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The structure of a stratified boundary layer over a tilted bottom with a small
streamwise undulation is studied theoretically and numerically. We show that the
tilt of the boundary can induce strong density variations and wall-transverse velocities
in the critical layer when the frequency of the forcing by the topography kU(z.)
is equal to the transverse Brunt—Viisidld frequency N sin (N being the vertical
Brunt-Viisild frequency). The viscous solution in the critical layer, obtained and
compared with direct numerical simulation results, is in good agreement for both the
scaling and the spatial structure. The amplitude of the transverse velocity response
is also shown to exhibit quasi-resonance peaks when the stratification strength is
varied.
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1. Introduction

Stratified boundary layer flows occur in both the ocean and the atmosphere when
a tidal current or a nocturnal wind develops along a surface. The topology of these
surfaces is generally complex and in the case of slopes, tilted with respect to the
stratification. A natural approach to account for small amplitude topology is to
consider a corrugated surface. For instance, these surfaces are representative of ocean
bottoms such as seamounts where strong flow acceleration along the slopes has been
reported in Genin et al. (1986). Sand waves formation, merely found along shallow
continental slopes, are also a representative configuration (Besio et al. 2004). In the
present work, we show that a free stream in a stratified medium on a tilted corrugated
surface generates a strong transverse flow by a subtle interplay of stratification and
shear.

Stratified boundary layer flows have mainly been studied on flat horizontal surfaces.
Numerous works exist in the atmospheric context (see Garratt 1992). More recently,
Mahrt (2014) reviewed the characteristics of the stably stratified atmospheric boundary
layer. Corrugated surfaces have often been used to facilitate boundary layer transitions.
There is an important literature on the receptivity of boundary layers for its possible
applications to aeronautics (see for instance Saric, Reed & Kerschen 2002). In
the atmospheric context, most works were motivated by understanding the effect of
topography (e.g. Jackson & Hunt 1975; Taylor, Mason & Bradley 1987; Gong, Taylor
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& Dornbrack 1996; Athanassiadou & Castro 2001), and vegetation (e.g. Finnigan,
Shaw & Patton 2009) on boundary layer turbulence characteristics. The influence
of a stable stratification has also been considered in the experimental works of
Ohya (2001), Ohya & Uchida (2008). On the theoretical side, Thorpe (1992) has
derived the structure of the lee internal waves generated by an undulated topography
over a sloping bottom, in the presence of stratification and rotation. This structure
has been observed numerically by MacCready & Pawlak (2001) over a sinusoidal
topography but also over a solitary hill. Finally, we mention the recent works of
Wu & Zhang (2008a,b) who analysed the development of a viscous instability wave
and its interaction with a bump in a stratified boundary layer using the triple-deck
framework (Sykes 1978). The effect of a slope has also been considered in a few
field studies (Park & Park 2006; Nadeau ef al. 2013) but we are not aware of any
fundamental study in a controlled experimental framework.

When the surface is flat but inclined, we know that the deformation of the isopycnal
near the boundary is the source of a flow along the slope which has been studied
by Garrett, MacCready & Rhines (1993). Candelier, Le Dizes & Millet (2012) have
recently shown that an inviscid instability, different from the inflectional instability,
may also be active. This instability involves a phenomenon of over-reflection (Acheson
1976; Lindzen & Barker 1985) between the boundary and a critical point where the
phase velocity matches the mean-flow velocity. It is very similar to the instability
observed around a rotating cylinder (Riedinger, Le Dizeés & Meunier 2011). In the
present work, this instability, as well as the viscous boundary layer instability are
not considered. We therefore assume that either the flow is stable (this will be the
situation for our numerical simulations) or the forced response described below is not
destroyed by these instabilities. We consider a small sinusoidal undulation with a fixed
wavenumber. We are going to show that the wave generated by this undulation may
exhibit a singular structure due to the presence of a critical point singularity.

This very thin structure is located within the boundary layer, with a large amplitude,
even for small amplitudes undulations, which is very likely to be an important source
of mixing and transport for ocean and atmospheric flows over slopes.

The paper is organized as follows. In §2, we introduce the framework with the
flow configuration and the numerical procedure. In §3, we first provide numerical
results. These results are then interpreted using an asymptotical analysis for large
Reynolds numbers and small undulation amplitudes which leads to an expression for
the maximum transverse velocity. The dependence of this expression on the Froude
number and the undulation wavenumber is further analysed using a small Froude
number description. Details of the analysis are given in appendix A. Section 4
provides a brief summary of the results and tentative applications to oceanic currents
and atmospheric boundary layers.

2. Problem formulation

2.1. Flow configuration
We consider a boundary layer flow in a stratified fluid on a sinusoidally deformed
tilted wall, as shown in figure 1. The wall is globally tilted in the cross-stream

direction such that the z*-axis of the (x*, y*, z*) frame attached to the wall makes an
angle o with respect to the Z*-direction of stratification. The tilted frame of reference
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FIGURE 1. Sketch of the flow geometry.

is obtained from the horizontal/vertical coordinates (X*, Y*, Z*) using the change of
variables:

xX*=X*  y'=Y'cos(a) +Z"sin(e) and z*=Z"cos(a)—Y*sin(x). (2.1a—c)

The inlet flow is assumed to be a typical tanh boundary layer flow of thickness §*
and free stream velocity UZ:

U* = U~ tanh <Z ;Z°> .. (2.2)

A small penetration length zj has been introduced to allow the flow to slide on the
boundary with a velocity Uj = U tanh(zj/6%). This boundary condition mimics the
condition obtained on the top of a viscous sublayer where roughness or small scale
inhomogeneities could be present. It is the simplest way to model the flow over a
canopy.

The fluid is assumed stably stratified along the vertical Z* direction with a constant
buoyancy frequency

N*=/=(g/p)(@p*/0Z"), 2.3)

where g is gravity.
The boundary is defined by the two-dimensional surface

2 =" (") = h* sin(kx) 2.4)

where h* and k* correspond to the amplitude and wavenumber of the topography,
respectively.

The flow is governed by the Navier—Stokes equations under the Boussinesq
approximation, the incompressibility condition and the advection—diffusion equation
for the density, that is,

=—— — —gez +VvAu, (2.5a)
Dr Po Po
V.u*=0, (2.5b)
Dp*
=Kk Ap”, (2.5¢)

Dt
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where v and « are the kinematic viscosity and the thermal diffusivity, respectively. It
satisfies the following boundary conditions at the wall

Wlz—p=Ugt; Vp-nl.y =0, (2.6a,b)

where ¢ and n are the wall tangent and normal vectors, respectively. Far from the wall
(¥ — o0), the velocity and density fields are assumed to satisfy

w~Uye; p*~p"=p; (1 — (" cosa + y* sin a)N*z/g) . (2.7a,b)
In the following, we non-dimensionalize all the variables using §*, U} and pj,

and denote these variables without the star. The problem is characterized by six non-
dimensional parameters

U* 8+ U
Re==2"  F—_—=_ 4 h=k/s",
% N*6*
U*
k=k's*, Pr=", Uy=-2. (2.8a—g)
K U%,

We are interested in the configurations where Re is large and % is small. We also
implicitly assume that the boundary layer flow on the undeformed wall is stable.
This means that the Reynolds number is below the critical Reynolds number for the
appearance of unstable Tollmien—Schlichting modes and unstable radiative modes.

2.2. Numerical procedure

Since the inlet flow is two-dimensional, we can assume that the flow remains
two-dimensional downstream that is independent of the cross-stream variable y.
For most numerical simulations, the numerical computational domain is taken from
x=—7.5to 52.5 and from z=rn(x) to H =18. However, the boundary deformations
only extend from x=0 to x=42.5, as shown in figure 2(b). The infinite flow domain
is transformed into a Cartesian one using the mapping x=x, z=2z— n(x), the barred
coordinates being the computational ones. The numerical procedure is detailed in
Marquillie & Ehrenstein (2002) and proved to accurately predict the phenomenon
of transitional boundary layers (Marquillie & Ehrenstein 2003; Passaggia, Leweke
& Ehrenstein 2012). Since the mapping transformation requires n(x) to be twice
differentiable, the lower boundary has been smoothed in the vicinity of x =0 and
x = 42.5 using regularization procedures based on convolution between the wall
function n(x) and a third order polynomial kernel. The inlet boundary condition is
given by the boundary layer profile (2.2) and p = p.

Following the numerical procedure of Marquillie & Ehrenstein (2003), a convective
condition has been implemented at the outflow for all velocity components u and the
density p such that

du du  p 3p 1 /Z'r
—=U— —=U—— U== (42.5, 7)d 2.9a,b
o Cox’ ot ox 7 f, w0k (2.9a.)
where z' was chosen for the streamwise velocity u,(42.5, z) to be equal to 0.5, which
is the uniform flow at infinity (Marquillie & Ehrenstein 2002).

When addressing the question of stratified incompressible flows in a finite
computational domain, sponge layers appear to be mandatory to avoid spurious
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FIGURE 2. (a) Velocity profiles at the inlet (solid line) and at the summit of an oscillation
x=730.3 (dashed line) for Re =593 and 4 =0.06. (b) Graph of the lower boundary n(x)
of the small computational domain at 4 = 0.06.

modes arising from a finite computational domain together with boundary conditions
(2.9). In the present case, the sponge layers consist of hyperbolic tangent functions
which smoothly cancel the advection term of the equation for the density p. In the
present study, they are present close to the inlet for —7.5 <x < —4.5 and far from
the wall for 15 < z < 18, which has proved to be appropriate to achieve convergence
in all cases considered. The present calculations have been performed calculating first
the vertical flow solution at o = 90°. Restarting from this solution, the tilted flow
solution has been computed until convergence of the time marching algorithm up to
1076 of the solution vector.

Most numerical simulations are carried out in the computational domain defined
above. The Reynolds number Re is varied from 60 to 1200, the Froude number F from
0.95 to 1.15, the tilt angle o from 15 to 75° and the non-dimensional wavenumber
k from 0.85 to 1.25. Different computational domains have also been considered in
order to treat more extreme values of k& and document the behaviour of the solution
for small and large Froude numbers. In all the simulations, the sliding velocity is fixed
to Uy=0.1 and the Prandtl number Pr is equal to 0.7 in order to simulate the thermal
diffusion of air.

3. Structure of a stratified tilted boundary layer
3.1. Numerical results

In this section, we present the typical characteristics of the flow obtained in the
numerical simulations. Figure 3 shows the transverse component of velocity in a
plane normal to the bottom. The field contains a series of alternate lobes clearly
separated from the bottom with the same wavelength as the undulated topography,
but in phase quadrature. Above these lobes, the velocity presents almost vertical bands
of weak amplitude, characteristic of lee waves created by an undulated topography.
Figure 4 shows the profile of velocity and density at the altitude of the lobes z. =
0.75. It is striking to see that the transverse velocity (dashed line) is five times larger
than the normal velocity although the sliding velocity along the topography generates
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FIGURE 3. The two-dimensional field of the transverse velocity v(x, z) for h=0.06, F =
1.046, k=1.041, Re=1186 and o = 1t /4.
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FIGURE 4. Streamwise profile of the normal velocity w (solid line), transverse velocity v
(dashed line) and density p (dotted line) at z. =0.75. Here Re =593, F =1.046, k=1.041,
a=m/4 and h=0.06.

only a normal velocity. The density also exhibits large sinusoidal perturbations which
are 10 times larger than the normal velocity. These oscillations start at the beginning
of the undulated topography (x =0), grow during a transient stage of approximately
three to four undulations and then saturate.

The altitude z. of the divergence of v and p has been measured for various
parameters. As shown in figure 5, it is independent of the height of the topography
and very weakly dependent on the Reynolds number. However, it clearly depends
on the Froude number, the tilt angle and the wavenumber. This critical altitude
z. corresponds to the position where the normal component of the wavevector
diverges. Indeed, in the tilted frame of reference (x, y, z), a lee wave with wavevector
k = (k, 0, m) has a frequency given by the linear dispersion relation:

1 lknor ]l VI +m?sin’ o

KU+ ———F———. (3.1

w=kU =+ =
F k|l Fy/m? 4+ k2
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FIGURE 5. Position of the critical layer z. measured at the maximum of v. In (a), z. is
plotted as a function of 4 (M) and as a function of Re (o) for F =1.046, « = /4 and
k=1.041. In (b), z. is plotted as a function of sin «/(kF) for Re =593 and h = 0.06.
In (b), symbols correspond to ' (M), k (e) and « (A); the solid line corresponds to the
velocity profile U(z.).

The variation of U with altitude bends the waves such that the normal wavenumber
m varies with altitude in order for the wave to be stationary. Assuming =0 in (3.1)
leads to S
1 —-kUF
m=kK—— (3.2)
kK*U*F? — sin” «
which diverges for
sin o
Fk
This criterion defines a critical altitude z. which is plotted in figure 5 as a solid line.
It is reasonably close to the altitude where v and p attain their maxima. This indicates
that the strong variations in v and p come from the divergence of the wavenumber
m. However, this analysis is only valid when the wavelength of the lee wave is much
smaller than the thickness of the boundary layer. In the next section, the analysis is
extended for any wavelength, but for the case of small undulation height .

Ulz) = (3.3)

3.2. Expansion for small wall oscillation amplitudes

The structure of the boundary layer can be described asymptotically for a small
amplitude /& of the topography and a large Reynolds number. The solution is
decomposed into a base flow (U,, p,, p») and a small perturbation (u, p, p) which is
postulated as a spatial Fourier mode of wavenumber k& and amplitude #:

(w, p. p) = 3hk(@, U,/ (88)p, p)e™ +c.c. (3.4)

The base flow corresponds to the solution on a flat but inclined wall. In the limit
of large Reynolds numbers, it remains close to the inlet flow as long as we consider
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streamwise location to be small compared to the viscous diffusion scale x, = O(Re).
The normal flow correction induced by this weak diffusion process is O(1/Re). A
weak cross-flow is also present as soon as the wall is inclined. This flow is associated
with density correction generated by the inclination of the isopycnals with respect to
the boundary. To cancel the normal density gradient at the wall, a density correction
and a weak cross-flow is created very close to the wall. This boundary layer flow
was analysed in detail in Garrett et al. (1993). Neither the cross-flow, nor the density
correction has an impact far from the boundary.

The equations satisfied by the amplitude of the Fourier mode can be obtained by
linearizing the governing equations (2.5) around the base flow solution. We get to first
order in h:

1 -
ikUu +wU' = —ikp + R—AIZ, (3.5a)
e
1 -
ikUv = —sinap + — A, (3.5b)
Re
o . op | R
ikUw=—cosap — — + —Aw, 3.5¢)
0z Re
US v~vcosa+5sino¢+ 1 Aj (3.5d)
i = , .
P P2 Repr-’
. 0w
iku+ — =0, (3.5¢)
0z

where A = 97 — k*. Note that we have artificially kept small diffusion terms but
neglected the base flow corrections mentioned above. We will see below that the
diffusion terms do become important close to the critical layer singularity while the
base flow corrections remain negligible. The boundary conditions obtained from (2.6)
are, to leading order in A,

z=0)=i(1-Up); vz=0)=0; wiz=0=Uy; 3.06(z=0)=0. (3.6a-d)

Far from the wall, as z goes to infinity, the perturbation should either vanish or be an
outgoing wave.

In the inviscid regions where the diffusion terms are negligible, we get the following
equations from (3.5) as Re — oo:

. Uow U - ikUw cos o - W sin & cos &
p=———w—, p=—5—""""— 5 S V= —————— 3 . (3.70—6')
ik 0z ik sin” o — K2U?F? sin” o — K2U?F?
Substituting these expressions in (3.5¢) leads to a single differential equation for the
wall-normal velocity

., U 1 —RUP

w —?w—k w=0. (3.8)

3 oV
sin” o — K2U?F?

This equation reduces to the well-known Taylor—Goldstein equation for the tilt angle
a =0. It is clear that the last term of this equation is singular at the point z. where
kU(z.)F =sina. Such a singularity corresponds to a so-called critical point. Viscous
effects have to be re-introduced to smooth the singularity. The singularity is weak
as an expansion of the coefficients in powers of z — z. indicates that w expands as
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FIGURE 6. Normal profile of (a) normal velocity w and (b) transverse velocity v. The
profiles are measured on the lee side of the undulations at x = 7w /k (e, solid line) and
on the bottom of the undulation at x = 7.5w/k (O, dashed line). Symbols correspond
to numerical simulations and lines to theoretical predictions. Here h = 0.03, F = 1.046,
k=1.041, Re=1423 and o = t/4.

w~at + atk(z — z.) log |z — z.| + b*(z — z.) with Kk =k cos? a/(2 sin «FU’(z.)) on
either side of z.. This critical point singularity is the classical singularity found in the
stability of homogeneous shear flows (Lin 1955). Note that it is different from that
of stratified shear flows over horizontal walls. The viscous smoothing can be used to
get the adequate jumps conditions across the critical point:

a"=a =w.; b"=b +inkw,. (3.9a,b)

These jump conditions can also be obtained from the property that the inviscid
solution remains asymptotically valid in any contour that avoids the critical point
in the lower complex half-plane, a condition which is derived from the asymptotic
behaviour of the viscous solutions near z. or from the condition of causality (see Lin
1955, for more explanation on this issue). These conditions tell us that the solution
is continuous at z. but its derivative exhibits a jump.

Using these jump conditions, (3.8) with the boundary conditions prescribed above
can easily be solved using conventional integration software; we obtain the solution
plotted in figure 6(a). Note that the jump of W' at z. is clearly visible on the real part
of the signal. In this figure, the real part and the imaginary part of the solution are
compared to the numerical signals of the normal velocity at the lee side (kx=7m) and
at the bottom (kx =7.57) of the undulation, respectively. We can note that, except in
the wall boundary layer, there is good qualitative agreement between the two results.

The inviscid approximation of the normal velocity is continuous at z.. By contrast,
(3.7) and (3.5b) demonstrate that both the transverse velocity v and p diverge
at 7z = z.. This behaviour is in agreement with the very large amplitudes of the
transverse velocity and of the density observed in the numerics. In order to determine
the maximum amplitude of these two quantities, we have to solve the viscous critical
layer. This is done in the next section.
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3.3. Viscous critical layer analysis

The analysis of viscous critical layers is a classical problem which is described in
several textbooks (see for instance Drazin & Reid 1981). A very similar analysis has
also been done in the context of vortices in Boulanger, Meunier & Le Dizes (2007).
We provide here the main steps of the analysis.

In the viscous critical layer, the structure of the solution is obtained by introducing
a new local viscous scale Z = (z — z.)Re'/3. The form of the solution can be obtained
by expanding the non-viscous solution close to the critical point. We find that the
solution has to take the form

it = (?) + log(Re)il, (3.10a)

U =10(2)Re'?, (3.10b)

W =10, + W@)Re " 4+ Re~'/* log(Re)W,Z, (3.10¢)
p=pR)Re', (3.10d)

P =pR) +log(Re)ps. (3.10¢)

Note that the log(Re) terms come from the special behaviour of the normal velocity
close to the critical point. Expanding the base flow velocity as

sin o

U ~Uz) +U )z —2) = 7 UzRe '3, (3.11)
the system (3.5) reduces to
kU, (it + log(Re)its) + w U, = ik(p + log(Re)p;), (3.12a)
93
kU, = — cos apRe'* — a—’fRel/3, (3.12b)
Z
i sinadRe'/3
IOV L kU'26 = — sinapRe' + 1, (3.12¢)
isinapRe'? (DsinaRe'? + cosaw,) 1.,
———— 4 ikUzp = —p", 3.12d
7 +ikU.zp 7 + 5P ( )
PR . ow R
ik(it + log(Re)it,) = 3 T log(Re)w;. (3.12¢)
Z

To leading order in Re™ ', (3.12¢) and (3.12d) both indicate that p = —iv/F.
Introducing this result in (3.12¢)-iF(3.12d) leads to a differential equation, to first
order, for the transverse velocity v:

2kl 50 1+ 1Y ., 4 iw, cos o 3.13)
ikU.z0 = — |+ . .
< Pr F

The function p(z) can then be deduced from (3.12b), which then gives u#(z) from
(3.12a) and w(z) from (3.12¢) provided that w, = —ikit; = —ikp,/U,. (such that the
log terms disappear). The matching with the outer solution gives w, = —w.x /3.
Equation (3.13) is an inhomogeneous Airy equation. In order to match an inviscid
solution in the outer region, the solution must behave as 2~ for large |z|. As shown
by Drazin & Reid (1981), the solution which satisfies this condition is a generalized
Airy function B;(Kz, 1). It can also be expressed in terms of Scorer’s function Hi(z)
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(Abramowitz & Stegun 1965, p. 448) which satisfies Hi"(z) — zHi(z) = 1/ as follows

foay 1W, T COS & Hi(—it3 314
U(Z)_—SZF(1+1/Pr) i(—i&7). (3.14)

with & = (2kU£, /(1 + 1/Pr)) A composite expression for the transverse velocity can
be obtained from the non-viscous solution ¢ (3.7) and the critical layer solution ©
(3.14), namely

_ 9(2)0((z — z.)Re')2kUF (z — z.)

W, COS &

v(2)

(3.15)

This expression is plotted in figure 6(b) as a solid line for the real part and a dashed
line for the imaginary part. We can see that these two profiles are comparable to the
numerical results obtained at the lee side and at the bottom of the undulation. A small
shift is nevertheless observed which might come from higher order corrections.

The maximum of the transverse velocity v, over the whole field can now be
predicted from the maximum of the Scorer’s function Hi,,,, = Hi(0) ~0.41. In terms
of the initial variables, we get

hkU0R€1/3
mar = ———————V(F, k, o, Uy), 3.16
Unax = 11 ppy Y & Koo Do) (3.16)
where
V(F. k Us) Hi,, 70 cos A (3.17)
9 ’a’ == C .
YT F k)3 (1 — sin® a/ (kF)2)2/3

and )
A, = |2 (3.18)

Wo

In the above expression, we have used the relation U, = 1 — sin® a/(kF)? and the
definition wy = w(z =0) = U,,.

The function wv,,, is plotted and compared to the numerical results in figure 7.
It clearly shows that the amplitude of the critical layer is linear in & with an
excellent quantitative prediction of the amplitude. The amplitude also scales as Re'/?
although the lowest Reynolds number is slightly above the theoretical prediction.
This is possibly due to the modification of the mean profile by viscous effects in the
numerics or to the fact that the critical layer becomes so large that it interacts with
the near wall boundary layer flow.

The thickness ¢ of the critical layer has also been measured in the numerics as the
distance between the maximum and the minimum of v in the shear profile (at kx =
7.51). Note that each value of the thickness ¢ was rescaled with the local thickness of
the boundary layer, for each value of Re. The data are plotted in figure 8. We observe
that the thickness does decrease as Re~!/® and is in good agreement with the theory
although it is 20 % below the prediction.

3.4. Dependence with respect to the Froude number and the undulation wavenumber

In this section, we use the theory to discuss the dependence of v, with respect to
the Froude number and the undulation wavenumber.
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FIGURE 7. Renormalized amplitude of the critical layer v,,../(hkU,) as a function of (a)
the height of the hills # and (b) the Reynolds number. Numerical values (M) obtained at
x=7.51/k are compared with the theoretical prediction (solid line) given by (3.16). Here
F=1.046, k=1.041 and ¢« =1t/4. In (a) Re =593 and in (b) h=0.03.
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FIGURE 8. Thickness of the critical layer as a function of the Reynolds number measured
on the lee side of a hill at x="7.51/k. The theoretical prediction (solid line) is compared
to the numerical simulations (l); 2 =0.03, F =1.046, k=1.041 and a = 1t/4.

The contours of the function V(F, k, «, U,) appearing in (3.16) are plotted in
figure 9 for a small and a large tilt angle (0 = 7/60 and « = 1t/6). These plots show
that V exhibits complex variation with respect to the parameters. Note in particular in
figure 9(b) the discontinuous behaviour across the line kF =1 and the peaky structure
for small F close to the right frontier corresponding to kF' = sin o/U,. Large values
of V are reached in two limits which can be analysed separately: (i) large F and kF
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FIGURE 9. Contour levels of the function log,, V in the (kF, F) plane for Uy=0.1 and
(@) « =7/60 or (b) « =m/6. The function V is defined for sin o < kF < sin /U, only
(condition of existence of a critical point).

close to sina (top left corners of figure 9), and (ii) small F' and kF close to sina/Uj
(bottom right corners of figure 9).

The first limit is the easier to analyse. For large F, the solution w does indeed have
a simple bulk approximation w(z) ~ U(z). This approximation is valid up to the (large)
altitude where the second term in (3.8) becomes of same order as the third term. The
critical velocity is thus given by
W, - sin o

Ac = ,
kFU,

as F — oo. (3.19)

Wo

We can then deduce that

Hi, .. 7 cos «

o | o« F o o, (3.20)
UoF'/3(2 sin a)?3(1 — sin” o/ (kF)?)?/3

which tell us how v,,, varies with respect to kF for large F. Figure 10 demonstrates
that (3.19) provides a very good estimate of A. as soon as F is larger than a few
tens. In figure 10(b), we have also added values of A. obtained from direct numerical
simulation for F = 10, Re = 593 and h = 0.12. We can see that they follow the
theoretical curve reasonably well.

The second limit is more involved due to the singular structure of the normal
velocity w(z) as F — 0. In appendix A, we show how an approximation of the
function A, can be obtained using a WKBJ analysis. It is first shown that, when F
is small, A. is in general exponentially small. Large values of A, are only obtained
when sina /(kF) is very close to Uy, as expected from figure 9. This case corresponds
to the limit (ii). In this limit, simple approximations are obtained for A.:

A= : when kF < 1, (3.21a)
XVIK (X)) 4+ 721 (X)?

A= L > ., when kF>1, (3.21b)
T T b
XJ Ki0 + 0]

2
L,(X
2tan<1§1() +4
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(@) 10 b) 10

0.1 0.2 0.3 0.4 0.5

FIGURE 10. The function A. versus kF for different values of F for (a) o =7/60 and (b)
a =1/6. Solid lines denote numerically computed values; symbols denote values obtained
from expression (3.19). The stars in (b) are estimates obtained from the direct numerical
simulation for F =10, Re=593 and h=0.12.

where I, and K; are modified Bessel functions and

w [ = (k)22
® =k / WEYU°@) (3.22a)
2 (kF)2U?%(z) — sin” «
F
X =22 /s | Ko (3.22b)
(1-Uy)F sin o

The approximation depends on the size of kF with respect to unity because the
structure of w changes when kF > 1. When kF < 1, the solution is oscillating up to
infinity, whereas, when kF > 1 it becomes evanescent after the turning point z,, where
kFU(z») = 1. The theoretical approximation is compared to the computed curve in
figure 11. We can observe that it provides a good approximation even for F as large
as unity. In figure 11(b), we have also plotted the values provided by the direct
numerical simulation for kF =4.96, Re =596 and h=0.12. Although the largest and
smallest values of A, are not recovered, we can observe that the oscillations of A,
as F varies are qualitatively reproduced.

The behaviour of A, for kF > 1 is particularly interesting as it exhibits distinct peaks
and valleys. A simple estimate of @ can be obtained in the limit of small o:

_ log()
-

D~ (3.23)

The valleys correspond to the configurations where tan @ = 0, that is @ =nmw, n =

1,2,3,.... For small «, they are therefore obtained for fixed values of F' (for any k

and Uj) given by

log(a)
nm

Fi =— (3.24)
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FIGURE 11. The function A. versus F for different values of kF' for (a) o = /60 and
(b) a =m/6. Solid lines denote numerically computed values; dashed lines denote values
obtained from (3.21a,b). The stars in (b) are estimates obtained from the direct numerical
simulation for kFF =4.96, Re =593 and h=0.12.

Present between each valley is a peak, which is reached (for small «) for

log(e)
7 1;(X) > .

nm — arctan | —
( 2 Ki(X)

FW =—

(3.25)

These peaks are largest when X is smallest, that is when kF is closest to sin o/ Uj.
Their amplitude decreases as X increases. This means that for a fixed value of kF, the
amplitude of the peak decreases as F' decreases, as observed in figure 11.

In summary, when F is small, we have shown that A. (and thus also v,,,) reaches
its largest values when kF' is slightly below sin« /U, that is, when the critical point
is close to the wall. When kF > 1, a phenomenon of resonance and anti-resonance is
observed generating large fluctuations of A, as F is varied. This phenomenon directly
affects the maximum transverse velocity v, Which is proportional to A. (see (3.16)
and (3.17)). For large F, we have seen that the largest values of v,,, are obtained
when kF is slightly above sin«, that is when the critical point is far away from the
wall.

Note however that when F is of order one, V remains O(1). In that case, all the
corrugation wavenumbers k satisfying (sinw)/F <k < (sina)/(UyF) are thus expected
to give a large transverse flow response.

4. Conclusion

In this paper, we have presented some numerical and theoretical results on the
internal waves generated by a sinusoidal topography on an inclined bottom. The
velocity profile U*(z*) has been chosen to be a hyperbolic tangent profile, with a
sliding velocity at the bottom. The inclination of the bottom has been found to
create a large transverse velocity at the distance to the wall where the frequency
of the topographic forcing k*U*(z) is equal to the transverse buoyancy frequency
N*sino (in dimensional units). We have shown that this large amplitude is associated
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with a critical layer singularity of the inviscid solution. We have also shown that the
solution can be regularized by performing a viscous critical layer analysis. An analytic
solution has been obtained and found to be in good agreement with the numerical
results. The maximum transverse velocity has been shown to be larger by a factor of
Re'’?, the normal velocity generated by the undulation at the wall. Interestingly, the
transverse velocity has also been found to exhibit well-defined peaks associated with
a quasi-resonance phenomenon for specific values of the Froude number, when kF is
larger than one and close to sin«/Uj.

The analysis has been based on the hypothesis that the fluid slides on the boundary
with a constant velocity. This sliding velocity guarantees that a non-negligible normal
velocity is created by the undulations. This hypothesis implicitly assumes that the size
of the undulations is larger than the viscous sublayer width. Note in particular that if
the undulations were within the sublayer (h < Re~'/3), the normal velocity would scale
as O(Re~'/*) and the maximum transverse velocity would then not be that large.

The present study demonstrates that the interplay between undulation and tilting
could have a strong impact on the dynamics of stratified boundary layer flow. A
small deformation on a weakly inclined bottom can generate a large transverse flow.
This transverse flow is O(Re!/®) larger than the sliding velocity and localized in a
O(Re™'3) layer. For large Reynolds numbers, it therefore induces a strong transverse
shear which may become unstable with respect to the Kelvin—Helmholtz instability.
Such a mechanism has been observed in the dynamics of a tilted vortex (Boulanger,
Meunier & Le Dizes 2008). We suspect that it could be active in the boundary layer.

Note also that nonlinear effects are expected to arrive first in the critical layer. In
particular, the critical layer is expected to become nonlinear as soon as the amplitude
of the transverse velocity reaches Re~'/3. It would therefore be interesting to pursue
the analysis in the nonlinear regime using the framework of the nonlinear critical layer
theory (Benney & Bergeron 1969; Haberman 1972).

The present mechanism of mixing is expected to be in competition with the
mixing induced by the boundary layer instabilities on a flat wall. At least two types
of instability are expected to be present on a tilted wall for large Reynolds numbers:
viscous boundary layer instability, associated with Tollmien—Schlichting modes (Wu
& Zhang 2008a), and radiative instability which is inviscid in nature and present only
if the wall is inclined (Candelier et al. 2012). The conditions for the appearance of
these two instabilities in the parameter space («, F, Re) are only partially known (Bai
2012) but both instabilities are expected to be present for the large Reynolds numbers
of geophysical flows. It would thus be interesting to simulate a configuration where
one of these instabilities is also present.

For very high Reynolds numbers, we expect the boundary layer to become turbulent.
Yet, it is possible that the present mechanism could still be active in this regime.
Indeed, a similar analysis can a priori be performed with a mean turbulent boundary
layer profile and a turbulent eddy viscosity and it would lead to the same conclusion.

The phenomenon could then be present in real geophysical flows. For instance,
taking values from the continental slope in Besio et al. (2004), the mean current flow
velocity is 0.07 cm s™!, the boundary layer thickness is estimated at 10 m, and for
the mean Brunt—Viisidld frequency measured at N = 0.024 (van Haren & Howarth
2004), we obtain F'=0.29. For Uy=0.1 and a tilt angle close to o = 7/90 the present
results tell us that all the corrugation wavelengths larger than 73 m will generate a
response with a critical layer and therefore will be a source of transverse flow. Note
that the wavelength of sand waves studied in Besio et al. (2004) appear to have a
threshold close to 100 m and height between 1 m and 10 m, which is consistent
with the present study.
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For a stably stratified atmospheric boundary layer flow, if we take the values
reported by Frehlich, Meillier & Jensen (2008), that is, a nocturnal wind of velocity
10 m s=' with a boundary layer thickness 100 m in a stable stratification with a
Brunt—Viisild frequency equal to 0.03 rad s=!', we get F =3. On a slope of 10° (if
U, is still equal to 0.1), we therefore expect all the corrugation wavelengths larger
than 60 m to be active. For both cases, the Reynolds number is so large (Re = 10°
and Re = 10® for the current and the wind, respectively) that even small corrugation
amplitudes (of the order of 10 % of the boundary layer thickness) generate transverse
flows of the order of the mean flow (assuming A. of order unity). Moreover, these
flows are present in a very thin layer, which leads to strong transverse shears two
orders of magnitude larger than the mean shear of the boundary layer. These shear
layers are probably unstable by the Kelvin—Helmholtz instability and a non-negligible
source of mixing in the boundary layer.
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Appendix A. Small F analysis of the equation for w

In this section, we provide an asymptotic analysis of the solution to (3.8) in the
limit of small F. Our objective is to obtain an estimate of the ratio A, = |[w./Wy|
appearing in expression (3.17).

We assume that sin«/(kF) = O(1), so that we can define the O(1) parameter

o) =sina/(kF). (A1)

We also assume that there exists a critical point z. (different from the wall boundary)
defined by
U(z.) = ay. (A2)

This implies that «; satisfies U, < o < Uy, that is

. sin o
sina < kF < (A3)
0
A.l. WKBJ analysis
When F « 1, (3.8) reduces to
b (L=KFU +0(1) | w=0 (Ad)
W — | =———— w=0.
F2(ai — U?)

This equation is adequate for a resolution using WKBJ methods (see, for instance,
Bender & Orszag 1978). Far from the critical point, the solutions can be written to
leading order as

w~AB *exp (11: / \/B) + BB *exp <—11: / \/E> , (AS)
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where

1 — (kF)*U?

af = U2)

Between 0 and z., B is positive, so the solution is of exponential type. In this

interval, the solution will then be dominated by one of the exponentials. It will be
convenient to write it as

1/4 z
W~ w(0) <ﬁ(o)> exp (—1/ \/B> (A7)
B F Jo

By contrast, in the outer interval (z., z.), the solution is oscillatory and can be
written as

Wt~ A(=B) " exp <; / | \/—ﬂ> +B(—B) " exp (—; / " \/—ﬁ) . (A®)

If kF < 1, the solution is oscillatory up to infinity (z,, = 00): it must be an outgoing
wave (as required by causality) which imposes B = 0. If kF > 1, z,, is a finite
location defined by kFU(z») = 1. The solution becomes evanescent again after the
turning point z.,. The condition for matching an oscillating solution and an evanescent
solution across a turning point is classical (see Bender & Orszag 1978). It gives the

condition 0
B=—iAexp <Fl/ \/—,3). (A9)

¢

B(z, kF) = (A6)

In the following, we write B =K. A where K_ and K, correspond to the constant
when kF <1 and kF > 1 respectively. We do not consider the special case kFF =1 for
which the turning point is at infinity.

The WKBJ approximations are not valid close to z.. If F?Re!> > 1, the region
|z — z.| = O(F?) is far away from the critical layer. In this region, w is still given
by (A4) which to leading order now reduces to

4 cos” =0 (A 10)
w | w=VU.
2F2a1U£(Z - Zc)

This equation admits the general solutions

W= a"VI(E + b VEY(V7), for >0, (A 1la)
a /=L (V=3 + b/ —ZK,(v/=3), for <0, (A11b)

=
Il

where

~_2coszoz( ) (A12)
7= Fa U/ 72— 2)-

Matching with the WKBJ approximations requires

a =—Y 2no UF w(0) exp <—}17 /ZC \/E> , (A 13a)
0

~ cosa(al — U/
23'[0(1 UéF

at = e (1 +iK LA, (A 13b)
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27[0(1 UéF
2 cos

bt = eI (1 — iKL)A. (A 13¢)

The solutions (A 1la,b) are not regular at z.. Close to z., (Allab) has the
expansions

-4z 2w <1_z(1n(z)—21n(2)—1+2y)
2 b 4

S (1 _ Z(n(=3) —2In(2) — 1+2y)
4

) , for z>0, (A 14a)

W~ —a

), for 7<0. (A14b)

This critical layer singularity can only be smoothed by introducing viscous effects.
However, this is not necessary for obtaining the relations between a~, b~ and a*, b*.
Indeed, when F?Re!* > 1, the solution is expected to remain regular on a contour
that avoids the singularity in the lower complex z-plane. This condition means that
(A 14b) should correspond to (A 14a) where —Z has been changed into Ze '™ in the
logarithm. This yields the following conditions:

2

b- = —=b", (A 15a)
T
S dmo
a +a" = 2b. (A 15b)

Note that these conditions could have been directly obtained by requiring (A 11a)
to be valid for —m < arg(z) < 0. This would have implied that (A 11a) is valid for
negative z with +/Z defined as —i/—% for negative z. The equations (A 13a—c) and
(A 15a,b) give a relation between w(0) and w(z.) = b~ which can be written as

5 B 1 Zc
W(zc) = W(0)K,2+/F exp (—F / JB>, (A16)
0
where K,. is a constant independent of F:

| —iKy)\/Znan U
_ (oK) 2men U (A17)

" w(ad — U4 cosa

ot

Expression (A 16) demonstrates that [w./wy| is in general exponentially small. There
is an important exception which occurs when z. is close to the wall.

A.2. Special case of the critical point close to the wall

We shall see that large values of |W./Wwy| can be obtained when z. = O(F?). This
condition requires that a; — Uy = O(F?), so that

ze (@) — Ug) /Uy = (a1 = Up) /(1 = Up). (A 18)

The local solution is then valid between O and z. and can be written for Z <0 as

= (1 4+iK) V=21 (—=iv/=2) +i(1 — iK )/ =2V, (—iv/=3). (A 19)
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3.0 —

FIGURE 12. The function A, = |w(Z.)/w(0)| versus X. The thick solid line is A_(X),
for kF < 1. The thick dashed line is A} (X) (maximum value of A over all ¢ for

kF > 1). The thin lines are AY for @ = /2 (dash-dotted), & =2m/3 (solid) and & =57/6
(dashed).

Therefore the ratio A, = |w(z.)/w(0)| satisfies

2
AT = S when kF < 1, (A 20a)
X |J;(—iX) 4+ 1Y, (—1iX)|

2
A = - - when kF > 1, (A20b)
X |J1(—iX)/ tan @ + Y, (—iX)|

where

o — 117/“ V=B, (A21a)
X = /—% = \/2(“1 —Uycosa (A21b)

(1— U22Fa,

The functions Af can also be written as

1
- _ A22
A XK O + 7L X0 (A22)
Af = ! (A 22b)

2 2 '
X\/ [KI(X) + mfl Sheo| + “Z[Il(xnz

When kF < 1, the maximum of AT is AZ, A~ 1.1, attained for X ~0.42; when kF > 1,

cmax

the maximum of A, is not bounded. For a fixed X, its maximum value, attained when

 1;(X)

2K (X))’ (A23)

tan @, =
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is

Ab (X)) = # (A24)
¢ max T[XI](X)

This maximum diverges as 4/(mX*) for small X. For a fixed @, A} exhibits a
maximum for a value X" smaller than 0.73. This maximum is largest when @ is
slightly below a multiple of . In that case, X" is very close to 0. In contrast, when
@ is exactly equal to a multiple of m, the function A} vanishes for all X > 0.

The function A, is plotted for both kF <1 and kF > 1 in figure 12.
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