

http://journals.cambridge.org/flm
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of the buoyancy perturbation. Thanks to the renormalization factor ρ1/2 in (2.5), the
system (2.6) takes a symmetric form in which the Eckart parameter Γ appears as the
natural quantity to measure non-Boussinesq effects in the presence of compressibility
(for more explanations, see Gossard & Hooke 1975). Note that it is only when
both compressible and non-Boussinesq effects are negligible (M = Γ = 0) that the
perturbations satisfy div(u) = 0.

By eliminating u, v, w and b from (2.6), a single equation for p can be found:

(φ̄2 − sin2θ)
d2p
dz2

+
�
−2φ̄z

(2φ̄2 − 1)sin2θ − φ̄4

φ̄(1 − φ̄2)
− 2iky sin θ cos θ

�
dp
dz

+
�

k2
x(1 − φ̄2) + k2

y(cos2θ − φ̄2) − 2ikyφ̄z sin θ cos θ
2φ̄2 − 1

φ̄(1 − φ̄2)

− 2φ̄zΓ cos θ
φ̄3

(1 − φ̄2)
− Γ 2φ̄2 − M2φ2(1 − φ̄2)

�
p = 0, (2.7)

where φ̄ = φF, φ̄z = −FkxUz. This equation is the extension in the presence of
compressible and non-Boussinesq effects of the equation already derived in Candelier,
Le Dizès & Millet (2011). In the absence of flow (U = 0), this equation possesses
oscillatory solutions of the form exp(ikzz), where kz is related to kx, ky and ω by
the general dispersion relation of internal-acoustic waves. If we define vertical and
horizontal wavenumbers as k2

v = (kz cos θ − ky sin θ)2 and k2
h = k2

x + (ky cos θ + kz sin θ)2,
this dispersion relation can be written in a well-known form (see for instance
Houghton 1986; Watada 2009):

k2
v = k2

h

�
1

ω2F2
− 1

�
+ M2

�
ω2 − 1

F2

�
− Γ 2. (2.8)

The boundary conditions to be applied to the pressure amplitude p are deduced from
the condition that the normal velocity w should vanish at the boundary z = 0. Using
(2.6), this condition gives

(sin2θ − ω2F2)
dp
dz

+ (iky sin θ cos θ + Γ F2ω2 cos θ)p = 0 at z = 0. (2.9)

Far away from the boundary, we assume that the perturbation propagates energy
outward. Since the flow is uniform at infinity, far away from the boundary, the
perturbation is a plane wave whose characteristics are defined by (2.8). The wave
propagating energy outward can be obtained by the causality condition that it should
be spatially damped outward when ωi > 0.

To solve this eigenvalue problem, we have used two different numerical techniques.
We have either integrated (2.7) using a shooting method or solved the complete system
(2.6) by a pseudo-spectral code which was already used in Riedinger et al. (2010a)
and Candelier et al. (2011). We refer the readers to these papers for more details.

In the following, we first consider the limit cases where F is either small or large.

3. The strongly stratified limit (small F)
In this section, we consider the limit where both F and F/ sin θ are small.

We then implicitly assume that the boundary layer is inclined (θ �= 0) in a
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strongly stratified fluid. In this limit, it is convenient to consider the new function
q(z) = exp(ikyz cot θ)p(z), which satisfies

(φ̄2 − sin2θ)
d2q
dz2

+
�
−2φ̄z

(2φ̄2 − 1)sin2θ − φ̄4

φ̄(1 − φ̄2)
− 2iky

cos θ

sin θ
φ̄2

�
dq
dz

+
�

k2
x(1 − φ̄2) − k2

y

sin2θ
φ̄2 − 2φ̄z cos θ

φ̄3

(1 − φ̄2)

�
Γ + i

ky

sin θ

�

− Γ 2φ̄2 − φ̄2(1 − φ̄2)

�
q = 0, (3.1)

with the boundary condition

(sin2θ − ω2F2)
dq
dz

+
�

Γ + i
ky

sin θ

�
ω2F2 cos θq = 0 at z = 0. (3.2)

For small F/ sin θ , (3.1) reduces at leading order in F (assuming kyF = 0(1) and
Γ F = 0(1) to keep the maximum number of terms in the equation) to

d2q
dz2

− 2
βz

β

dq
dz

+ κ2
x (M

2
gβ

2 − 1)q = 0, (3.3)

where

β = U(z) − ω

kx
, (3.4a)

κx = kx

sin θ
, (3.4b)

M2
g = M2 + Γ 2F2 + k2

yF2

sin2θ
, (3.4c)

while the boundary condition is just

dq
dz

(z = 0) = 0. (3.5)

The above (3.3) is exactly the equation we obtain for two-dimensional modes
(ky = 0) when the fluid is unstratified for any θ , or when Γ = 0 and θ = π/2 for
any F, that is, when the stratification plays no role. The above reduction therefore has
strong implications for the instability mechanism in the strongly stratified limit. In this
limit, the boundary layer stability is then equivalent to the stability of two-dimensional
perturbations in a non-stratified compressible boundary layer. Note also that we are in
an isothermal configuration (because we have assumed cs uniform). The instability is
therefore expected to be due to the ‘acoustic modes’ only. In particular, the so-called
first mode of a compressible boundary layer is not expected to be present (Mack
1969).

As the angle θ has disappeared from (3.3), the dependence of the stability properties
with respect to θ is entirely contained in the change of variables (3.4a–c). These
equations tell us that the streamwise phase velocity ω/kx is a function of κx and Mg

only. This means that the complex frequency ω can be written as

ω = ωπ/2(κx, Mg) sin θ, (3.6)
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FIGURE 2. Characteristics of the most unstable mode in the limit of small F as functions
of Mg and κx for θ = π/2. (a) Contours of the growth rate Im(ωπ/2). (b) Contour of the
oscillation frequency Re(ωπ/2). In both plots, the marginal stability curve is indicated by a
thick solid line.

where ωπ/2 is the frequency obtained for θ = π/2. Figure 2 provides the contour levels
of Im(ωπ/2) and Re(ωπ/2) in the (κx, Mg) plane. Using (3.4) and (3.6), these plots
provide the growth rate and the oscillation frequency of the most unstable mode for
any M, Γ , kx, ky and θ provided that F/ sin θ is small. The curve of marginal stability,
indicated as a thick black line, corresponds to the contour of zero growth rate.

Figure 2(a) shows that the general Mach number Mg has to be larger than Mc ≈ 2.2
for instability. It is interesting to note that this critical Mach number is very close to
the value obtained by Mack (1969) for the destabilization of the first two-dimensional
acoustic mode in an adiabatic Blasius boundary layer. In view of the definition (3.4c)
of the general Mach number, this condition is reached when, for instance, the flow
is strongly supersonic, M > Mc, non-Boussinesq effects are important, Γ F > Mc, or
the perturbations are three-dimensional with k̃y = kyF/ sin θ > Mc. In fact, whatever the
Mach number M and the value of Γ , the flow is always unstable to perturbations
satisfying

k2
yF2 > sin2θ(M2

c − M2 − Γ 2F2). (3.7)

Figure 2(a) tends to show that the maximum growth rate is obtained when both Mg

and κx go to infinity with a fixed ratio Mg/κx. This is confirmed in figure 3, where we
have plotted the maximum growth rate and the oscillation frequency versus Mg/κx for
various κx. We clearly see that the curves tend to a limit curve indicated with a thick
line as κx goes to ∞. This curve can be obtained by performing an asymptotic analysis
of (3.3) as κx → ∞ with Mg/κx = O(1). Such an analysis has already been performed
by Le Dizès & Riedinger (2010) for Taylor–Couette flow. When κx → ∞, the most
unstable mode is selected by its behaviour close to the boundary, and determining its
structure requires a rescaling of the spatial variable. Introducing the new variables

z̃ = κxz, (3.8a)

M̃g = Uz(0)Mg

κx
, (3.8b)

ω1 = ω/(Uz(0) sin θ), (3.8c)
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FIGURE 3. (Colour online) Characteristics of the most unstable mode in the limit of small
F/ sin θ as a function of Mg/κx for θ = π/2 and different κx (κx = 1, 2, 5, 10, 20, 50). The
curve obtained in the limit κx → ∞ is indicated by a black thick line. (a) Maximum growth
rate Im(ω). (b) Oscillation frequency Re(ω).

equation (3.3) becomes at leading order in 1/κx

d2q
dz̃2

− 2
z̃ − ω1

dq
dz̃

+ [M̃2
g (z̃ − ω1)

2 −1]q = 0. (3.9)

This equation depends on a single parameter M̃g. Note in particular that the boundary
layer profile only appears via a scaling parameter Uz(0). The present analysis thus
applies to any boundary layer flow provided that Uz(0) is non-zero. Here, we have
Uz(0) = 1. The most unstable mode over all M̃g is obtained for M̃g ≈ 4.9 and the
corresponding eigen-frequency is ω1 ≈ 0.9909 + 0.0220i.

In practice, the base flow parameters M and Γ are fixed. Making Mg → ∞ is
then only possible by considering large ky such that we have M̃g ∼ Uz(0)Fky/kx.
The present analysis then tells us that, whatever the boundary layer profile, for
small F, the maximum growth rate is reached for large kx and large ky such that
ky/kx ∼ 4.9/(FUz(0)) for any fixed M, Γ and θ (provided θ �= 0). The frequency of
the most unstable mode does not depend on M and Γ but varies with θ according
to ω ∼ (0.99 + 0.022i)Uz(0) sin θ . The spatial structure (pressure fluctuation) of the
most unstable mode is plotted in figure 4. The radiative structure is clearly visible
in this plot. Note that the cross-stream wavenumber kz that can be evaluated from
figure 4 is approximately kz ≈ 10πκx = 10πkx/ sin θ , whereas ky ≈ 4.9kx/(FUz(0)). The
wavenumber kz is therefore larger than kx but smaller than ky. This also demonstrates
that the ratio kz/kx � 1/ sin(θ) is strongly dependent on the inclination angle, whereas
the ratio ky/kx � 1/F only depends on F.

4. The weakly stratified limit (large F)
When F is large, that is, when the flow is only weakly stratified, the instability

does not disappear. This was first noticed for the radiative instability of a rotating
potential flow (see Le Dizès & Riedinger 2010). For large F, the unstable modes
tend to be localized near the boundary. As in the previous section, these modes can
be captured by performing a local asymptotic analysis near z = 0. If we introduce
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FIGURE 4. Eigenfunction (pressure amplitude) of the most unstable mode (obtained for
M̃g ≈ 4.9 by the large κx and large Mg analysis) when F/ sin θ � 1. Absolute value (thick
solid line); real part (solid line); imaginary part (dashed line).

the local variable z̄ = kxUz(0)Fz, (2.7) becomes, at leading order in 1/F, an equation
where the dependence with respect to the base flow has disappeared:

(ζ 2 − sin2θ)
d2p
dz̄2

+
�

2
−ζ 4 + (2ζ 2 − 1)sin2θ

ζ(ζ 2 − 1)
− 2iRk sin θ cos θ

�
dp
dz̄

+
�

2iRk sin θ cos θ(2ζ 2 − 1)

ζ(ζ 2 − 1)
+ R2

k(cos2θ − ζ 2)

+ 2 cos θζ 3

ζ 2 − 1
Γ̄ − Γ̄ 2ζ 2 + M̄2ζ 2(ζ 2 − 1)

�
p = 0, (4.1)

where

ζ = z̄ − ω1, (4.2)

and

ω1 = ωF, (4.3a)

Rk = ky

kxFUz(0)
, (4.3b)

Γ̄ = Γ

FkxUz(0)
, (4.3c)

M̄ = M
F2kxUz(0)

. (4.3d)

The boundary condition reads

(sin2θ − ω2
1)

dp
dz̄

+ (iRk sin θ cos θ + Γ̄ ω2
1 cos θ)p = 0 at z̄ = 0. (4.4)
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FIGURE 5. Characteristics of the most unstable mode in the limit of large F in the (θ, Rk)
plane for M̄ = Γ̄ = 0. (a) Growth rate Im(ω1). (b) Oscillation frequency Re(ω1).

In the large F limit, the eigenvalue problem still depends on four parameters Rk,
Γ̄ , M̄ and θ , but the parameters F and kx are no longer present. Moreover, as in the
strongly stratified limit, the problem does not depend on the form of the boundary
layer profile. The analysis therefore applies to any boundary layer flow, the only
restriction being Uz(0) �= 0.

We now consider the particular case M̄ = Γ̄ = 0. This case corresponds to situations
where M and Γ are of order one or smaller, which is clearly verified in all
atmospheric applications. The characteristics of the most unstable mode are plotted
as a function of the two other parameters Rk and θ in figure 5. The growth rate
contours are shown in figure 5(a) and the oscillation frequency contours are shown in
figure 5(b). A cross-section of these Im(ω1) and Re(ω1) contour levels at θ = π/2 is
shown as a thick black line in figure 6(a,b) respectively. In these figures we have also
plotted against Rk the rescaled growth rate and oscillation frequency obtained for finite
F from the general (2.7). We can see that the growth rate and oscillation frequency
curves do converge when F increases to the large F curves obtained from (4.1). This
constitutes a validation of the asymptotic approach.

The characteristics of the most unstable mode over all Rk are indicated in figure 7
as a function of θ . It is important to note that there is apparently no non-zero
critical angle below which the flow becomes stable. As shown in figure 7(a), the
maximum growth rate vanishes at θ = 0 but is strictly positive for all non-zero angles.
It increases monotonously with θ to reach its maximum value for θ = π/2 rad, that is,
for the case of the flow on a vertical surface. Note that the oscillation frequency of the
most unstable mode also increases with θ (see figure 7a), but the ratio Rk maximizing
the instability decreases with θ (see figure 7b).

The spatial structure (pressure amplitude) of the most unstable mode for θ = π/2 is
shown in figure 8. It is interesting to compare this plot with the structure of the most
unstable mode for small F shown in figure 4. In contrast with the small F case, the
pressure amplitude of the most unstable mode does not exhibit oscillations away from
the boundary.

5. General case (F = O(1))
For fixed values of F, the problem depends on four base flow parameters F, M, Γ

and θ and two perturbation parameters kx and ky, and could a priori be difficult to
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M̄ = Γ̄ = 0 and θ = π/2 rad and different values of F (F = 1, 1.11, 1.25, 1.42, 1.66, 2,
2.5, 3.33, 5, 10, 100). (a) Rescaled maximum growth rate Im(Fω). (b) Rescaled oscillation
frequency Re(Fω).
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ratio Rmax

k .

simplify. To limit the parameter space, we have considered configurations where both
compressibility and non-Boussinesq effects are negligible, and have therefore assumed
that both M and Γ can be taken equal to zero. Such a configuration is realistic for
atmospheric applications where Γ and M are generally small.

For small F (§ 3), we have observed that the maximum growth rate is obtained when
both kx and ky are large. For large F, we have seen that the stability characteristics
do not depend on the values of kx and ky but on the ratio ky/kx only. It is then
natural to assume that the most unstable mode is also obtained for large kx and ky

when F = O(1). This hypothesis permits us to use a reduced equation which is similar
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to (4.1), albeit an additional term of the form (1 − ζ 2)/ (Uz(0)F)2. For M = Γ = 0,
the problem then only depends on θ , F and the ratio ky/kx, and is described by the
equation

(ζ 2 − sin2θ)
d2p
dζ 2

+
�

2
−ζ 4 + (2ζ 2 − 1)sin2θ

ζ(ζ 2 − 1)
− 2iRk sin θ cos θ

�
dp
dζ

+
�

2iRk sin θ cos θ(2ζ 2 − 1)

ζ(ζ 2 − 1)
+ R2

k(cos2θ − ζ 2) − 1
F̄2

(ζ 2 − 1)

�
p = 0, (5.1)

where

ζ = kxUz(0)Fz − ωF, (5.2a)

Rk = ky

kxFUz(0)
, (5.2b)

F̄ = Uz(0)F. (5.2c)

The condition at the boundary can be deduced from (4.4).
In figure 9, we have plotted the growth rate and oscillation frequency contours of

the most unstable mode in the (θ, Rk) plane for F̄ = 1. We can see that pictures similar
to the small F case (figure 5) are obtained. The maximum growth rate is obtained for
θ = π/2 and decreasing θ is stabilizing as for large F and small F.

The variation of the characteristics of the most unstable mode with respect to F are
plotted in figure 10 for different values of θ . In these plots, the small F and large F
predictions obtained in the two previous sections are also indicated. We can see that
these asymptotic laws match very well the general numerical results for both small and
large F.
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The effect of the inclination angle is also visible in this figure. We clearly see in
figure 10(a) that decreasing θ is stabilizing for any F. For θ = 0, the boundary layer
becomes neutrally stable for any F.

6. Conclusion
We have analysed the inviscid stability of a stably stratified compressible boundary

layer flow when the boundary surface is inclined with respect to the isodensity levels.
Our main result is to have proved that the boundary layer flow is unstable with
respect to inviscid perturbations as soon as the surface is inclined with respect
to the horizontal. Although the numerical results have been obtained for a specific
velocity profile, we have also shown that the instability characteristics do not depend
on the precise form of the boundary layer profile as long as it is not inflectional
and with a non-vanishing shear rate at the boundary (Uz(0) �= 0). In particular, the
results apply to the Blasius boundary layer profile as well as other more realistic
local boundary layer profiles. The growth rate of the most unstable mode has been
shown to increase with the inclination angle to reach its maximum for a vertical
surface θ = π/2. The unstable modes have been shown to be three-dimensional
and to correspond to large wavenumbers. In the weakly stratified limit, when both
compressible and non-Boussinesq effects are negligible, both the oscillation frequency
and the growth rate have been shown to scale with the Brunt–Väisälä frequency N.
In the strongly stratified limit, frequency and growth rate become independent of the
Froude number. Moreover, as long as the inclination angle is not too small (such that
F/ sin θ � 1), these quantities become proportional to the sine of the inclination angle.
In the strongly stratified limit, compressible and non-Boussinesq effects can be easily
taken into account. We have shown that they do not modify the instability nor the
characteristics of the most unstable modes.

We can try to apply the results to a real configuration encountered in the atmosphere.
Consider a stable nocturnal atmospheric boundary layer as reported in Frehlich,
Meillier & Jensen (2008). These authors measured the following characteristics:
U0 = 10 m s−1, L = 100 m, H = 10 km, from which we can deduce N = 0.031 rad s−1,
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FIGURE 10. (Colour online) Characteristics of the most unstable mode over all ky/kx as
a function of F for M̄ = Γ̄ = 0 and θ = π/8,π/4, 3π/8,π/2. (a) Maximum growth rate
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and the Froude number F ≈ 3.2. We can verify that compressible and non-Boussinesq
effects are small: M ≈ 0.03, Γ ≈ 0.01. Both global rotation and viscosity are also
negligible as the Rossby number is Ro = U0/(Lf ) ≈ 1000, and the Reynolds number
Re = U0L/ν ≈ 108 (with ν = 10−5 m2 s−1 and f = 10−4 s−1 at mid-latitude). If the
boundary layer was inclined at an angle θ = π/8 rad, we would obtain the following
characteristics for the most unstable mode: ω = (0.0088 + i0.00024) rad s−1, and
ky/kx = 20. Both the period T = 2π/ωr ≈ 12 min, and the growth time τ = 1/ωi ≈
69 min of the most unstable mode would then be compatible with the 12-hour
period of occurrence of the flow. Moreover, the viscous cut-off length, which can be
estimated from Lν = √

ν/ωi ≈ 0.2 m, would also be much smaller than L. The shortest
wavelength of the most unstable mode would not be expected to be smaller than L.
This would give a spanwise wavelength λy ≈ 100 m, and a streamwise wavelength
λx = 20λy ≈ 2000 m. In conclusion, the stable atmospheric boundary layer reported
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in Frehlich et al. (2008) would be unstable by a long streamwise wavelength mode if
its boundary surface was inclined at 22.5◦. This particular example demonstrates that
this instability could be active in the atmosphere, even for relatively small inclination
angles. It would be interesting to confirm this prediction with real data.

In this paper, we have not considered viscous or diffusion effects. Although these
effects are expected to be stabilizing on the present instability, they are also known to
be a source of instability in boundary layers. In a homogeneous fluid, the growth rate
of viscous modes (Tollmien–Schlichting waves) scales as Re−1/2 (Drazin & Reid 1981).
These modes are thus expected to remain less unstable than the inviscid modes found
here for sufficiently large Reynolds numbers. However, in the large-Reynolds-number
limit, the boundary layer also becomes extremely sensitive to external perturbations
which can transiently grow and be responsible for the boundary layer (by-pass)
transition (Schmid & Henningson 2001). How these transient behaviours are affected
by stable stratification and compete with the inviscid instability described here remains
an interesting open issue (see Bakas & Farrell 2009). Moreover, we do not know the
nonlinear evolution of the present radiative instability and whether it can lead to a
boundary layer transition and/or enhance mixing near the wall.
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