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Wave field and zonal flow of a librating disk
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In this work, we provide a viscous solution of the wave field generated by
librating a disk (harmonic oscillation of the rotation rate) in a stably stratified
rotating fluid. The zonal flow (mean flow correction) generated by the nonlinear
interaction of the wave field is also calculated in the weakly nonlinear framework.
We focus on the low dissipative limit relevant for geophysical applications and for
which the wave field and the zonal flow exhibit generic features (Ekman scaling,
universal structures, etc.). General expressions are obtained which depend on the
disk radius a∗, the libration frequency ω∗, the rotation rate Ω∗ of the frame, the
buoyancy frequency N∗ of the fluid, its kinematic diffusion ν∗ and its thermal
diffusivity κ∗. When the libration frequency is in the inertia-gravity frequency interval
(min(Ω∗, N∗) < ω∗ < max(Ω∗, N∗)), the presence of conical internal shear layers is
observed in which the spatial structures of the harmonic response and of the mean
flow correction are provided. At the point of focus of these internal shear layers
on the rotation axis, the largest amplitudes are obtained: the angular velocity of the
harmonic response and the mean flow correction are found to be O(εE−1/3) and
(ε2E−2/3) respectively, where ε is the libration amplitude and E = ν∗/(Ω∗a∗2) is the
Ekman number. We show that the solution in the internal shear layers and in the
focus region is at leading order the same as that generated by an oscillating source
of axial flow localized at the edge of the disk (oscillating Dirac ring source).
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1. Introduction

Stratified and/or rotating fluids support waves which can transport and dissipate
energy away from their sources. These waves are suspected to play an important role
in atmospherical sciences, oceanography, and in the dynamics of stars and planets.
In the atmosphere, they transport momentum from the convective regions to the
high-altitude regions, where they break and create mean flow circulation (Fritts &
Alexander 2003). In the ocean, they are mostly generated by tide and winds and are
expected to provide the missing contribution to the global energy budget of the ocean
(Munk & Wunsch 1998). In planets and stars, they are excited by gravitational effects
(Le Bars, Cébron & Le Gal 2015) or convection (Rogers & Glatzmaier 2005) and
could play a role in the generation of zonal flows (Tilgner 2007) and in dissipative
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processes (Ogilvie & Lin 2004). In the present work, we are considering the simple
configuration of a librating disk in a stratified and rotating fluid, for which an exact
solution can be obtained to provide some general information on the structure of the
wave field and its associated mean flow correction.

Libration is a harmonic forcing corresponding to an oscillation of the rotation rate.
Such a forcing is present in most planets (Comstock & Bills 2003) due to their
gravitational interaction with other surrounding massive objects. It corresponds to
one of the possible mechanical forcings associated with gravitation, the others being
tides and precession (see Le Bars et al. 2015). In the ocean, tide corresponds to the
dominant harmonic forcing.

In a fluid, rotating with the rotation rate Ω∗ around the axis Oz and stably
stratified with a constant buoyancy frequency N∗ along the same axis, these
harmonic forcings excite waves when their frequency is in the inertia-gravity interval
Iω = {min(N∗, 2Ω∗) < ω∗ <max(N∗, 2Ω∗)}. These waves propagates along cones (in
3D) or planes (in 2D) with a fixed angle α with respect to the horizontal plane given
by sin α = √(ω∗2 − 4Ω∗2)/(N∗2 − 4Ω∗2). The cone (or the plane) tangent to the
oscillating object or to a local topographical feature corresponds to a singular surface
across which the wave field changes its nature. The singularity of the wave field
across these surfaces if smoothed by viscosity gives rise to thin internal shear layers
which possess some generic features (Thomas & Stevenson 1972; Kerswell 1995).
These internal shear layers are visible when oscillating a small object as they form
the familiar St Andrew’s cross pattern (Mowbray & Rarity 1967; Greenspan 1968).
They can also be observed tangent to the inner sphere when librating a rotating
spherical shell (Koch et al. 2013), or to a supercritical topography for tidal flow
(Peacock, Echeverri & Balmforth 2008). These internal shear layers can be generated
from singularities of the oscillating source too, such as from the corners of a cylinder
(McEwan 1970) or from angular topography (St Laurent et al. 2003). They are the
equivalent of the shear layer (Stewartson layer) limiting Taylor–Proudman columns in
steady rotating flows for an oscillating flow in a stratified rotating fluid (Stewartson
1957).

In a bounded geometry, harmonic forcings can also resonantly excite (normal)
modes of the container (see, for instance, Aldridge & Toomre 1969; Rieutord 1991).
In a few specific geometries, such as the cylinder and the sphere, these modes have
a regular inviscid structure which is now well known (Greenspan 1968; Friedlander
& Siegmann 1982). However, in general, the inviscid modes are singular. Some of
them are associated with an accumulation of waves on an attractor after multiple
reflections on boundaries (see Rieutord & Valdettaro 1997; Rieutord, Georgeot &
Valdettaro 2001). In a viscous framework, these attractors form a different type of
internal layers from those described above. They have been observed in rectangular
tanks (Maas et al. 1997) and in spherical shells (Tilgner 1999; Koch et al. 2013).
Because we are in an open domain, no mode resonances or attractors are our concern
here.

In an open domain, most theoretical studies have focused on simple geometries
(plane, disk, sphere, ellipsoid) for which the source term can be analytically described,
and have often been concerned with the far field only. A comprehensive list of
references, especially for stratified fluids, can be found in Voisin (2003) and Voisin,
Ermanyuk & Flór (2011). The case of the disk has been considered in numerous
works, for steady displacements in a rotating fluid (Stewartson 1957; Moore &
Saffman 1969; Vedensky & Ungarish 1994; Tanzosh & Stone 1995), for oscillating



180 S. Le Dizès

displacements in a stratified fluid (Il’inyhk & Chashechkin 2004; Bardakov, Vasil’ev &
Chashechkin 2007; Davis & Llewellyn Smith 2010) or for more complicated surface
fluctuations (Walton 1975; Kerswell 1995). The method of resolution is based on
the use of the Hankel transform, which leads to a system of dual integral equations.
These equations can then be converted into a system of algebraic equations using
expansion in terms of Bessel functions (see, for instance, Davis & Llewellyn Smith
2010). Here, we use the same method but the integral equations will turn out to have
a simple explicit solution.

An important part of our work is concerned with the calculation of the mean
flow generated by the nonlinear interaction of the harmonic response with itself.
In a bounded non-stratified rotating fluid, these mean flow corrections are usually
zonal flows (azimuthal flows), independent of the axial variable as prescribed by the
Taylor–Proudman theorem. When there is no internal shear layer, they are dominantly
generated by the nonlinear interactions occurring in the boundary layer (Busse 1968).
They can be calculated exactly for a cylinder (Wang 1970; Sauret et al. 2012), a
sphere and a spherical shell (Busse 2010; Sauret & Le Dizès 2013). In an infinite
domain, we shall see that the mean flow corrections generated in the boundary are no
longer purely azimuthal. Moreover, they are strongly modified by the stratification.

The presence of internal shear layers is expected to modify the mean flow
corrections. In a spherical shell, both experiments (Morize et al. 2010) and numerical
simulations (Tilgner 2007; Calkins et al. 2010) demonstrate that the zonal flow can
exhibit very complicated structures which cannot be explained by classical boundary
layer contributions only. Internal shear layers, especially close to the regions where
they reflect on the boundary or on the axis, seem to strongly contribute to the zonal
flow (Favier et al. 2014; Lin, Noir & Calkins 2014). We provide here both the scaling
and the spatial structure of the zonal flow induced by the internal shear layers.

The paper is organized as follows. In § 2, the problem is presented and the basic
equations are given. Section 3 is concerned with the calculation of the harmonic
response. General expressions are first obtained, then reduced in each characteristic
region (boundary layer, outer flow, internal shear layer, focus point on the axis) in
the small-diffusion limit. In § 4, these expressions are used to calculate the mean flow
correction. Stratified and non-stratified fluids are shown to give completely different
mean flow corrections. A summary and a discussion of the main results are provided
in §§ 5 and 6.

2. Framework

We consider a semi-infinite domain of incompressible fluid, delimited by a
horizontal plane boundary Oxy, rotating around the Oz axis with an angular rotation
Ω∗. The fluid is assumed to be stably stratified in the Oz direction with a constant
buoyancy frequency N∗. Our goal is to describe the flow generated by librating a
disk of radius a∗ centred on O in the boundary (see the sketch in figure 1). The
fluid satisfies no-slip boundary conditions such that in the rotating frame, the velocity
field on the boundary can be written using cylindrical coordinates centred on the disk
centre as

V∗ =
{
ε∗r∗ cos(ω∗t∗)eθ , r∗ < a∗, z∗ = 0,
0, r∗ > a∗, z∗ = 0.

(2.1)

The boundary is thermalized such that the buoyancy fluctuations b (the temperature)
are assumed to vanish on the boundary. This hypothesis can be relaxed when Pr=∞
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FIGURE 1. Sketch of the flow geometry.

because the buoyancy then becomes a multiple of the vertical velocity. In that case,
the buoyancy fluctuations also satisfy the boundary condition ∂zb = 0 relevant for
configurations where the fluid is stratified in density. In the following, time and spatial
variables are non-dimensionalized using 1/Ω∗ and a∗. Non-dimensional quantities are
indicated without asterisks.

The problem is defined by five parameters: the librating amplitude ε = ε∗/Ω∗,
the librating frequency ω = ω∗/Ω∗, the ratio N = N∗/Ω∗, the Ekman number E =
ν∗/(Ωa∗2) and the Prandtl number Pr= ν∗/κ∗, where ν∗ is the kinematic viscosity of
the fluid and κ∗ the thermal diffusivity. We are interested in characterizing the periodic
regime oscillating at the frequency ω when ε and E are both small. In particular, we
do not consider the transient regime leading to this regime. We consider frequencies
in the inertia-gravity frequency range Iω = {min(2, N) < ω < max(2, N)}, as well as
frequencies outside this interval.

In the rotating frame, the velocity field v = (vr, vθ , vz) and the pressure and
buoyancy fluctuations (P, B) satisfy the Boussinesq equations:

Dv

Dt
+ 2ez ∧ v =−∇P− Bez + E∇2v, (2.2a)

∇ · v = 0, (2.2b)
DB
Dt
=N2vz + E

Pr
∇2B. (2.2c)

We assume that the problem remains axisymmetrical. The linear response oscillating
at the frequency ω can be written as

(vr, vθ , vz, P, B)= ε(u, v,w, p, b)e−iωt + c.c., (2.3)

such that the pressure, buoyancy and velocity amplitudes satisfy the equations

−iωu− 2v =−∂p
∂r
+ E

(
∆− 1

r2

)
u, (2.4a)

−iωv + 2u=+E
(
∆− 1

r2

)
v, (2.4b)

−iωw=−∂p
∂z
− b+ E1w, (2.4c)

−iωb=N2w+ E
Pr
1b, (2.4d)

∂u
∂r
+ u

r
+ ∂w
∂z
= 0, (2.4e)
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where ∆= ∂2
r + (1/r)∂r + ∂2

z , and the boundary conditions

u=w= b= 0, v = r for r< 1, z= 0, (2.5a)
u= v =w= b= 0 for r> 1, z= 0, (2.5b)
u= v =w= b= 0 for r2 + z2→∞. (2.5c)

We are also interested in the mean flow correction induced by the nonlinear
interaction of the harmonic solution with itself. This correction can be written as
ε2(u0, v0,w0, p0, b0) and satisfies

2v0 − ∂p0

∂r
+ E

(
∆− 1

r2

)
u0 =

(
u
∂u∗

∂r
+w

∂u∗

∂z

)
− |v|

2

r
+ c.c.≡Nu, (2.6a)

−2u0 + E
(
∆− 1

r2

)
v0 =

(
u
∂v∗

∂r
+w

∂v∗

∂z

)
+ uv∗

r
+ c.c.≡Nv, (2.6b)

−∂p0

∂z
− b0 + E1w0 =

(
u
∂w∗

∂r
+w

∂w∗

∂z

)
+ c.c.≡Nw, (2.6c)

N2w0 − E
Pr
1b0 =

(
u
∂b∗

∂r
+w

∂b∗

∂z

)
+ c.c.≡Nb, (2.6d)

∂u0

∂r
+ u0

r
+ ∂w0

∂z
= 0, (2.6e)

where the symbol ∗ represents here the complex conjugate. The mean flow correction
vanishes in the plane of the disk (z = 0) and at infinity (r2 + z2→∞). In the next
two sections, we provide the spatial structures of the harmonic response and of the
mean flow correction.

3. Harmonic response

In this section, we provide expressions for the linear harmonic response to the disk
libration. As in Stewartson (1957), the harmonic response is sought using the Hankel
transform as

u=
4∑

j=1

∫ ∞
0

Uj(k)J1(kr)eiµjz dk, (3.1a)

v =
4∑

j=1

∫ ∞
0

Vj(k)J1(kr)eiµjz dk, (3.1b)

w=
4∑

j=1

∫ ∞
0

Wj(k)J0(kr)eiµjz dk, (3.1c)

p=
4∑

j=1

∫ ∞
0

Pj(k)J0(kr)eiµjz dk, (3.1d)

b=
4∑

j=1

∫ ∞
0

Bj(k)J0(kr)eiµjz dk, (3.1e)
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where the four axial wavenumbers µ = µj(k, ω), j = 1, 2, 3, 4, are solutions of the
dispersion relation deduced from (2.4a–e),

[−iω+ E(k2 +µ2)]2[−iω+ EPr−1(k2 +µ2)](µ2 + k2)

+ 4µ2[−iω+ EPr−1(k2 +µ2)] +N2k2[−iω+ E(k2 +µ2)] = 0. (3.2)

Only the wavenumbers with a positive imaginary part (Im (µj) > 0) have to be kept
in order to satisfy the vanishing boundary conditions at infinity.

The coefficients are related to each other by the equations deduced from (2.4a–e),

kUj =−iµjWj, (3.3a)
2Uj =−(−iω+ E(k2 +µ2

j ))Vj, (3.3b)

N2Wj = (−iω+ EPr−1(k2 +µ2
j ))Bj, (3.3c)

kPj =−2Vj + (−iω+ E(k2 +µ2
j ))Uj. (3.3d)

The boundary conditions on the plane z= 0 give

4∑
j=1

∫ ∞
0

Uj(k)J1(kr) dk= 0, (3.4a)

4∑
j=1

∫ ∞
0

Vj(k)J1(kr) dk= rH(1− r), (3.4b)

4∑
j=1

∫ ∞
0

Wj(k)J0(kr) dk= 0, (3.4c)

4∑
j=1

∫ ∞
0

Bj(k)J0(kr) dk= 0, (3.4d)

where H(z) is the Heaviside step function. Using (3.3a–d), these equations form a
system of integral equations for the coefficients Vj, j= 1, 2, 3, 4. Analogous equations
were obtained by Tanzosh & Stone (1995) and Davis & Llewellyn Smith (2010) for
instance. Here, using the following property of the Bessel functions (Watson 1952,
P406): ∫ ∞

0
J2(k)J1(kr) dk= rH(1− r), (3.5)

the above system can be reduced to a simple algebraic system,

4∑
j=1

Uj(k)=
4∑

j=1

Wj(k)=
4∑

j=1

Bj(k)= 0,
4∑

j=1

Vj(k)= J2(k). (3.6a,b)

This system can be solved explicitly by expressing Uj, Wj and Bj in terms of Vj using
(3.3a–d).

We are interested in the weakly viscous configurations where E is small and
Pr = O(1). Simple expressions for the coefficients Uj, Vj, Wj and Bj are provided
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in appendix A in this limit. In this limit, the wavenumbers µj, j = 1, 2, 3, 4, also
simplify to

µ1 ∼ ε1µ10k(1+ iEαk2), µ2 ∼ µ20√
E
, µ3 ∼ µ30√

E
, µ4 ∼ µ40√

E
, (3.7a−d)

where

µ10 =
√

N2 −ω2

ω2 − 4
, α = (N

2 − 4)(N2(4(Pr− 1)+ (Pr+ 1)ω2)− 8Prω2)

2Prω
(
4−ω2

)2
(ω2 −N2)

, (3.8a,b)

µ20 =
(1+ i)√

2

√
ω− 2, µ30 =

(1+ i)√
2

√
ω+ 2, µ40 =

(1+ i)√
2

√
ωPr, (3.8c−e)

and where the square root has been defined such that the square root of a negative
number is a positive imaginary number. The parameter ε1=±1 in (3.7) is chosen such
that Im(µ1) > 0. We then obtain ε1= sgn(2−N) when ω ∈ Iω and ε1= 1 when ω /∈ Iω.

In the above expressions, we have implicitly assumed that k, Pr, N and ω are of
order 1 and that ω is distinct from 2 and N. Below, we also consider the cases N= 0
and Pr = ∞. The first limit is regular and we can use the same expressions when
N = 0. In this limit, the buoyancy fluctuations are found to vanish everywhere. When
Pr=∞, Im(µ40) goes to infinity, which means that the part of the solution associated
with µ4 disappears. In that limit, the solution is then only a sum on the first three
waves. All of the expressions concerning these waves are regular in the limit Pr→∞.

The first wavenumber µ1 corresponds to the so-called inertia-gravity wave, the
second and third wavenumbers µ2 and µ3 are viscous wavenumbers, while the fourth
wavenumber µ4 is a thermal wavenumber. It should be noted that the viscous and
thermal wavenumbers are both large when E is small. The contributions from these
waves to the harmonic response are then expected to be exponentially small far away
from the boundary. More precisely, theses waves would be present in the boundary
layer only. In the following subsections, we provide simple expressions for the
harmonic response in the different characteristic regions of the fluid. The scalings of
the amplitude of the solution in these different regions are summarized in figure 12
of § 5.

3.1. Boundary layer on the disk
Close to the boundary, all of the waves are present in the solution. Using the relation∫ ∞

0
kJ2(k)J0(kr) dk= 2H(1− r)− δ(r− 1), (3.9)

and the expressions given in appendix A for the coefficients, we obtain the following
expression for the harmonic response in the boundary layer on the disk (r < 1, z =
O(
√

E)):

(u, v,w, b)∼ (ū, v̄,√E w̄,
√

E b̄), (3.10)

with

ū(r, z̄)=− ir
2
(eiµ30 z̄ − eiµ20 z̄), (3.11a)
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v̄(r, z̄)= r
2
(eiµ30 z̄ + eiµ20 z̄), (3.11b)

w̄(z̄)= e−iπ/4

(
1− eiµ20 z̄

√
ω− 2

+ eiµ30 z̄ − 1√
ω+ 2

)
, (3.11c)

b̄(z̄)= eiπ/4

(
b00 − N2Preiµ20 z̄

√
ω− 2(ω(Pr− 1)+ 2)

+ N2Preiµ30 z̄

√
ω+ 2(ω(Pr− 1)− 2)

+ b04eiµ40 z̄

)
,

(3.11d)

where z̄ is the boundary layer variable z̄= z/
√

E and

b00 = N2

ω

(
1√
ω− 2

− 1√
ω+ 2

)
, (3.12a)

b04 = N2

ω

( √
ω− 2

ω(Pr− 1)+ 2
−

√
ω+ 2

ω(Pr− 1)− 2

)
. (3.12b)

These expressions could also have been obtained directly from a classical boundary
layer analysis. It should be noted that the coefficients of the buoyancy amplitude
diverge when ω = ±2/(Pr − 1). For these values of the frequency, the thermal
wavenumber equals one of the viscous wavenumbers and the solution is not a sum of
exponentials anymore. It should be noted also that the velocity field does not depend
on stratification in the boundary layer, a property that has been known for a long
time (Barcilon & Pedlosky 1967).

In the boundary layer ouside the disk (r > 1, z = O(
√

E)), the horizontal velocity
components obtained from the leading-order expression of the coefficients vanish. One
could easily show that they are O(

√
E) smaller than on the disk (r< 1, z=O(

√
E)).

3.2. Outer region (away from the boundary)
In the outer region, far from the boundary, the solution is dominated by the
wave associated with the inertia-gravity wavenumber µ1, the other waves being
exponentially small. When ω /∈ Iω, µ1 is purely imaginary at leading order and can
be written as µ1 ∼ i|µ10 |k. Using the expressions of appendix A for the coefficients
U1, V1, W1 and B1, we obtain, when ω /∈ Iω,

u∼ i
√

E
ωv1

2
K(1)(r, z̃), (3.13a)

v ∼√E v1K(1)(r, z̃), (3.13b)

w∼ i
√

E
ωv1

2|µ10 |
K(0)(r, z̃), (3.13c)

b∼−√E
N2v1

2|µ10 |
K(0)(r, z̃), (3.13d)

where

K(n)(r, z̃)=
∫ ∞

0
kJ2(k)Jn(kr)e−kz̃ dk (3.14)

and

z̃= |µ10 |z. (3.15)
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FIGURE 2. (Colour online) Flow structure in the bulk when ω /∈ Iω. (a) Contours of the
norm and vector field of the poloidal velocity field (u, w)= (K(1), K(0)). (b) Contours of
the angular velocity field Ω =K(1)/r.

The coefficients v1 and µ10 have been defined in (A 2a) and (3.8a) respectively. The
spatial structure of the functions K(0) and K(1) is shown in figure 2, where we have
plotted the contours of the norm and the vector field of the poloidal field (U,W)=
(K(1),K(0)), and the contours of the angular velocity V/r=K(1)/r.

When ω ∈ Iω, we obtain similar expressions:

u∼ i
√

E
ωv1

2
F(1)
ε1
(r, z̃), (3.16a)

v ∼√Ev1F(1)
ε1
(r, z̃), (3.16b)

w∼−ε1

√
E
ωv1

2µ10

F(0)
ε1
(r, z̃), (3.16c)

b∼−iε1

√
E

N2v1

2µ10

F(0)
ε1
(r, z̃), (3.16d)

where

F(n)
ε1
(r, z̃)=

∫ ∞
0

kJ2(k)Jn(kr)eiε1kz̃ dk. (3.17)

The phase of the solution mainly depends on the phase of v1, which varies with ω
according to (A 3). It should be noted, however, that u and v on the one hand, and w
and b on the other hand, are always in phase quadrature whatever ω. The amplitudes
v and w are also in phase quadrature when ω /∈ Iω.

It should be noted that the harmonic response in the outer region is at leading order
independent of Pr. The dependence with respect to N and ω is also particularly simple
as these parameters only appear through rescaling factors in the velocity components
and in the axial variable.

Whereas the harmonic response is regular in the bulk when ω /∈ Iω, the harmonic
response for ω ∈ Iω exhibits singularities on the characteristic lines Lj, j = 1, 2, 3,
shown in figure 3. These lines correspond to the line of propagation of the singularity
at the disk edge, already mentioned in the introduction. They are defined by
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FIGURE 3. Definitions of the lines Lj, j= 1, 2, 3, in the (r, z̃) plane.

L1 = {(r, z̃), r= 1− z̃, 0< z̃< 1}, (3.18a)
L2 = {(r, z̃), r=−1+ z̃, z̃> 1}, (3.18b)

L3 = {(r, z̃), r= 1+ z̃, z̃> 0}. (3.18c)

To smooth this singularity, we need to take into account the viscous correction to the
wavenumber µ1 (see expression (3.7)) and use the following expression for F(n)

ε1
in

(3.16):

F(n)
ε1
(r, z̃, Ẽ)=

∫ ∞
0

kJ2(k)Jn(kr)eiε1kz̃e−Ẽk3 z̃ dk, (3.19)

with

Ẽ= |α|E, (3.20)

where α has been defined in (3.8a). In the next two sections, we show that close to
the lines Lj, and at their crossing point on the axis, the solution takes a simple form.

It should be noted that because J2(k)= 2J1(k)/k − J0(k), the harmonic response in
the outer region is exactly the sum of two contributions:

(i) a disk contribution corresponding to a uniform oscillating vertical flow on the
disk of amplitude w̃d =−ε1ωv1/(µ10)

√
E whose solution is

wd = w̃d

∫ ∞
0

J1(k)J0(kr)eiε1kz̃e−Ẽk3 z̃ dk; (3.21)

(ii) a ring contribution corresponding to a Dirac oscillating vertical flow at the disk
edge of amplitude w̃r = ε1ωv1/(2µ10)

√
E whose solution is

wr = w̃r

∫ ∞
0

kJ0(k)J0(kr)eiε1kz̃e−Ẽk3 z̃ dk. (3.22)

These two contributions have been analysed separately by Tilgner (2000). We
discuss this point again in § 6.
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3.3. Close to the singularity lines
Due to the presence of singularities on the lines Lj, j = 1, 2, 3, we expect the main
contribution to the viscous integral (3.19) to come, close to these lines, from large
values of k. This allows us to use the asymptotic expansion of the Bessel functions
Jm(y) as y→∞:

Jm(y)∼
√

2
πy

cos
(

y− π

4
− mπ

2

)
. (3.23)

The function F(n)
ε1

given in (3.19) reduces near these lines to an expression of the form

F(n)
ε1
(r, z̃, Ẽ)∼ eih(n)j

Ẽ1/3
√

1+µ2
10

√
r

Lε1(η⊥, ζ ), (3.24)

where the transverse variable ηj⊥ and the phase factor h(n)j are defined for each line
Lj, j= 1, 2, 3, by

η1⊥ = µ10z+ (r− 1)

Ẽ1/3
√

1+µ2
10

, h(1)1 = ε1π/2, h(0)1 =π, (3.25a−c)

η2⊥ = µ10z− (r+ 1)

Ẽ1/3
√

1+µ2
10

, h(1)2 = 1, h(0)2 =−ε1π/2, (3.25d−f )

η3⊥ = µ10z− (r− 1)

Ẽ1/3
√

1+µ2
10

, h(1)3 =−ε1π/2, h(0)3 =π, (3.25g−i)

and

ζ = µ10

(1+µ2
10
)3/2

z. (3.26)

The function Lε1 is defined by

Lε1(η⊥, ζ )=
1

2π

∫ ∞
0

eiε1kη⊥e−k3ζ dk= 1
2(3ζ )1/3

Hi
(

iε1
η⊥

(3ζ )1/3

)
, (3.27)

where the function Hi is the Scorer’s function (Abramowitz & Stegun 1965, page 448),
defined by

Hi(z)= 1
π

∫ ∞
0

ezk−k3/3 dk. (3.28)

It satisfies Hi′′ − zHi(z) = π−1 and is such that Hi(iz) ∼ i/(πz) when z → ±∞.
Additional properties can be found in Drazin & Reid (1981), page 470, where it
corresponds to the generalized Airy function B1(z, 0), or in appendix B of Voisin
(2003). It was first introduced for the description of internal shear layers by Moore
& Saffman (1969) and Thomas & Stevenson (1972). The real and imaginary parts
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FIGURE 4. The function Hi(ix) versus x. The solid line is the real part and the dashed
line is the imaginary part.

of the function Hi(iz) that describes the structure of the harmonic response near the
lines Lj are plotted in figure 4.

The above expressions can be used to show that around each line Lj, the velocity
field is mainly composed of the azimuthal component and a component v‖ aligned
along with Lj. For the line L1, v⊥ and v‖ are defined by

v⊥ = u+µ10w√
1+µ2

10

, v‖ = w−µ10u√
1+µ2

10

, (3.29a,b)

while for L2 and L3, they are given by

v⊥ = µ10w− u√
1+µ2

10

, v‖ = w+µ10u√
1+µ2

10

. (3.30a,b)

We obtain v ∼ E1/6ṽ, b∼ E1/6b̃ and v‖ ∼ E1/6ṽ‖, where

ṽ ∼ Ṽeih(1)j
Lε1(ηj⊥, ζ )√

r
, (3.31a)

b̃∼ B̃eikj
Lε1(ηj⊥, ζ )√

r
, (3.31b)

ṽ‖ ∼ Ṽ‖eilj Lε1(ηj⊥, ζ )√
r

, (3.31c)

with

Ṽ = v1

2α1/3
√

1+µ2
10

, B̃= N2Ṽ
2µ10

, Ṽ‖ =
ω

√
1+µ2

10

2µ10

Ṽ, (3.32a−c)

where v1, µ10 and α have been defined in (A 2a) and (3.8a). The phase of the
component v‖ is in quadrature with v and b and satisfies l1 = h(1)1 + π/2= k1 − π/2
and lj = h(1)j −π/2= kj −π/2 for j= 2, 3.
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The velocity component v⊥ is O(E1/3) smaller than v and v‖. Writing v⊥ = E1/2ṽ⊥,
it can be obtained from the incompressibility condition

∂ṽ⊥
∂η⊥
=−∂ṽ‖

∂η‖
, (3.33)

using

∂

∂η‖
=



µ10√
1+µ2

10

(
1

(1+µ2
10
)3/2

∂

∂ζ
− ∂

∂r

)
for L1,

µ10√
1+µ2

10

(
1

(1+µ2
10
)3/2

∂

∂ζ
+ ∂

∂r

)
for L2 and L3.

(3.34)

To close this section, it is worth noting that the flow structure obtained close to the
singularity lines is associated with the ring source at the disk edge only. The other
source (uniform flow on the disk) gives a wave field that is O(E1/3) smaller close to
the singularity lines. We discuss the consequences of this result in § 6.

3.4. Close to the focus point (r, z̃)= (0, 1)
When r goes to zero, the lines L1 and L2 collide at z̃= 1. This particular region close
to the axis also corresponds to the peaks of the cones formed by the lines L1 and L2.
As the rays are focused to this particular point, we expect larger amplitudes, as also
predicted by (3.31a–c) which diverge as r→ 0. A local solution can be obtained from
(3.16) and (3.19) by introducing the local variables R= rẼ−1/3 and Z = (z̃− 1)Ẽ−1/3,
and using the expansion (3.23) of one of the Bessel functions only. We first obtain

F(1)
ε1
∼ Ẽ−1/2eiε15π/4H(1,1)

ε1
(R, Z), (3.35a)

F(0)
ε1
∼ Ẽ−1/2eiε15π/4H(1,0)

ε1
(R, Z), (3.35b)

with

H(m,n)
ε1

(R, Z)= 1√
2π

∫ +∞
0

km−1/2Jn(kR)eiε1kZ−k3
dk, (3.36)

from which we obtainu
v

w
b

= v1

|α|1/2


ω/2 eiε1π/4+iπ/2 H(1,1)

ε1
(R, Z)

eiε1π/4+iπ H(1,1)
ε1
(R, Z)

ω/(2µ10) eiε13π/4+iπ/2 H(1,0)
ε1
(R, Z)

N2/(2µ10) eiε13π/4+iπ H(1,0)
ε1
(R, Z)

 , (3.37)

where µ10 , α and v1 have been defined in (3.8a) and (A 2a).
It should be noted that the velocity amplitude of the harmonic response is O(1)

close to the focus point. This implies that the amplitude of the angular velocity is
large, of order Ẽ−1/3. More precisely, the maximum angular velocity of the harmonic
response, which is reached at the focus point (R, Z)= (0, 0), is found to be Ωmax =
hoεE−1/3v1α

−5/6, with h0 ≈ 0.188. The variations of this maximum with respect to ω
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FIGURE 5. Variation of the maximum angular velocity of the harmonic response with
respect to ω for N = 0.1 (a) and N = 10 (b). Solid line, Pr =∞; dotted line, Pr = 10;
dash–dot line, Pr= 1; dashed line, Pr= 0.1.

and Pr are shown in figure 5 for both a weakly stratified and a strongly stratified case.
Whatever the value of N, the maximum angular velocity is found to increase with
Pr, with a maximum reached for Pr =∞. The function Ωmax is also found to reach
a maximum value within the inertia-gravity frequency range far from its boundaries
where it vanishes. Interestingly, one can note that the weakly stratified case (N = 0.1)
provides larger amplitudes than the strongly stratified case (N = 10).

The functions H(m,n)
+ and H(m,n)

− describing the spatial structure of the harmonic
response close to the focus point satisfy the properties that

H(m,n)
− (R, Z)= (H(m,n)

+ (R, Z))∗ =H(m,n)
+ (R,−Z), (3.38)

so the entire time evolution can be deduced from the case ε1 = 1 in a quarter of a
period. If we define to such that −ωto + φv1 + ε1π/4 + π = 0, and use an adequate
normalization, we can write the velocity and buoyancy fields as

v̄r = ε1Im(H(1,1)
+ (R, Z)) cos(ω(t− to))+Re(H(1,1)

+ (R, Z)) sin(ω(t− to)), (3.39a)

v̄θ = Re(H(1,1)
+ (R, Z)) cos(ω(t− to))− ε1Im(H(1,1)

+ (R, Z)) sin(ω(t− to)), (3.39b)

v̄z = ε1Re(H(1,0)
+ (R, Z)) cos(ω(t− to))− Im(H(1,0)

+ (R, Z)) sin(ω(t− to)), (3.39c)

B̄ = −Im(H(1,0)
+ (R, Z)) cos(ω(t− to))− ε1Re(H(1,0)

+ (R, Z)) sin(ω(t− to)). (3.39d)

Characteristic time snapshots of these fields are shown in figure 6.

4. Mean flow correction

In this section, we calculate the mean flow correction generated by the nonlinear
interaction of the harmonic flow with itself. As for the harmonic components,
we focus on the limit of small Ekman numbers for which simpler expressions
are obtained. The two small parameters E and ε are independent. However, by
construction, the limit ε→ 0 is performed first.
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FIGURE 6. (Colour online) Time evolution of the velocity field and buoyancy field
close to the focus point for ε1 = 1. (a–c) Vector fields (v̄r, v̄z) and contour levels of√
v̄2

r + v̄2
i . (d–f ) Contour levels of v̄θ . (g–i) Contour levels of B̄. Here, ω(t − to) =

(a,d,g) 0, (b,e,h) π/4, (c,f ,i) π/2.

The mean flow is forced by the Reynolds stress (right-hand side of (2.6)), whose
amplitude varies strongly according to the position. In the bulk, far from the disk
boundary and far from Lj when ω ∈ Iω, the velocity components are O(ε

√
E), so the

Reynolds stress is small and of order O(ε2E). In the boundary layer of the librating
disk, the Reynolds stress is O(ε2), whereas close to Lj the Reynolds stress is O(ε2E1/3).
At the focus point, it becomes of order O(ε2E−1/3), and at the disk border, it is
O(ε2E−1/2).
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In the bulk, because the mean flow correction turns out to be larger than the
Reynolds stress, it has to be a homogeneous solution of (2.6a–e). The solution of
these equations can be sought in the form (3.1a–e) with ω= 0. When N> 0, only the
‘non-viscous contributions’ associated with µ1 ∼ iN

√
Prk/2 and µ4 ∼ ik are expected

to be present. This gives

u0 ∼ E(N2Pr− 4)
8

∫ ∞
0

k2B0(k)e−((N
√

Pr)/2)kzJ1(kr) dk, (4.1a)

v0 ∼
∫ ∞

0

(
A0(k)e−kz + B0(k)e−((N

√
Pr)/2)kz

)
J1(kr) dk, (4.1b)

w0 ∼ E(N2Pr− 4)

4N
√

Pr

∫ ∞
0

k2B0(k)e−((N
√

Pr)/2)kzJ0(kr) dk, (4.1c)

b0 ∼−
∫ ∞

0

(
2A0(k)e−kz +N

√
PrB0(k)e−((N

√
Pr)/2)kz

)
J0(kr) dk, (4.1d)

where A0(k) and B0(k) are functions prescribed by the matching with the other regions.
These expressions tell us that, in the bulk, the radial and axial velocity fields are O(E)
smaller than the azimuthal velocity and buoyancy components when N 6= 0.

When N = 0, µ1 =O(E), b0 = 0 and the solution is

u0 ∼−E
2

∫ ∞
0

k2B0(k)e−((k
3E)/2)zJ1(kr) dk, (4.2a)

v0 ∼
∫ ∞

0
B0(k)e−((k

3E)/2)zJ1(kr) dk, (4.2b)

w0 ∼−
∫ ∞

0
B0(k)e−((k

3E)/2)zJ0(kr) dk. (4.2c)

Without stratification, an axial mean flow is thus expected to be present in the bulk
with an amplitude of the same order as the azimuthal mean flow. The functions A0
and B0 when N 6= 0 and B0 when N= 0 are obtained by matching expressions (4.1a–d)
or (4.2a–c) with the boundary layer solution, as shown in the next section.

4.1. Generation from the boundary layer

In the boundary layer, the Reynolds stress is of order ε2 when r< 1, and of order ε2E
for r> 1. The main contribution is then expected to come from the boundary layer on
the disk (r< 1). For r< 1, the amplitudes of the mean flow correction can be written
as

u0 ∼ ū0(z̄, r)+ u(out)
00
(r), (4.3a)

v0 ∼ v̄0(z̄, r)+ v(out)
00

(r), (4.3b)

w0 ∼
√

Ew̄0(z̄, r)+w(out)
00
(r), (4.3c)

p0 ∼ Ep̄0(z̄, r)+ p(out)
00
(r), (4.3d)

b0 ∼
√

Eb̄0(z̄, r)+ b(out)
00
(r), (4.3e)

where the functions u(out)
00
, v

(out)
00

, . . . are associated with non-viscous outer (bulk)
contributions within the boundary layer and z̄= z/

√
E is the boundary layer variable.
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From (2.6a–e), we obtain the system

2v̄0 + ∂
2ū0

∂ z̄2
= N̄u, (4.4a)

−2ū0 + ∂
2v̄0

∂ z̄2
= N̄v, (4.4b)

∂2w̄0

∂ z̄2
− ∂ p̄0

∂ z̄
− b̄0 = N̄w, (4.4c)

∂2b̄0

∂ z̄2
+N2Prw̄0 = PrN̄b, (4.4d)

1
r
∂rū0

∂r
+ ∂w̄0

∂ z̄
= 0, (4.4e)

with

N̄u = ū
∂ ū∗

∂r
+ w̄

∂ ū∗

∂ z̄
− |v̄|

2

r
+ c.c., (4.5a)

N̄v = ū
∂v̄∗

∂r
+ w̄

∂v̄∗

∂ z̄
+ ūv̄∗

r
+ c.c., (4.5b)

N̄w = ū
∂w̄∗

∂r
+ w̄

∂w̄∗

∂ z̄
+ c.c., (4.5c)

N̄b = ū
∂ b̄∗

∂r
+ w̄

∂ b̄∗

∂ z̄
+ c.c., (4.5d)

where ū, v̄ w̄ and b̄ are the amplitudes of the harmonic solution defined in (3.11a–d).
These equations can be solved as

ū0 = r(−b0 cos(z̄)+ a0 sin(z̄))e−z̄ + rūp(z̄), (4.6a)
v̄0 = r(a0 cos(z̄)+ b0 sin(z̄))e−z̄ + rv̄p(z̄), (4.6b)

w̄0 = ((a0 − b0) cos(z̄)+ (a0 + b0) sin(z̄))e−z̄ + w̄p(z̄), (4.6c)

where ūp, v̄p and w̄p are particular solutions of the non-homogeneous equations
(4.4a,b,e) which have the same form as the nonlinear terms (i.e. sum of exponentials).
In particular, they vanish at infinity and satisfy ūp(z̄) = (∂2

z̄ v̄p − N̄v/r)/2 and
w̄p = −2

∫ z̄
+∞ ūp(s) ds. On inserting these expressions in (4.3a–c) and applying the

no-slip boundary condition we obtain

r(−b0 + ūp(0))+ u(out)
00
(r)= 0, (4.7a)

r(a0 + v̄p(0))+ v(out)
00

(r)= 0, (4.7b)√
E(a0 − b0 + w̄p(0))+w(out)

00
(r)= 0. (4.7c)

Because N̄u and N̄v do not depend on N and Pr, the particular solutions ūp, v̄p and
w̄p are also independent of N and Pr and equal to the solutions obtained in the
unstratified case. The above equations thus apply for both cases N = 0 and N 6= 0.

However, when N 6= 0, the condition of matching of (4.3a–c) with (4.1a–c) requires
that u(out)

00
and w(out)

00
are O(E) smaller than v

(out)
00

. This implies that we should have,
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at leading order, −b0 + ūp(0)= 0 and a0 − b0 + w̄p(0)= 0 from (4.7a,c), which gives
in (4.7b)

v
(out)
00
= r(w̄p(0)− ūp(0)− v̄p(0))≡ rΩ2(ω), (4.8)

where the function Ω2 depends on ω only. This equality gives the amplitude of the
azimuthal flow needed to cancel the Ekman pumping (axial flux) created by the
nonlinear interactions in the boundary layer. This situation, where no axial flux is
permitted in the bulk, has already been encountered in the literature for a bounded
configuration without stratification. Wang (1970) and Sauret et al. (2012) showed that
the zonal flow created by librating a cylinder satisfies this property. As a consequence,
the value of the mean angular velocity Ω2 is equal to the value obtained for a librating
cylinder. It corresponds to the function Ω2(ω) given in the appendix of Sauret et al.
(2012).

Expression (4.8) tells us that the outer mean flow is a solid-body rotation close to
the disk boundary (r< 1), while it is expected to vanish at this order on the boundary
outside the disk (r > 1). Moreover, at this order, the buoyancy of the outer mean
flow should also vanish on the disk (since the boundary layer contribution is O(

√
E)

smaller). On applying these conditions of matching to (4.1b,d) we obtain, using the
property (3.5), the following equalities for the amplitudes A0(k) and B0(k) of the
solution in the bulk:

A0(k)+ B0(k)=Ω2J2(k), (4.9a)
2A0(k)+N

√
PrB0(k)= 0. (4.9b)

In (4.1b,d), this gives

v0 ∼Ω2

∫ +∞
0

2e−((N
√

Pr)/2)kz −N
√

Pre−kz

2−N
√

Pr
J2(k)J1(kr) dk, (4.10a)

b0 ∼−Ω2
2N
√

Pr

2−N
√

Pr

∫ +∞
0

(
e−((N

√
Pr)/2)kz − e−kz

)
J2(k)J0(kr) dk. (4.10b)

The spatial structure of v0 and b0 therefore depends on a single parameter Λ =
N
√

Pr/2 and can be written as

v0 ∼Ω2
G(1)(r, Λz)−ΛG(1)(r, z)

1−Λ , (4.11a)

b0 ∼−2Ω2Λ
G(0)(r, Λz)−G(0)(r, z)

1−Λ , (4.11b)

where

G(n)(r, z)=
∫ +∞

0
J2(k)Jn(kr)e−kz dk. (4.12)

It should be noted that when Λ→∞, that is when there is no buoyancy diffusion
(Pr � 1) or when the fluid is strongly stratified (N � 1), we obtain even simpler
expressions:

v0 ∼Ω2G(1)(r, z), b0 ∼−2Ω2G(0)(r, z). (4.13a,b)
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FIGURE 7. The mean flow correction in the bulk generated by the boundary layer with
stratification. Contours in the (r, z) plane of the functions G(1)(r, z) (a) and G(0)(r, z)
(b) characterizing the azimuthal mean flow correction and the mean buoyancy correction
respectively. In (b) the grey levels are for the norm of G(0), and the solid and dashed lines
are for positive and negative values of G(0) respectively.

The contours of the functions G(1)(r, z) and G(0)(r, z) are plotted in figure 7. It should
be noted that the zonal flow generated by the boundary layer extends to at least an
O(1) region above the disk, even in the strongly stratified case. Moreover, the zonal
flow structure does not depend on the frequency, which means that the same zonal
flow is obtained whether ω ∈ Iω or not.

When N = 0, an axial flux from the boundary layer is possible, and the form
(4.2a–c) of the solution in an open domain implies that v(out)

0 (0) and w(out)
0 (0) are of

the same order. This is possible while satisfying (4.7a–c) only if −b0+ ūp(0)= 0 and
a0 + v̄p(0)= 0, which gives

w(out)
0 (0)=√E(ūp(0)+ v̄p(0)− w̄p(0))=−

√
EΩ2. (4.14)

This equality is obtained for r < 1. Keeping in mind that at this order w(out)
0 (0) = 0

for r> 1, and that (Watson 1952, P406)∫ ∞
0

J1(k)J0(kr) dk=H(1− r), (4.15)

we immediately deduce, from the condition of matching of (4.3c) with (4.2c), that

B0(k)=−
√

EΩ2J1(k). (4.16)

Expressions (4.2b,c) then give when z� 1/E

v0 ∼−
√

EΩ2 g1(r), (4.17a)
w0 ∼−

√
EΩ2 g0(r), (4.17b)

where

gn(r)=
∫ ∞

0
J1(k)Jn(kr) dk. (4.18)
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FIGURE 8. The mean flow correction in the bulk generated by the boundary layer without
stratification (N = 0). Plot of the functions g0(r) (dashed line) and g1(r) (solid line)
characterizing the axial mean flow and the azimuthal mean flow respectively.

The functions g0(r) and g1(r) are plotted in figure 8. The function g1(r) diverges at
r = 1, which means that viscosity has a significant role close to the line r = 1 in
smoothing the singularity. It leads to a mean azimuthal velocity of order ε2

√
E ln(E).

We suspect that a larger contribution could exist corresponding to a Dirac source of
axial flow at the edge of the disk at r= 1. We have seen that such a contribution does
exist for the harmonic response. Here, it would give a function B0(k) proportional to
kJ0(k) (Tilgner 2000), leading to an O(ε2E1/6) contribution close to the line r=1, with
the same typical Scorer function for its transverse spatial structure as for the harmonic
response.

4.2. Close to the singularity lines
In the previous section, we have calculated the mean flow correction in the bulk
generated by the nonlinear interaction in the boundary layer. When ω ∈ Iω, another
contribution of order ε2E1/3 is also created close to the singularity lines Lj.

When N 6= 0, the azimuthal velocity and buoyancy fields associated with this
correction are negligible compared with the O(ε2) contributions coming from the
boundary layer (see expressions (4.11a,b)). The radial and axial velocity components
of this mean flow correction are, by contrast, expected to be dominant. These velocity
fields are associated with a mean flow correction aligned along with the line Lj. They
are obtained from (2.6b,e), which give

u0 = E1/3ũ0, (4.19a)

w0 = ε0E1/3 ũ0

µ10

, with ε0 =
{−1 on L1,
+1 on L2 and L3,

(4.19b)

with

2Ω0ũ0 =−Ñv =−
(
∂ṽ‖ṽ∗

∂η‖
+ ∂ṽ⊥ṽ

∗

∂η⊥
+ ṽ‖ṽ

∗

r
+ c.c.

)
=−

(
∂ṽ⊥ṽ∗

∂η⊥
+ c.c.

)
, (4.20)

where ṽ and ṽ⊥ are given by (3.31a) and (3.33). It should be noted that the
simplification in (4.20) is due to the phase quadrature between v‖ and v.
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When N = 0, the mean flow generated close to the line Lj is the dominant
contribution as the boundary layer contribution is O(ε2E1/2). The radial and axial
components are still given by (4.19a,b) and (4.20). If we write the amplitude of the
azimuthal velocity as v0 = E1/3ṽ0, we obtain, from (2.6a,c), after having computed
the pressure terms, the simple expression

ṽ0 =−|ṽ|
2

r
, (4.21)

where ṽ is given by (3.31a).
All of the expressions obtained for the mean flow correction components go to zero

far away from the line Lj (that is, when |η⊥|→∞). This implies that the contribution
at this order does not force any mean flow correction in the outer region away from
Lj. One could show that such a forcing appears at the next order, leading to a bulk
contribution of order ε2E2/3, which is always smaller than the contribution generated
from the boundary layer.

4.3. At the focus point

Close to the focus point, the Reynolds stress scales as ε2E−1/3 and generates a mean
flow correction of same order. We provide in this subsection the asymptotic analysis
which permits us to calculate the mean flow correction.

We start with the case N = 0 which is simpler. For N = 0, we can use the ansatz

u0 = E−1/3ǔ0, (4.22a)
v0 = E−1/3v̌0, (4.22b)
w0 = E−1/3w̌0, (4.22c)

p0 = p̌1. (4.22d)

We obtain by inserting (4.22a–d) in (2.6a–e) with the local variables R= r/Ẽ1/3 and
Z = (µ10z− 1)/Ẽ1/3 the system

2v̌0 − ∂Rp̌1

α1/3
= 1
α1/3

(u∂Ru∗ +µ10w∂Zu∗ − |v|2/R+ c.c.)≡ Ňu0, (4.23a)

−2ǔ0 = 1
α1/3

(u∂Rv
∗ +µ10w∂Zv

∗ − uv∗/R+ c.c.)≡ Ňv0, (4.23b)

−µ10∂Z p̌1

α1/3
= 1
α
(u∂Rw∗ +µ10w∂Zw∗ + c.c.)≡ Ňw0, (4.23c)

∂̄Rǔ0 +µ10∂Zw̌0 = 0, (4.23d)

where µ10 and α have been defined in (3.8a) and ∂̄R = ∂R + 1/R. Since Ňv0 reduces
to

Ňv0 =
µ10

α1/3
∂Z(wv∗ + vw∗), (4.24)

we immediately get from (4.23b,d)

ǔ0 =− µ10

2α1/3
∂Z(wv∗ +w∗v), (4.25a)

w̌0 = 1
2α1/3

∂̄R(wv∗ +w∗v). (4.25b)



Librating disk 199

Using (3.37), these expressions can also be written as

ǔ0 = ε1|v1|2ω
4α4/3

Uf (R, Z), w̌0 = ε1|v1|2ω
4µ10α

4/3
Wf (R, Z), (4.26a,b)

with

Uf (R, Z)= Im(H(2,0)
+ H(1,1)

− −H(1,0)
+ H(2,1)

− ), (4.27a)

Wf (R, Z)=Re(H(2,0)
+ H(1,0)

− −H(1,1)
+ H(2,1)

− ), (4.27b)

where H(m,n)
ε1

(R, Z) has been defined in (3.36). In figure 9(a), we have plotted the

contours of
√

U2
f +W2

f together with the vector field (Uf ,Wf ) in a meridional plane.
It should be noted that the mean poloidal flow corresponds to a flow oriented upward
when ε1 = 1 and downward when ε1 =−1. The maximum of the mean poloidal field
is reached at the focus point (R, Z)= (0, 0) and has a maximum amplitude which is
for N = 0

wmax
0 = E−1/3h1

ω4/3(4−ω2)7/6

21/3 32
, with h1 =max

(√
U2

f +W2
f

)
≈ 0.222. (4.28)

The azimuthal velocity field can be obtained from (4.23a,c) which give, after
eliminating the pressure,

2µ10∂Z v̌0 =µ10∂ZŇu0 − ∂RŇw0 ≡ Ň1, (4.29)

where Ň1 reduces, using (3.37), to

Ň1 = 2|v1|2
α4/3

∂

∂Z

[
(1+µ2

10
)ω2

4µ2
10

Re

(
H(2,1)
+ H(1,0)

− − |H
(1,1)
+ |2
R

)
− |H

(1,1)
+ |2
R

]
. (4.30)

Taking N = 0, we immediately obtain

v̌0 = ω
1/3(4−ω2)7/6

21/38
Vf (R, Z), (4.31)

with

Vf (R, Z)= Re(H(2,1)
+ H(1,0)

− )− 2
|H(1,1)
+ |2
R

. (4.32)

This expression is always positive, which implies that the azimuthal mean flow
correction is cyclonic. It corresponds to an angular rotation localized around the
focus point (see figure 9b). The maximum angular velocity is reached at the focus
point and is found to be

Ωmax
0 = E−2/3h2

ω2/3(4−ω2)11/6

22/316
, with h2 =max(Vf /R)≈ 0.0206. (4.33)

The amplitude of the zonal flow is characterized by the expressions (4.28) and
(4.33), which are plotted as a function of ω in figure 10. On these plots, we can
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FIGURE 9. (Colour online) The zonal flow spatial structure. (a) The mean poloidal

velocity field. Vector fields (Uf , Wf ) and contour levels of
√

U2
f +W2

f , normalized by

max
(√

U2
f +W2

f

)
≈ 0.222, plotted here for N < 2 (ε = 1). (b) The mean toroidal field.

Contours of the mean angular velocity Vf /R, normalized by max(Vf /R) ≈ 0.0206. The
same colourbar has been used for each plot, with contours every 0.1.
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FIGURE 10. Variation with respect to ω of the maximum axial velocity (a) and the
maximum angular velocity (b) of the mean flow correction for N = 0.

observe that the zonal flow vanishes at the ends of the inertia-gravity frequency
range, and reaches a maximum close to the middle of the interval. The amplitudes
are relatively small, but we have to keep in mind that they have been renormalized
by powers of the Ekman number.

When N 6= 0, the derivation of the mean flow correction is more involved. The same
ansatz (4.22) can be used for the velocity and pressure fields but we should add the
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FIGURE 11. Variation of the maximum axial velocity of the mean flow correction with
respect to ω for N = 0.2 (a) and N = 10 (b). Solid line, Pr =∞; dotted line, Pr = 10;
dash–dot line, Pr= 1; dashed line, Pr= 0.1.

ansatz b0 = E−1/3b̌0 for the amplitude of the buoyancy correction. Insertion of these
expressions in (2.6a–e) written using the local variables leads again to (4.23a,d) for
ǔ0 and w̌0. This implies that the expressions (4.26) for ǔ0 and w̌0 are still valid. In the
presence of stratification, the spatial structure of the poloidal field of the mean flow
correction is then the same as without stratification and is described by the functions
Uf and Wf plotted in figure 9(a). The maximum amplitude is still reached at the
focus point, but its value now depends on the Prandtl number. It goes to zero as

√
Pr

for small Prandtl number, and increases with Pr up to its maximum reached for an
infinite Prandtl number. Typical variations of this maximum for a weakly stratified
and a strongly stratified case are shown in figure 11. For the weakly stratified case,
we are close to the results obtained without stratification, as expected. The effect of
the Prandtl number turns out to be very weak for Pr > 1. For the strongly stratified
case, the effect of the Prandtl number is stronger, but the amplitudes are found to be
10 times smaller than without stratification.

The amplitudes v̌0 and b̌0 of the azimuthal velocity and buoyancy of the mean flow
corrections can also be obtained from the system (2.6a–e), but some manipulations
are needed to obtain

∂Rb̌0 + 2µ10∂Z v̌0 = Ň1, (4.34a)

∂̄R∆̄v̌0 − 2µ10

N2Pr
∂Z∆b̌0 = Ň2, (4.34b)

with Ň1 given by (4.30) and

Ň2 = µ10(1+µ10)|v1|2
Prα2

{
(Pr− 1)Re(H(5,1)

+ H(1,1)
− −H(5,0)

+ H(1,0)
− )

+ (Pr+ 1)Re(H(4,1)
+ H(2,1)

− −H(4,0)
+ H(2,0)

− )
}
, (4.35)

where ∆̄ = ∂R∂̄R + µ2
10
∂2

Z and ∆ = ∂̄R∂R + µ2
10
∂2

Z . These equations could a priori be
solved using Hankel transform. However, the result is not sufficiently simple to be
useful. As for the case without stratification, the solution is found to be localized
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FIGURE 12. (Colour online) The Ekman scaling of the harmonic response amplitude in
the meridional plane (r, z̃) (where z̃= z

√|N2 −ω2|/|ω2 − 4|). (a) When the frequency is
in the inertia-gravity range (min(2,N)<ω<max(2,N); (b) when the frequency is outside
the inertia-gravity range (ω>max(2,N) or ω<min(2,N)). We have indicated in red the
Ekman scaling of the width for the different regions in (a).

around the focus point. Thus, it does not force any mean flow correction in the outer
region at this order. The mean flow correction is forced in the outer region at the next
order, and is therefore O(E1/3) smaller.

5. Summary of the different scalings
In the previous sections, we have provided the spatial structure of both the harmonic

response and its mean flow correction. In the weakly nonlinear regime that we have
considered, which assumes a small libration amplitude ε, the harmonic response and
the mean flow correction are proportional to ε and ε2 respectively. However, they
exhibit a complex dependence with respect to the Ekman number E. The scaling in
E has been found to depend on the location and the frequency, as summarized in
figures 12 and 13, which display the role of the St Andrew’s cone through the disk
rim.

The results are simpler for the harmonic response (figure 12) than for the mean flow
correction (figure 13). When ω /∈ Iω, the harmonic response is O(1) in the boundary
layer of width E1/2 on the disk. Elsewhere, the harmonic response is O(E1/2) with
a spatial structure independent of N, ω and Pr, albeit with rescaling factors that are
functions of N and ω. When ω ∈ Iω, the harmonic response is also O(1) in the region
of radius O(E1/3) around the focus point of the singularity lines. We have seen that the
spatial structure of the harmonic response near this point, as well as in the region of
width O(E1/3) around the singularity lines, has a universal form that does not depend
on any parameter. The maximum amplitude, however, depends on ω and N as well
as on Pr when N 6= 0.

Contrary to the harmonic response, the spatial structure of the mean flow correction
strongly depends on whether N is null or not. We report in figure 13 the scaling in E
of the mean flow correction for the unstratified case (a,c) and the stratified case (b,d).
The first important difference comes from the generation of the mean flow correction
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in the boundary layer. In the unstratified case (N=0), we have seen that the mean flow
generation is weak as the nonlinear interactions in the disk boundary layer only induce
O(E1/2) mean flow correction in the bulk. The mean flow generation in the boundary
layer is larger when the stratification is present: it leads to an O(1) azimuthal flow
in the bulk whose spatial structure only depends on the parameter Λ=N

√
Pr/2, and

not on the frequency. The peculiar structure of the harmonic response is recovered
in the scaling of the mean flow correction when ω ∈ Iω. Along the singularity lines,
the nonlinear interactions generate an O(E1/3) mean flow that is larger than the mean
flow created in the boundary layer in the unstratified case. At the focus point, the
mean flow correction becomes large, of order E−1/3. We have been able to compute
the universal structure of this mean flow for N = 0. For N 6= 0, we have also shown
that the poloidal flow possesses the same spatial structure as for N = 0. However, the
azimuthal flow is different. For both cases, the large azimuthal velocity field at the
focus point implies an even larger angular velocity and vorticity field near this point.
We indeed expect an O(ε2E−2/3) vorticity field for the mean flow correction. Both the
focus point region and the disk edge region are also expected to create a mean flow
correction in the bulk, in regions that have the form of a Taylor–Proudman column
when N = 0. We argued that they could be of order E1/6 from the disk edge, and of
order 1 from the focus point.

6. Discussion

We have provided the structure of the wave field and its mean flow correction in
a rotating and stratified fluid. Both stratified and non-stratified configurations have
been considered, demonstrating that stratification only acts on the structure of the
mean flow correction. As all temporal scales have been normalized by the rotation
rate of the rotating frame, rotation has always been assumed to be present. When
the rotation vanishes the flow structure becomes completely different. Indeed, without
rotation, there exists a simple exact solution of the librating disk problem, which is
(in dimensional form)

v∗r = v∗z = B∗ = 0, (6.1a)

v∗θ =

ε
∗r∗e−

√
(ω∗/(2ν∗))z∗ cos

(√
ω∗

2ν∗
z∗ −ω∗t∗

)
, r∗ < a∗,

0, r∗ > a∗.
(6.1b)

This azimuthal flow is concentrated in the boundary layer on the disk whatever
the frequency. In particular, no inertia-gravity wave field or internal shear layer is
generated in this case. Moreover, as this flow is an exact solution of the Navier–Stokes
equations, no mean flow correction is generated either.

This shows the essential role of the rotation in the wave field generation process. To
be efficient, the generation process requires Ekman pumping to transmit the boundary
layer oscillations into the bulk. We have seen that Ekman pumping does provide the
source terms of the inertia-gravity wave field. Moreover, we have shown that these
source terms are exactly the sum of a uniform vertical flow on the disk and of a
Dirac source of vertical flow at the disk edge. Both have an amplitude equal to

εRing = ε√E
ω|v1|
2|µ10 |

, (6.2)
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FIGURE 13. (Colour online) The Ekman scaling of the mean flow correction amplitude
in the meridional plane (r, z̃) when ω∈ Iω (a,b) and when ω /∈ Iω (c,d). In (a,c) N= 0 and
in (b,d) N 6= 0. We have indicated in red the Ekman scaling of the widths of the different
regions.

which reduces to

εRing = ε
√

E
|4−ω2|1/2


1, ω < 2,√
ω+ 2−√ω− 2

2
, ω > 2.

(6.3)

We can check that this amplitude goes to zero in the weak rotation limit (ω→∞). It
should be noted also that this expression diverges when ω→ 2. For this value of ω,
one of the viscous wavenumbers goes to zero. The whole structure of the solution is
then expected to be different. We leave this interesting limit for a future study.

It is worth mentioning that the source of the wave field does not depend on
stratification, which is consistent with the form of the velocity field in the boundary
layer. The amplitude of the source has the classical E1/2 Ekman pumping scaling.
Despite the weak amplitude of this forcing, we have seen than it generates an O(ε)
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harmonic response and an O(ε2E−1/3) mean flow correction. These large amplitudes
are obtained at the point of focus of the singularity lines when ω ∈ Iω. Interestingly,
we have observed that the structure and amplitude of the solution near this point
are only related to the Dirac source at the edge of the disk. The contribution from
the other source (uniform flow on the disk) has been found to be negligible close
to the singularity lines, and in the neighbourhood of the point of focus. This has an
important consequence: it implies that the flow structure that we have described along
the singularity lines and at the focus point is the general flow structure associated
with a Dirac ring source. All of the results obtained for the harmonic response and
for its mean flow correction in the neighbourhood of the singularity lines and of the
focus point are thus expected to apply to a general Dirac ring source.

It is therefore interesting to renormalize the results by the amplitude of the ring
source to be able to consider configurations where the amplitude of the source is
not related to Ekman pumping. For the harmonic response, we obtain that close to
the singularity lines, using (3.31a–c) and (3.32), the buoyancy, azimuthal and parallel
velocity fields all have the same spatial structure Lε1(η⊥, ζ )/

√
r, but with different

amplitudes given by

BRing

εRing
= N2

2ω

√∣∣∣∣ω2 − 4
N2 − 4

∣∣∣∣Ẽ−1/3,
VRing
θ

εRing
= 1
ω

√∣∣∣∣N2 −ω2

N2 − 4

∣∣∣∣Ẽ−1/3,
VRing
‖
εRing
= 1

2
Ẽ−1/3,

(6.4a−c)
where Ẽ is the rescaled Ekman number defined in (3.20). Close to the focus point,
the amplitudes of the velocity and buoyancy fields of the harmonic response are
O(Ẽ−1/6) larger. The azimuthal velocity is then O(Ẽ−1/2), which gives a maximum
angular velocity of the harmonic response

ΩRing
max

εRing
= 2h0

ω

√∣∣∣∣N2 −ω2

ω2 − 4

∣∣∣∣Ẽ−5/6, with h0 ≈ 0.188. (6.5)

The mean flow correction when rescaled by (εRing)2 exhibits even larger amplitudes.
On the singularity lines, we obtain O(Ẽ−2/3) amplitudes, while at the focus point, they
are O(Ẽ−4/3), leading to angular velocity corrections of order Ẽ−5/3.

Our analysis has focused on the harmonic response and on the mean flow correction.
It is clear that nonlinearity also generates higher harmonics of frequency 2ω, 3ω, etc.,
which possess their own wave field. These higher harmonics could become important
when their frequency is within the inertia-gravity frequency range whereas ω /∈ Iω.

As soon as the harmonic response or the mean flow correction becomes of order 1,
which has the best chance to occur close to the disk edge or close to the focus point,
one could imagine that local instability could develop and give rise to other excitation
sources. Analysis of how nonlinearity would affect the solution could be one of the
important next steps of the present study.
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Appendix A. Asymptotic expressions of the coefficients for small Ekman
numbers

In this section, we provide asymptotic expressions of the coefficients appearing in
(3.1) when E→ 0, assuming that k, Pr, N and ω are all real positive numbers of
order 1. Moreover, the frequency ω is also assumed to be different from 2, N and
2/|Pr− 1|.

The four coefficients Vj, j= 1, 2, 3, 4, of the azimuthal velocity are given by

V1 ∼ v1
√

E kJ2(k), (A 1a)
V2 ∼ 1

2 J2(k), (A 1b)

V3 ∼ 1
2 J2(k), (A 1c)

V4 ∼ v4Ek2J2(k), (A 1d)

with

v1 = ε1e−iπ/4

√
N2 −ω2(

√
ω− 2−√ω+ 2)

ω(ω2 − 4)
, (A 2a)

v4 =−2iN2 (
√
ω2 − 4−ωPr)(

√
ω− 2−√ω+ 2)

Pr1/2ω3/2((Pr− 1)2ω2 − 42)2
, (A 2b)

where we recall that ε1 = sgn(2− N) when ω ∈ Iω and ε1 = 1 when ω /∈ Iω. It should
be noted that the phase φv1 of v1 varies according to the relative position of ω, N and
2 as

2<ω<N, φv1 =−
π

4
, (A 3a,b)

N <ω< 2, φv1 =
π

4
− arctan

(√
2−ω
2+ω

)
, (A 3c,d)

ω<min(N, 2), φv1 =−
π

4
− arctan

(√
2−ω
2+ω

)
, (A 3e,f )

max(N, 2) < ω, φv1 =−
3π

4
. (A 3g,h)

The other coefficients can all be expressed in terms of Vj:

U1 ∼ i
ω

2
V1, (A 4a)

W1 ∼−ε1ω

2

√
ω2 − 4

N2 −ω2
V1, (A 4b)

B1 ∼−i
ε1N2

2

√
ω2 − 4

N2 −ω2
V1, (A 4c)

U2 ∼ iV2, (A 4d)

W2 ∼− k
√

E√
ω− 2

e−iπ/4V2, (A 4e)
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B2 ∼− kN2Pr
√

E
(2+ (Pr− 1)ω)

√
ω− 2

eiπ/4V2, (A 4f )

U3 ∼−iV3, (A 4g)

W3 ∼ k
√

E√
ω+ 2

e−iπ/4V3, (A 4h)

B3 ∼− kN2Pr
√

E
(2− (Pr− 1)ω)

√
ω+ 2

eiπ/4V3, (A 4i)

U4 ∼−i
(Pr− 1)ω

2
V4, (A 4j)

W4 ∼ k(Pr− 1)
√
ω

2
√

Pr

√
Ee−iπ/4V4, (A 4k)

B4 ∼−
√

Prω(4− (Pr− 1)2ω2)

2k
√

E
e−iπ/4V4. (A 4l)
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