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The internal structure of vortex rings and helical vortices is studied using asymptotic
analysis and numerical simulations in cases where the core size of the vortex is
small compared to its radius of curvature, or to the distance to other vortices. Several
configurations are considered: a single vortex ring, an array of equally-spaced rings,
a single helix and a regular array of helices. For such cases, the internal structure is
assumed to be at leading order an axisymmetric concentrated vortex with an internal
jet. A dipolar correction arises at first order and is shown to be the same for all
cases, depending only on the local vortex curvature. A quadrupolar correction arises at
second order. It is composed of two contributions, one associated with local curvature
and another one arising from a non-local external 2-D strain field. This strain field
itself is obtained by performing an asymptotic matching of the local internal solution
with the external solution obtained from the Biot–Savart law. Only the amplitude
of this strain field varies from one case to another. These asymptotic results are
thereafter confronted with flow solutions obtained by direct numerical simulation
(DNS) of the Navier–Stokes equations. Two different codes are used: for vortex rings,
the simulations are performed in the axisymmetric framework; for helices, simulations
are run using a dedicated code with built-in helical symmetry. Quantitative agreement
is obtained. How these results can be used to theoretically predict the occurrence of
both the elliptic instability and the curvature instability is finally addressed.
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1. Introduction

Most vortices observed in nature are curved and interact with nearby vortices.
Although they can often be considered locally as axisymmetric (with possibly a
jet component), their internal structure is actually azimuthally deformed by local
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effects (curvature, torsion) and non-local effects (remote vorticity). These azimuthal
corrections are known to be the source of short-wavelength instabilities. The
description of these corrections is therefore an important necessary step for the
understanding and modelling of these instabilities. In this work, the first dipolar
and quadrupolar corrections to a prescribed monopolar structure are computed for a
single vortex ring, an array of rings, a helical vortex and an array of helices using
two methods: an asymptotic analysis in the limit of small core size and dedicated
numerical simulations.

Vortex rings are simple invariant vortical states that have been studied for more than
a hundred years. In an inviscid framework, vortex rings are expected to propagate at a
constant speed without changing their form. Many works have aimed at determining
the ring propagation speed when the ring core size is small compared to its radius
(see Saffman 1992). In this limit, the most recent work is by Fukumoto & Moffatt
(2000) who also includes viscous effects and computes the internal structure of a
vortex ring up to third order. This analysis clearly shows that dipolar corrections are
generated at first order, while quadrupolar corrections only appear at second order.
The link between dipolar corrections and local curvature has been known for a long
time (Ting & Tung 1965; Widnall, Bliss & Zalay 1971; Moore & Saffman 1972). In
a general setting, Callegari & Ting (1978) showed how dipolar corrections depend
on the local vortex curvature. These results were extended by Fukumoto & Miyazaki
(1991) to account for an axial jet component within the vortex. In the present study,
these asymptotic predictions are retrieved and compared for the first time to numerical
simulations of finite core size vortices.

Helical vortices are more complicated than rings; in addition to their translation
motion they also rotate. Many works are devoted to the rotation and translation
speeds of such invariant structures (Moore & Saffman 1972; Widnall 1972; Ricca
1994; Kuibin & Okulov 1998; Boersma & Wood 1999). In particular Kuibin &
Okulov (1998) and Boersma & Wood (1999) used the expression of the velocity
field in terms of Kapteyn series derived by Hardin (1982) for helical filaments.
These results were further extended for multiple helices by Okulov (2004) and to
higher-order corrections by Fukumoto & Okulov (2005). The effect of torsion is not
present in the rings. It was first characterized by Ricca (1994) for helices. Torsion also
generates a dipolar correction, as does curvature, but this effect is weaker since it is
of second order (see Fukumoto & Okulov 2005). Quadrupolar corrections responsible
for the elliptic deformation of the inner core are also expected at second order (see
for instance Fukumoto & Moffatt 2000). Such corrections are known to be generated
when a vortex is subjected to an external strain field (Moffatt, Kida & Ohkitani
1994), or is exposed to the influence of other vortices (see Le Dizès & Verga 2002)
or to distant parts of the same vortex, as for a ring. This quadrupolar correction has
been fully computed for a single vortex ring (without jet) by Fukumoto & Moffatt
(2000). In the present work, this correction is also provided for an array of rings, a
single helix and an array of helices. The effect of axial jet within the vortex core is
also analysed.

These asymptotic results are then compared with numerical results obtained by
DNS. For rings, the spectral DNS code developed by Bolnot (2012) is used, in
which axisymmetry is enforced as well as axial periodicity, allowing short-wavelength
instabilities (Widnall, Bliss & Tsai 1974; Hattori & Fukumoto 2003) and the pairing
instability (Levy & Forsdyke 1927; Bolnot, Le Dizès & Leweke 2014) to be filtered
out. For helical vortices, the DNS code developed by Delbende, Rossi & Daube
(2012a) and restricted to the simulation of helically symmetrical flows is used.
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FIGURE 1. (Colour online) Vortex configurations studied in the present paper: (a) vortex
ring, (b) array of rings, (c) helical vortex, (d) N helical vortices (here plotted for N = 2).

The paper is organized as follows. In § 2, the framework of the analysis is
presented. The configurations under study are introduced, as well as the different
parameters and the local reference frame in which the internal structure of the vortex
is analysed. The asymptotic analysis of the inner structure is performed in § 3. Both
the leading-order dipolar correction and quadrupolar corrections are obtained. The
quadrupolar contribution is shown to depend on a single constant, which varies from
one configuration to another. This constant is related to the external strain field
experienced locally by the vortex and is computed in § 4 for each configuration. In
§ 5, asymptotic results are compared to DNS results. Section 6 provides a summary
of the main results and a discussion of their implications concerning short-wavelength
instabilities.

2. Presentation of the framework
Four vortex configurations are considered, where the vorticity field (longitudinal and

transverse) is confined in a region of radius a around the curve S , as illustrated in
figure 1. Depending on the configuration, the curve S is

(i) a circle of radius R (figure 1a);
(ii) an infinite array of circles of radius R separated by a distance Lz (figure 1b);

(iii) an helix of radius R and pitch L (figure 1c);
(iv) a regular array of N helices of radius R and pitch L (figure 1d).

Such a curve S possesses a symmetry axis called the Oz axis and is parametrized
by the arc length s. This means that in a global Cartesian frame, the point C(s) is



222 F. J. Blanco-Rodríguez, S. Le Dizès, C. Selçuk, I. Delbende and M. Rossi

given by C(s) = (R cos �, R sin �, L�) with � = s/
p

R2 + L2 (for rings, L is taken to
be zero). In this Cartesian frame, the Serret–Frenet frame can be expressed as

t ⌘
dC
ds����
dC
ds

����
= R(�ex sin � + ey cos �) + Lezp

R2 + L2
, (2.1a)

n ⌘ dt

ds
= �(ex cos � + ey sin �), (2.1b)

b ⌘ t ⇥ n = Rez + L(ex sin � � ey cos �)p
R2 + L2

. (2.1c)

Note that the curvature  and torsion ⌧ of this curve are given by

 = R
R2 + L2

, ⌧ = L
R2 + L2

. (2.2a,b)

The vorticity field is assumed to be uniform along the curve S , with a constant
longitudinal circulation � . The vorticity field is also assumed to possess a transverse
component associated with a localized jet along S . This will be further defined below.
The radius a is assumed to be small compared to the other length scales i.e. R and
Lz for rings, and R and L/N for helices. In this context, we are studying the internal
structure within the region of radius a around S . It is therefore useful to define a
local frame centred on a point C(s) of S . Following Callegari & Ting (1978), we
introduce the local polar frame

er = n cos ' + b sin ', (2.3a)
e' = �n sin ' + b cos ', (2.3b)

es = t, (2.3c)

associated with the local coordinate system (r, ', s). The coordinate system is
illustrated in figure 2 for ring and helix configurations. This non-orthogonal coordinate
system is related to an orthogonal coordinate system (r, ✓ , s) where

✓ = ' + ✓0(s), with
@✓0

@s
= ⌧ , (2.4)

which can be used to derive the governing equations in the local frame (see Callegari
& Ting 1978, for details). In the following, the velocity vector field will be written
V = v⇢e⇢ + v�e� + vzez in the global cylindrical frame and V = uer + ve' + wes in
the local polar frame. The formulae that connect one representation to the other are
provided in appendix A.

In the local frame, the vortex structure is assumed, at leading order, to be a
columnar axisymmetrical vortex, independent of s and '. Our goal is to determine
the corrections to this axisymmetrical structure induced by the curvature and torsion
of vortex lines, and the presence of distant vortices or vortical parts of the same
vortex.

We introduce the following parameters

"= Ra
R2 + L2

= a, ↵ = L
R

= ⌧


, �= Lz

R
. (2.5a�c)
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FIGURE 2. (Colour online) Illustration of the coordinate system for a ring (a) and a helix
(b). The point M can be localized using the global cylindrical frame (e⇢, e�, ez), or the
local frames: the Serret–Frenet frame (n, b, t) and the frame (er, e', t). Note that vectors
er and e' are in the plane (n, b). Point C(s) is defined as the point on the curve S which
is the closest to point M.

The asymptotic analysis is performed in the limit a ⌧ R and a ⌧ Lz for rings, and
a ⌧ R and a ⌧ L for helical vortices. The parameter " is thus assumed to be small,
whereas the parameters ↵ and � are O(1). In the present study, we do not consider
compressible and buoyancy effects and assume that the density is uniform and
constant. Viscous effects are also neglected by assuming that the Reynolds number
� /⌫ (⌫ is the kinematic viscosity) is sufficiently large. This hypothesis means that
we consider vortex structures on time scales which are short compared to the viscous
diffusion time scale a2/⌫. This allows us to consider vortical structures that translate
and rotate steadily without changing their shapes. Here, we shall assume that there
exists a frame translating at the velocity Vframeez where the solution is steady.

The computation of the displacement speed of helical vortices or rings has been the
subject of numerous works (see for instance Saffman (1992) for rings and Alekseenko,
Kuibin & Okulov (2007) for helices). In each case, there is a dominant local velocity
contribution which is proportional to �" log(") and oriented along the binormal
vector b, as predicted by the local induction approximation (Saffman 1992). This
local contribution is corrected by O(") non-local effects associated with distant vortex
parts or other vortices. In all cases, the vortex structure displacement speed remains
asymptotically small. The frame velocity Vframe is related to the vortex structure
displacement speed in the manner illustrated in figure 3. For rings, the binormal
vector is aligned along with the vertical axis, so the frame velocity correspond to the
displacement speed Vring = Vringb = Vframeez. For helices, the displacement speed can
be decomposed as Vhelix = Vhelixb = Vframeez + W00 t, where Vframe = p

1 + ↵2Vhelix and
W00 = �↵Vhelix because ez · b = 1/

p
1 + ↵2 and ez · t = ↵/

p
1 + ↵2. The component

W00 represents a uniform jet contribution along the vortex axis. It is only present in
helices. Though small, we shall take this effect into account in our analysis.

In the uniformly translating frame, the solution satisfies the steady Euler equations.
If, in the local frame, the velocity field (u, v, w) and pressure p are assumed to be
independent of s, the steady Euler equations become (Callegari & Ting 1978)
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FIGURE 3. (Colour online) Definition of Vframe for a ring (a) and of a helix (b). The
velocities Vframeez and R⌦framee� are such that their projection on the binormal vector b is
equal to vortex structure displacement speed.

"(�↵u' + w cos ')w
h

+ uur + v(u' � v)

r
+ pr = 0, (2.6a)

"(�↵v' � w sin ')w
h

+ uvr + v(v' + u)

r
+ p'

r
= 0, (2.6b)

"[(�↵w' � (u cos ' � v sin '))w � ↵p']
h

+ uwr + vw'

r
= 0, (2.6c)

"[�↵w' � (u cos ' � v sin ')]
h

+
h
ur + u

r
+ v'

r

i
= 0, (2.6d)

with h = 1 � "r cos '. Note that, in the text, v⇢ , v� and vz indicate the components in
the global cylindrical frame, whereas the subscript indices for other variables such as
the local components u, v, w refer to derivatives (e.g. u' = @u/@').

3. Internal vortex structure
In this section, we calculate the main dipolar and quadrupolar corrections to the

local columnar axisymmetrical vortex. The velocity and pressure fields are expanded
in powers of "

u = + "u(1)(r, ') + "2u(2)(r, ') + · · · , (3.1a)
v = v(0)(r) + "v(1)(r, ') + "2v(2)(r, ') + · · · , (3.1b)
w = w(0)(r) + "w(1)(r, ') + "2w(2)(r, ') + · · · , (3.1c)
p = p(0)(r) + "p(1)(r, ') + "2p(2)(r, ') + · · · . (3.1d)

3.1. Monopolar structure
At leading order, the solution is a straight vortex of azimuthal velocity v(0)(r) and
axial velocity w(0)(r). The pressure p(0) is related to v(0) by

p(0)(r) =
Z r

0

[v(0)(⌘)]2

⌘
d⌘. (3.2)

The longitudinal (axial) and transverse (azimuthal) distributions of vorticity are defined
respectively from v(0) and w(0) by the following expressions
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⇣ (0) = 1
r
@

@r
(rv(0)), (3.3a)

⌥ (0) = �@w(0)

@r
. (3.3b)

The asymptotic analysis can be performed for any axisymmetrical vortex with jet
but for computations and numerical comparisons we use the Batchelor family of
profiles

v(0)(r) = 1
r
(1 � e�r2

), (3.4a)

w(0)(r) = W0e�r2 + W00 . (3.4b)

This vortex model is often used because it corresponds to profiles of fully viscous
self-similar solutions; viscosity is then expected to modify the core size and the
jet strength but not the profiles. In expressions (3.4a,b), the velocity is made
dimensionless using the vortex core size, a, as a characteristic length and � /(2pa) as
characteristic velocity. The constant W0 characterizes the jet strength and the constant
W00 corresponds to a uniform flow component along the vortex axis. As explained
above, such a component is present in helices. It is created by the change of reference
frame, because the frame velocity does not correspond to the direction of propagation
of the helix (see figure 3). If we take into account only this effect, it is related to
the speed Vframe of the comoving frame by

W00 = � ↵Vframep
1 + ↵2

. (3.5)

This term is null for vortex rings (↵= 0), and is O(" log ") for helices. Although this
term is a higher-order term, it is convenient to introduce it here. We shall see below
that it improves the predictions of the axial flow component.

3.2. Dipolar correction
The problem at first order provides the main dipolar correction to the axisymmetric
vortex. This problem was first solved in a general setting by Callegari & Ting (1978).
They showed that the first order corrections satisfy the system

v(0)

r
(u(1)
' � 2v(1)) + p(1)

r = �[w(0)]2 cos ', (3.6a)

ru(1)v(0)
r + v(0)(v(1)

' + u(1)) + p(1)
' = r[w(0)]2 sin ', (3.6b)

u(1)w(0)
r + v(0)

r
w(1)
' = �[w(0)v(0)] sin ', (3.6c)

1
r
(ru(1))r + 1

r
v(1)
' = �v(0) sin '. (3.6d)

This system possesses a solution of the form

u(1) = û(1)(r) sin ' = �  ̂
(1)

r
sin ', (3.7a)

v(1) = v̂(1)(r) cos ' = (� ̂ (1)
r + rv(0)) cos ', (3.7b)
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w(1) = ŵ(1)(r) cos ' =
✓

�w(0)
r

v(0)
 ̂ (1) + rw(0)

◆
cos ', (3.7c)

p(1) = p̂(1)(r) cos ' = (�⇣ (0) ̂ (1) + v(0) ̂ (1)
r � r[v(0)]2 � r[w(0)]2) cos ', (3.7d)

where the streamfunction amplitude  ̂ (1)(r) satisfies

L (1)( ̂ (1)) = 2r⇣ (0) + v(0) + 2r
w(0)w(0)

r

v(0)
, (3.8)

with the operator L (k) for k = 1, 2, . . . defined as

L (k) ⌘

@2

@r2
+ 1

r
@

@r
�
✓

k2

r2
+ ⇣ (0)

r

v(0)

◆�
. (3.9)

Using the method of variation of constants, (3.8) can be integrated in closed form as
it possesses v(0) as an exact homogeneous solution. If the centre of the local frame is
chosen such that the velocity in the (n, b) plane vanishes at the origin (up to O("2)),
 ̂ (1)

r (0) = 0 and  ̂ (1)(0) = 0 must be imposed, hence

 ̂ (1)(r) = v(0)(r)
Z r

0

Z z

0
v(0)(⌘)


2⌘⇣ (0)(⌘) + v(0)(⌘) + 2⌘

w(0)(⌘)w(0)
r (⌘)

v(0)(⌘)

�
⌘ d⌘

z[v(0)(z)]2
dz.

(3.10)
As explained in Fukumoto & Moffatt (2000), adding a homogeneous solution
c1v

(0) to  ̂ (1) corresponds to a change of frame centre. In the present work, the frame
centre has been selected as the stagnation point of the flow, and this corresponds
to c1 = 0. As soon as the frame centre is fixed, there are no free parameters:
streamfunction, velocity and pressure are given at first order by (3.7a–d) and (3.10).

The first-order correction is thus a pure dipolar correction which depends on the
local curvature only. This correction is thus identical for a ring, an array of rings,
a helix and an array of N helices. It is easy to show that  ̂ (1) expands for large r
(Fukumoto & Miyazaki 1991) as follows

 ̂ (1) ⇠ 1
2

r log r + rA + O
✓

1
r

◆
, (3.11)

with

A = 1
2

lim
r!1

✓Z r

0
⌘(v(0)(⌘))2 d⌘� log r

◆
+ 1

4
�
Z 1

0
⌘((w(0)(⌘))2 � W2

00
) d⌘

= 1
4
(1 � W0(W0 + 2W00) + � � log 2) (3.12)

and � ⇡ 0.577 being Euler’s constant. As W0W00 is always small, we shall use the
approximation A ⇡ 0.22 � W2

0/4. In figure 4, the streamfunction,  ̂ (1)/r is plotted
together with its asymptotic behaviour for the Batchelor vortex for two jet parameters
(W0 = 0, W0 = 1) and W00 = 0. When W0 = 0, the dipolar component of the axial
velocity follows the simple linear expression ŵ(1)(r) = rW00 .

As shown by Fukumoto & Okulov (2005), dipolar corrections are modified by
torsion at second order. Thus, rings and helices generate a different dipolar correction
only if we consider higher-order terms.
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FIGURE 4. Characteristics of the dipolar correction for the Batchelor vortex.  ̂ (1)/r
versus r (solid line: W0 = 0; dashed line: W0 = 1. W00 = 0 for both cases) The dotted
lines correspond to the asymptotic behaviour (3.11).

3.3. Quadrupolar correction
Quadrupolar corrections do not appear at first order but they are generated at second
order. At second order, dipolar and monopolar corrections are also generated but we
focus here on quadrupolar corrections, as monopolar and dipolar fields were already
obtained at lower order. The perturbation equations for the second-order corrections
are given by

v(0)

r
(u(2)
' � 2v(2)) + p(2)

r =

v(1)

r
(v(1) � u(1)

' ) � u(1)u(1)
r

�

� w(0)(2w(1) cos ' + w(0)r cos2 '), (3.13a)

ru(2)v(0)
r + v(0)(v(2)

' + u(2)) + p(2)
' = �[ru(1)v(1)

r + v(1)(v(1)
' + u(1))]

+ rw(0)(2w(1) sin ' + w(0)r cos ' sin '), (3.13b)

u(2)w(0)
r + v(0)

r
w(2)
' = �


u(1)w(1)

r + v(1)

r
w(1)
'

�
� v(0)w(1) sin '

+ w(0)(u(1) cos ' � v(1) sin ' � rv(0) cos ' sin '),

(3.13c)
1
r
(ru(2))r + 1

r
v(2)
' = u(1) cos ' � v(1) sin ' � rv(0) cos ' sin '. (3.13d)

The quadrupolar field satisfying these equations is found to be of the form

u(2)
quad = û(2)(r) sin 2' = �2

r
 ̂ (2) sin 2', (3.14a)

v
(2)
quad = v̂(2)(r) cos 2' = (� ̂ (2)

r + VF) cos 2', (3.14b)

w(2)
quad = ŵ(2)(r) cos 2' =

✓
�w(0)

r

v(0)
 ̂ (2) + WF

◆
cos 2', (3.14c)

p(2)
quad = p̂(2)(r) cos 2' = (�⇣ (0) ̂ (2) + v(0) ̂ (2)

r + PF) cos 2', (3.14d)
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with

VF = r2

4
(û(1)

r + 2v(0)), (3.15a)

WF = r
4v(0)


� ŵ(1)v̂(1)

r
+ ŵ(1)

r û(1) + v(0)(ŵ(1) + rw(0)) + w(0)(v̂(1) � û(1))

�
, (3.15b)

PF = r
4

û(1)v̂(1)
r � v̂(1)

4
(v̂(1) � û(1)) � r

2
w(0)

⇣
ŵ(1) + r

2
w(0)
⌘

� v(0)VF. (3.15c)

The streamfunction amplitude  ̂ (2) satisfies

L (2)( ̂ (2)) = F , (3.16)

with

F = 3rv(0)

4
� r ̂ (1)⇣ (0)

r

v(0)
� ( ̂ (1))2

4v(0)

✓
⇣ (0)

r

v(0)

◆

r
+ r ̂ (1)

[v(0)]2


w(0)w(0)

r v(0)
r

v(0)
� (w(0)w(0)

r )r

�
. (3.17)

The general solution to (3.16) which is finite at the origin, can be written as

 ̂ (2) = S (2)(r) + 
(2)

NH (r), (3.18)

where  (2) denotes the homogeneous function such that

L (2)( (2)) = 0,  (2) ⇠
r!0

s0r2,  (2) ⇠
r!+1 r2, (3.19a�c)

and  (2)
NH denotes a particular solution to the non-homogeneous problem (3.16). Finally,

S is an arbitrary constant.
It is worth mentioning that another homogeneous solution of (3.13a–d) corresponding

to a radial velocity proportional to (2/r) (2)(r) cos 2' could have been added in
principle in (3.14a). This solution turns out not to be present for rings and helices,
as will be seen in the expressions of the outer solution given in the next section.

The function  (2) describes how a strain field is transmitted within a vortex. It was
first introduced by Moffatt et al. (1994) for the asymptotic analysis of a vortex in a
strain field. Eloy & Le Dizès (1999) showed that s0 ⇡ 2.525 for a Gaussian vorticity
profile. Function  

(2)
NH (and consequently  ̂ (2)) is expected to behave as 3/16r2 log r

for large r (see figure 5) because F ⇠ 3/4 as r !+1. Using the method of variation
of constants and the fact that  (2) is an exact solution of the homogeneous problem,
 

(2)
NH is given by

 
(2)

NH = (2)(r)

2

664
3
16

log r �
Z +1

r
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BB@

Z s

0
⌘F (⌘) (2)(⌘) d⌘

s[ (2)]2
� 3

16s

1

CCA ds

3

775 . (3.20)

The strain rate S(2)
NH = limr!0  

(2)
NH/r2, which is associated with local curvature effects

(it is not present for straight vortices (see, for instance, Le Dizès & Verga 2002)),
strongly varies with respect to the jet parameter W0 (see figure 6). Finally, the function
 (2) only depends on v(0) and the function  

(2)
NH only on v(0) and w(0), that is, they
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FIGURE 6. Variation of S(2)
NH with respect to W0 for W00 = 0.

only depend on the local properties of the underlying axisymmetrical vortex. These
two functions are plotted in figure 5 for the Batchelor vortex for three values of the
jet parameter.

The constant S is not determined from the above inner analysis but from matching
with an outer solution. It is hence expected to be different for each case; S is actually
related to the external strain field experienced by the vortex (see the following section).
Contrary to the dipolar correction, the quadrupolar correction is dependent on non-
local effects. Yet this dependence comes about through a single constant! Near the
origin, the function  ̂ (2) represents a pure strain field

 ̂ (2) ⇠ S(2)r2, (3.21)

where S(2) = s0S + S(2)
NH . The principal directions of this strain field are ' = ±p/4.

The choice of the frame centre selected at first order does not affect the constant
S, but has an impact on the forcing term F , and thus on the function  

(2)
NH . When
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W0 = 0, the axial flow component is particularly simple ŵ(2) = r2W00/2 and the other
velocity components become independent of W00 .

4. External strain field

The constant S depends on the strain field induced by the background flow. It comes
about through an asymptotic matching of the inner solution previously obtained with
the outer solution obtained by the Biot–Savart law.

Let us consider the velocity u

(out) induced by the vortex system in a reference frame
where the system is steady. Such a frame is chosen here as the frame uniformly
translating with a velocity Vframeez.

To get the outer solution, we assume that the vorticity is a monopolar field
concentrated on the curve S corresponding to one of the configurations shown in
figure 1. The velocity is then such that

u

(out)(x) = u

(BS)(x) � Vframeez, with u

(BS)(x) = � 1
4p

Z

S

� 0 (x � x

0) ⇥ t

0

|x � x

0|3 ds0. (4.1)

All vortices have a constant circulation � 0 = 2p. Note that we do not consider the
transverse distribution of vorticity on S associated with the axial flow within the
vortex. Indeed, this vorticity distribution is not expected to contribute to the external
flow, as proved by Fukumoto & Miyazaki (1991). We also disregard higher-order
corrections to (4.1) corresponding to multipolar vorticity concentration on S ; these
corrections would be needed to perform a full matching of inner and outer solutions
up to O("2) (see for instance Fukumoto & Moffatt 2000) but are not required for the
computation of S. Here, we simply match the quadrupolar field of one component of
the velocity field at leading-order only. More precisely, we impose that the local radial
velocity of the outer solution possesses a quadrupolar part u(out)

quad of the form

u(out)
quad = u(BS)

quad ⇠ "2[(�2Sr � 3
8 r log r) sin 2'] for 1 ⌧ r ⌧ 1/". (4.2)

4.1. A single vortex ring
The asymptotic description of a single ring was first considered by Widnall & Tsai
(1977). It was recently re-examined by Fukumoto & Moffatt (2000) and Fukumoto
(2002). Fukumoto & Moffatt (2000) obtained an asymptotic solution up to "3 which
can be used for the present analysis. Their expression (3.7) of the outer solution in
the regime (1 ⌧ r ⌧ R) leads to the radial velocity

u(BS) ⇠ 1
2R

✓
log
✓

8R
r

◆
� 1
◆

sin ' + 3r
8R2

✓
log
✓

8R
r

◆
� 4

3

◆
sin 2'. (4.3)

Since " = 1/R for the ring, the matching of their quadrupolar field with the inner
quadrupolar part (4.2) requires that

SRi = � 3
16


log
✓

8
"

◆
� 4

3

�
. (4.4)

Note that such a formula could have also been obtained from expression (4.21) of
Widnall & Tsai (1977).
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4.2. An array of vortex rings
The velocity field of an array of vortex rings is equal to the field of a single ring plus
the field generated by distant rings. The first contribution has been calculated in the
previous section. The contribution from distant rings can be obtained directly from the
Biot–Savart integral. The velocity field of the ring placed at position z = 2pnLz can
be written using the global cylindrical coordinate system (see appendix A) as

v(BS)
n,⇢ (⇢, z) = �1

2

Z 2p

0

R(z � 2pnLz) cos s
(⇢2 � 2R⇢ cos s + R2 + (z � 2pnLz)2)3/2

ds, (4.5a)

v(BS)
n,z (⇢, z) = �1

2

Z 2p

0

R(R2 � ⇢R cos s + (z � 2pnLz)
2) cos s

(⇢2 � 2R⇢ cos s + R2 + (z � 2pnLz)2)3/2
ds. (4.5b)

Using the expression for the local radial velocity (see appendix A), one obtains (L =
↵ = 0)

u(r, ') = �v⇢ cos ' + vz sin ' (4.6)

⇢ = R � r cos ', z = r sin ' (4.7a,b)
Finally, the dipolar and quadrupolar terms are for r ⌧ R

uBS ⇠
X

n 6=0

h
v(BS)

n,z (R, 0) sin ' � r
2
(@zv

(BS)
n,⇢ (R, 0) + @⇢v

(BS)
n,z (R, 0)) sin 2'

i
. (4.8)

The quadrupolar velocity contribution from distant rings becomes ("= 1/R)

uBS
quad ⇠ �2SDRi"2r, with SDRi = R2

2

1X

n=1

(@zv
(BS)
n,⇢ (R, 0) + @⇢v

(BS)
n,z (R, 0)). (4.9)

As shown by Levy & Forsdyke (1927), SDRi can also be expressed in terms of the
complete elliptic integrals of the first and second kind, K(Z) and E(Z), (Abramowitz
& Stegun 1965, p. 590)

SDRi = 1
4

1X

n=1

⇤3/2
n

✓✓
1 � 4

n2�2

◆
E(⇤n) � K(⇤n)

◆
, (4.10)

with

⇤n = 1
1 + n2�2/4

. (4.11)

The function SDRi is plotted in figure 7 as a function of the parameter � = Lz/R.
The constant S for an array of vortex rings is

SARi = SDRi + SRi. (4.12)
Both contributions are negative, and tend to elongate the vortex core along the z
direction. In figure 8, the total contribution is plotted as a function of � for a few
values of ".

Note that because

SDRi ⇠ � p2

6�2
as �! 0, (4.13)

the complete external strain rate is equal to Sext ⌘ 2SDRi"2 ⇠ �p2/(3L2
z ) which is equal

to the external strain rate generated by an array of point vortices of circulation 2p
separated by a distance Lz (Lamb 1932).
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FIGURE 7. Strain rate parameter SDRi generated by distant rings in an array of rings as
a function of the aspect ratio �= Lz/R.
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4.3. A single helix

As shown by Hardin (1982), the velocity field induced by a helical vortex filament
can be expressed in cylindrical coordinates for ⇢ < R (with our normalization) as

v(BS)
⇢ (⇢, �) = 2

R↵2
Im


H1,1
1

✓
⇢

R↵
,

1
↵

, �

◆�
, (4.14a)

v
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� (⇢, �) = 2

⇢↵
Re


H0,1
1

✓
⇢

R↵
,

1
↵

, �

◆�
, (4.14b)

v(BS)
z (⇢, �) = 1

R↵
� 2

R↵2
Re


H0,1
1

✓
⇢

R↵
,

1
↵

, �

◆�
, (4.14c)



Internal structure of vortex rings and helical vortices 233

where � = � � z/L and Re[ ] (respectively Im[ ]) indicates the real (respectively
imaginary) part of a complex expression, and

HI,J
M (x, y, �) =

1X

m=1

mMI(I)
m (mx)K(J)

m (my) exp(im�), (4.15)

where we used the notation introduced by Okulov (2004) for the Kapteyn series.
I(I)

m and K(J)
m denote the Ith and Jth derivative of modified Bessel functions. Other

expressions for the velocity field can be obtained for ⇢ > R, but we only need the
above expressions valid for ⇢ < R to compute the value of S.

The value � = 0 defines the angular position of the helix. Without restriction, we
can consider a local frame centred on the point in cylindrical coordinates (⇢, �, z) =
(R, 0, 0). The local radial velocity u can be deduced from (4.14a–c) using (A 4a)
and (A 5a–c) given in appendix A. We are interested in the expansion of u as r/R
goes to zero. As shown by Okulov (2004), it is convenient to isolate the singularity
of the Kapteyn series to obtain such an expansion (see appendix B). The derivation,
which should be carried up to O(r/R)2 terms, is tedious but straightforward. It can
be facilitated by using a symbolic software. The final result is expression (B 12) for
u with the following expression for S:

SHe = � 3
16
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+ 1
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with
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. (4.17)

The function SHe is plotted in figure 9 for various values of ".
Note that when ↵! 0, we have SHe ⇠ �1/(24↵2), which corresponds to the value

(4.13) for an array of rings for small � since we have the relation � = 2p↵. From
figure 9, we can also guess that SHe ⇠ O(↵2) as ↵! 1, which implies that the self-
external strain of a helix does vanish when its pitch L/R goes to infinity with a fixed
a/R.

4.4. Multiple helices
When there are several helices, we must add to the previous contribution of a single
helix, the contribution from the other distant helices. Expressions (4.14a–c) for the
velocity field can still be used. For the helix located in the horizontal plane (0xy)
at �k = 2pk/N, we have to change � = � � z/L into � = (� � �k) � z/L. Summing
the contribution from each helix for k = 1, . . . , N � 1 and expanding every quantity
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FIGURE 9. Strain rate parameter SHe as a function of ↵ = L/R for various ". Solid line:
"= 0.33; dashed line: "= 0.1; dash-dot line: "= 0.033; dotted line: "= 0.01.

as r/R ! 0 leads to expression (B 15) for the local radial velocity (see appendix B)
where S is given by

SDHe = 3 log(N)

16
� (↵2 + 1)3(N2 � 1)

24↵2

+ ↵(↵2 + 1)3/2(N � 1)

4
+

1X
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⌘
, (4.18)

with Rm(↵) given by (4.17) and
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62N,
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2N.
(4.19)

We obtain for multiple helices SMHe = SHe + SDHe, that is

SMHe = � 3
16

log
✓

↵

(↵2 + 1)3/2N"

◆
� 4(↵2 + 1)3N2 + ↵2(20↵4 + 12↵2 + 9)

96↵2

+ ↵(↵2 + 1)3/2N
4

+ N
1X

n=1

RnN(↵). (4.20)

The function SMHe is plotted in figure 10 for N = 1, 2, 3, 5 and "= 1. Plots for other
values of " are obtained by adding (3/16) log " as SMHe(") = SMHe(1) + (3/16) log ".

Note that we have

SMHe ⇠ � N2

24↵2
as ↵! 0, (4.21)

SMHe ⇠ � (N � 1)(N � 5)

24
↵4 as ↵! 1. (4.22)
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FIGURE 10. Strain rate parameter SMHe versus ↵= L/R for N helices with N = 1, 2, 3, 5
(solid, dash, dash-dot, dotted lines) for "= 1. (a) SMHe is normalized by its expression at
the origin SMHe

0 = �N2/(24↵2); (b) SMHe is normalized by ↵4.

For large ↵, the problem becomes a configuration of 2-D straight vortices on
a polygon. This can be used to check (4.22). For N = 2, the calculation is
straightforward as the strain field at (x, y) = (R, 0) is due to a vortex of circulation
2p located at (�R, 0). We immediately obtain a strain rate Sext = 1/(4R2) =
(1/4)"2(1 + ↵2)2 = 2S"2 which gives S = (1/8)↵4 for large ↵ in accordance with
(4.22) for N = 2.

For large N, we obtain

SMHe ⇠ � (1 + ↵2)3N2

24↵2
, (4.23)

which corresponds to the external strain rate generated by an array of straight vortices
of circulation 2p and separated by the shortest distance between the helices: Lz =
2pL/(N

p
1 + ↵2).

Note that although SMHe diverges for small and large ↵, the external strain rate
defined by Sext = 2SMHe"2 = 2SMHe(a/R)2/(1 + ↵2)2 remains always small when the
core size, a, remains small compared to the shortest distance to the other parts of the
vortex structure.

5. Comparison with numerical results
In this section, the asymptotic solution is compared to direct numerical simulations.

5.1. Simulation of a ring array
For an array of vortex rings, the pseudo-spectral code developed by Bolnot (2012) is
used. This code has been validated and run to analyse the stability of vortex rings
with respect to the pairing instability in Bolnot et al. (2014). The system is assumed
axisymmetric and periodic in the axial direction. The numerical formulation is based
on Chebyshev and Fourier decompositions in the radial and axial directions, and
on an extrapolation Adams–Bashforth scheme for time evolution. The simulation is
initialized by a normalized Gaussian profile for the azimuthal vorticity and velocity
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centred at (⇢, z) = (R0, 0) in a box of axial length Lz with a prescribed jet parameter.
At t = 0, circulation and core radius of the vortex ring and Reynolds number are
fixed to �0 = 2p, a0 = 1 and Re = �0/⌫ = 2000.

After a short relaxation process, the solution reaches a quasi-steady state in the
frame moving with the vortex ring (Bolnot et al. 2014). The core size and jet
parameter have slightly evolved during the relaxation process but are adequately
predicted using the viscous expansion factor

p
1 + 4t/Re (Bolnot et al. 2014). It is

this quasi-equilibrium state (frozen at a time tr) that is compared to the asymptotic
solution. In order to agree with the definition used in the asymptotic analysis, the
radius R of the ring should correspond to a radial and axial velocity stagnation point.
As the plane of symmetry of the solution is fixed in the centre z = 0 of the box, the
radius R is obtained from the condition uz(R, 0) = 0 which leads to a value slightly
different from R0.

As soon as the centre of the local frame is obtained, the local velocity field (u, v, w)
can be computed using (A 4a–c), (A 5a–i) and (A 1a–c). An azimuthal decomposition
is then performed to get the monopolar, dipolar and quadrupolar contributions that we
compare to the theory.

Figure 11 shows a comparison between asymptotic and DNS results for an array
of vortex rings for the parameters " = 0.11, � = Lz/R = 3, W0 = 0.1 and Re = 2000.
In these figures, we plotted the monopolar, dipolar and quadrupolar contributions of
each velocity component in the local frame, using the same normalisation as in the
theory. The core size, circulation and jet parameter have been evaluated by comparing
the monopolar part (a,d,g) of the numerical velocity fields with the Gaussian model
used. It is found that the theoretical profile selected at zero order is appropriate (see
comparison figure 11a,d,g). A good agreement between numerical and theoretical
curves is also found for all dipolar and quadrupolar components. Other configurations
have been tested, and a similar agreement has always been observed. This constitutes
a strong validation for both theory and code.

5.2. Simulation of helices
The simulations of helix systems have been carried out using the helical code
developed in Delbende et al. (2012a), which implements a generalisation of the
vorticity-streamfunction formulation in a circular domain, with finite differences
in the radial direction and spectral decomposition along the azimuth. The helical
symmetry is explicitly enforced in such a way that the 3-D Navier–Stokes equations
are reduced to a 2-D unsteady problem. The code has also been validated and used
in Delbende, Rossi & Piton (2012b), Delbende, Piton & Rossi (2015).

Similarly to vortex ring simulations, we start the simulation with Gaussian profiles
for the axial velocity and axial vorticity around one or several helical curves (see
figure 1) with prescribed a0, R0, W0, � and L. The Reynolds number is always fixed at
Re =� /⌫= 10 000. After a relaxation process, the system reaches a quasi-equilibrium
state in the frame rotating at the rotation rate ⌦frame of the helical structure. The
rotation rate ⌦frame is related to the displacement speed of the helical structure as
sketched in figure 3. It can then also be expressed as a function of Vframe using
⌦frame = �Vframe/(↵R).

The difficulty concerning the treatment of the numerical data is the prescription of
the local frame. Such a frame is not naturally defined from the DNS, and is obtained
here by an iterative procedure. Let us define the helical vorticity !B by ! · eB where
eB is a unit vector tangent to any helical line (for details see Delbende et al. (2012a)).
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This quantity is directly provided by the helical code. First, one finds the position
M0 where the helical vorticity !B reaches its maximum in a global horizontal plane.
Second, one defines the plane ⇧?(M0) normal to the local helical vector eB(M0)
passing through this point M0. Third, one determines the stagnation point M1 of the
velocity components normal to eB(M0) in ⇧?(M0). At this stagnation point, M1, the
local helical vector eB(M1) is oriented in a slightly different direction than eB(M0),
so a new plane ⇧?(M1) can be defined in which we can obtain another stagnation
point M2 of the velocity components normal to eB(M1) in ⇧?(M1). This operation
is repeated until it has converged to the point that will be the centre of the local
frame. In practice, around 100 iterations are necessary. At the end of the process, the
stagnation point C has been located, providing a helical line S . The radial coordinate
of C defines the value of R. The local frame is such that eB(C) corresponds to the
vector e

s

of the theory.
Velocity and vorticity fields are expressed in the cylindrical coordinates attached to

this local frame and thereafter Fourier decomposed in the azimuthal direction to obtain
the monopolar, dipolar and quadrupolar components. The monopolar components are
used to correct the value of the parameters a, � and W0, by fitting axial vorticity
and axial velocity with Gaussian profiles, after subtracting the uniform vorticity
associated with the rotation of the frame. At the end of this procedure, all theoretical
parameters have been obtained and each component can be adequately renormalized
for comparison. Note that the frame used in the theory to obtain a steady vortex
system is different; it is translating rather than rotating. To express the theoretical
results in the rotating frame, one simply subtracts velocity �Vframeez + ⌦frame⇢e�

from the theoretical solution. Using (A 6), this amounts to performing the following
modifications on the theoretical fields:

v(0) ! v(0) + "
p

1 + ↵2Vframer, (5.1a)

w(0) ! w(0) +
p

1 + ↵2

↵
Vframe, (5.1b)

w(1) ! w(1) �
p

1 + ↵2

↵
Vframer. (5.1c)

Since Vframe is O(" log ") for helices, these changes are higher-order terms. Nevertheless,
it is convenient to introduce them here because they improve the predictions of the
axial flow component, as shown below.

In figure 12 (respectively figure 13), theoretical and numerical results are compared
for a single helix with axial flow W0 = 0.54 (respectively for a system of two helices
without axial jet W0 = 0). For radial and azimuthal velocity components, a fair
agreement is found between theory and DNS results. Despite a smaller value of ",
the agreement is found to be less convincing than for an array of rings. It is also seen
that the change (5.1a–c) of reference frame has to be taken into account. However, a
small mismatch between DNS and theory remains for the monopolar component. This
is probably at the origin of the deteriorated agreement for the dipolar and quadrupolar
components (see bottom figures in figures 12 and 13).

As for the ring arrays, other configurations have been tested for helical vortex
systems and we always observed a good agreement with the asymptotic theory. The
values obtained from the numerical simulations for the internal strain rate S(2) and
for the frame rotation rate ⌦frame have also been compared to the theory and we have
systematically found a good agreement. This provides a validation of expressions
(4.20) and (B 17) for the external strain field and translation speed of multiple
helices.
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FIGURE 12. Single helix with W0 = 0.54, L/R = 0.5, " = 0.045, Re = 104:
comparison between asymptotic (dashed lines) and DNS (solid lines). (a,d,g) Monopolar
component; (b,e,h) dipolar component; (c,f,i) quadrupolar component. (a–c) Radial velocity,
(d–f ) azimuthal velocity, (g–i) axial velocity. The dash-dotted lines correspond to the
theory without taking into account the effect of the change of frame (W00 = 0). For these
parameters, the theory gives ⌦frame = �0.0120 and S = �0.6341, which gives a strain
rate in the vortex centre S(2) = �1.699 (defined in (3.21)). The numerical values are
⌦frame = �0.0110 and S(2) = �1.803.
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FIGURE 13. System of two helical vortices with W0 = 0, L/R = 0.5, " = 0.06, Re = 104:
comparison between asymptotic (dashed lines) and DNS (solid lines). (a,d,g) Monopolar
component; (b,e,h) dipolar component; (c,f,i) quadrupolar component. (a–c) Radial velocity,
(d–f ) azimuthal velocity, (g–i) axial velocity. The dash-dotted lines correspond to the
theory without taking into account the effect of the change of frame (W00 = 0). For
these parameters, the theory predicts ⌦frame = �0.0258 and S = �1.2832, which gives
a strain rate in the centre S(2) = �3.441 (defined in (3.21)). The numerical values are
⌦frame = �0.0261 and S(2) = �3.496.
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6. Conclusions
We analysed the internal structure of vortex rings and helical vortices showing that

they can be described using an asymptotic theory where the core size is considered
small compared to the other scales of the vortex structure. At leading order, the vortex
structure was assumed locally an axisymmetric vortex with axial flow. The asymptotic
theory was used to determine dipolar and quadrupolar corrections associated with this
structure. It was shown that dipolar corrections which appear at first order depend in a
dominant way on the local curvature of the vortex. As a consequence, we expect rings,
arrays of rings, helices and multiples helices to all exhibit the same dipolar correction
if they possess the same curvature. We also computed the quadrupolar corrections
which appear at second order. Contrary to the dipolar corrections, such corrections
depend on the global geometry. To be more precise, quadrupolar corrections are
composed of a contribution which depends on the local curvature and a non-local
contribution associated with the strain field generated by distant part of the vortex
structure. The non-local contribution has been calculated for a vortex ring, an array
of rings, a helix and multiple helices by considering the flow field obtained from
Biot–Savart law for vortex filaments.

The asymptotic results have been compared to numerical solutions obtained by DNS
for both rings and helices. A good agreement has been observed for rings. For helices,
a fair agreement has also been demonstrated. In practice, this case is more involved
because of the necessity to define a plane orthogonal to the vortex core structure.

The present results are important to model the short-wavelength instabilities that
can develop in rings or helices. Both dipolar and quadrupolar correction terms are
expected to couple modes of the underlying vortex and be a source of instability. The
dipolar correction term is known to be responsible of the so-called curvature instability.
This instability has been theoretically predicted for rings (Hattori & Fukumoto 2003;
Fukumoto & Hattori 2005) and helices (Hattori & Fukumoto 2009, 2014). However,
the analysis has only been performed for particular vortices with uniform vorticity. It
would be interesting to extend the analysis to more realistic vortices such as those
considered in the present study. The quadrupolar correction is associated with the
so-called elliptic instability (see for instance Kerswell 2002). Widnall & Tsai (1977)
provided a growth rate estimate for the elliptic instability in a single ring with a
Rankine vorticity profile. No person however has so far provided any prediction for
helices or rings with a realistic vorticity profile. Yet, we expect this instability to be
present as the quadrupolar field contained a strain field part which is also present in
straight vortices. An interesting study would then be to compute the effects of the
additional quadrupolar field which is generated by curvature.

Both curvature and elliptic instabilities are also expected to be strongly affected
by the presence of axial flow, as this parameter modifies the form of vortex modes
involved in the instabilities (Lacaze, Ryan & Le Dizès 2007; Roy et al. 2011). We
suspect that this parameter is crucial to an understanding of the competition between
both instabilities and associate recent observations in helices (Leweke et al. 2014)
with one instability or another.
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Appendix A. Change of coordinate systems
In this section, we provide the formulae which can be used to obtain the velocity

field in the local frame from its expression in the global cylindrical frame. Consider a
point of coordinates (⇢, �, z) in the global cylindrical coordinate system and assume
that this point has the coordinates (r, ', s) in the local frame defined by (2.1) and
(2.3) centred on the point C(s) of cylindrical coordinates (R, �0, L�0) (see figure 2).
We obtain the following relation between the coordinates:

⇢2 = (R � r cos ')2 + ↵2

1 + ↵2
r2 sin2 ', (A 1a)

⇢ sin � = (R � r cos ') sin �0 � ↵p
1 + ↵2

r sin ' cos �0, (A 1b)

z = L�0 + 1p
1 + ↵2

r sin ', (A 1c)

s = �0

p
R2 + L2. (A 1d)

If the velocity field can be written in the global cylindrical frame as

V = V(⇢, �, z) = v⇢e⇢ + v�e� + vzez (A 2)

and

V = ue

r

+ ve' + we

s

(A 3)

in the local frame, we derive the relation between (u, v, w) and (v⇢, v�, vz):

u(r, ', s) = v⇢(⇢, �, z)e
r

· e⇢ + v�(⇢, �, z)e
r

· e� + vz(⇢, �, z)e
r

· ez, (A 4a)

v(r, ', s) = v⇢(⇢, �, z)e' · e⇢ + v�(⇢, �, z)e' · e� + vz(⇢, �, z)e' · ez, (A 4b)

w(r, ', s) = v⇢(⇢, �, z)e
s

· e⇢ + v�(⇢, �, z)e
s

· e� + vz(⇢, �, z)e
s

· ez, (A 4c)

where

e

r

· e⇢ = �
✓

R
⇢

� r
⇢

cos '
◆

cos ' + ↵2

(1 + ↵2)

r
⇢

sin2 ', (A 5a)

e

r

· e� = � ↵p
1 + ↵2

R
⇢

sin ', (A 5b)

e

r

· ez = 1p
1 + ↵2

sin ', (A 5c)

e' · e⇢ =
✓

R
⇢

� r
⇢

cos '
◆

sin ' + ↵2

(1 + ↵2)

r
⇢

sin ' cos ', (A 5d)

e' · e� = ↵p
1 + ↵2

✓
r
⇢

� R
⇢

cos '
◆

, (A 5e)

e' · ez = 1p
1 + ↵2

cos ', (A 5f )



Internal structure of vortex rings and helical vortices 243

e

s

· e⇢ = � ↵

(1 + ↵2)

r
⇢

sin ', (A 5g)

e

s

· e� = 1p
1 + ↵2

✓
R
⇢

� r
⇢

cos '
◆

, (A 5h)

e

s

· ez = ↵p
1 + ↵2

. (A 5i)

These expressions can be used to express in the local frame with the local
coordinates the vector U = �Vframeez + ⌦frame⇢e� associated with the change of
frame in § 5.2. Using ⌦frame = �Vframe/(↵R), we obtain

U = Vframe

 
� r

R
p

1 + ↵2
e' +

 
�

p
1 + ↵2

↵
+ r cos '

R↵
p

1 + ↵2

!
e

s

!
. (A 6)

Appendix B. Inner expansion of Hardin solution for helices

To derive the inner expansion of Hardin solution, it is convenient to isolate the
singularity of the Kapteyn series using the technique introduced by Okulov (2004).
We have in particular used the expressions (valid for ⇢ < R) given by Fukumoto &
Okulov (2005):

v(BS)
⇢ = 2

R↵2
Im

�1,1

✓
e⇠+i�

1 � e⇠+i�
+ ↵1,1 log(1 � e⇠+i�) + �1,1Li2(e⇠+i�)

◆
+ R1,1

1

�
, (B 1a)

v
(BS)
� = 2

⇢↵
Re

�0,1

✓
e⇠+i�

1 � e⇠+i�
+ ↵0,1 log(1 � e⇠+i�) + �0,1Li2(e⇠+i�)

◆
+ R0,1

1

�
, (B 1b)

v(BS)
z = 1

2↵
� 2

R↵2
Re

�0,1
✓

e⇠+i�

1 � e⇠+i�
+ ↵0,1 log(1 � e⇠+i�) + �0,1Li2(e⇠+i�)

◆
+ R0,1

1

�
,

(B 1c)

where

� = � � z/(R↵), e⇠ = x(1 +p1 + y2) exp(
p

1 + x2)

y(1 + p
1 + x2) exp(

p
1 + y2)

, (B 2a,b)

�1,1 = � ((1 + x2)(1 + y2))1/4

2xy
, �0,1 = � 1

2y

✓
1 + y2

1 + x2

◆1/4

, (B 3a,b)

↵1,1 = �1(tx) � �1(ty), �1,1 = �2(tx) + �2(ty) � �1(tx)�1(ty), (B 4a,b)

↵0,1 = #1(tx) � �1(ty), �0,1 = #2(tx) + �2(ty) � #1(tx)�1(ty), (B 4c,d)

with

x = ⇢

R↵
, y = 1

↵
, tx = 1p

1 + x2
, ty = 1p

1 + y2
, (B 5a�d)
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and

�1(t) = (�9t + 7t3)/24, (B.6a)
#1(t) = (3t � 5t3)/24, (B.6b)

�2(t) = (�135t2 + 594t4 � 455t6)/1152, (B.6c)
#2(t) = (81t2 � 462t4 + 385t6)/1152. (B.6d)

The functions R1,1
1 and R0,1

1 are defined by

R1,1
1 =

1X

m=1

ri1,1
m (x, y)eim� , R0,1

1 =
1X

m=1

ri0,1
m (x, y)eim� , (B 7a,b)

with

ri1,1
m (x, y) = mI0

m(mx)K 0
m(my) � �1,1em⇠

✓
1 + ↵1,1

m
+ �1,1

m2

◆
, (B.8a)

ri0,1
m (x, y) = mIm(mx)K 0

m(my) � �0,1em⇠
✓

1 + ↵0,1

m
+ �0,1

m2

◆
. (B.8b)

An expression for u in terms of the local coordinates is obtained using (A 4a) and
(A 1a–c) with �0 = 0. Expanding all the quantities as r/R ! 0, we find an expression
for a single helix of the form

u(BS) ⇠ [CHe � 1
2 log r]" sin ' + [�2SHe � 3

8 log r]"2r sin 2', (B.9)

where SHe is given by (4.16) and

CHe = 1 � ↵4 + ↵3
p

1 + ↵2

2↵
p

1 + ↵2
+ 1

2
log
✓

↵

"(1 + ↵2)3/2

◆
+

1X

m=1

cm(↵), (B.10)

with

cm(↵) = � (1 + ↵2)3/2

↵

✓
2m
↵

Im

⇣m
↵

⌘
K 0

m

⇣m
↵

⌘
+ 1
◆

� 1
2m

. (B.11)

Both Rm(↵) and cm(↵) are O(1/m3) for large m, which guarantees that the sums in
(4.16) and (B 10) are absolutely convergent.

If we now add the contribution from the displacement of the frame (which is
�VHe

frameez) we obtain from (4.1) for a single helix

u(out) ⇠

� VHe

framep
1 + ↵2

+ CHe � 1
2

log r
�
" sin ' +


�2SHe � 3

8
log r

�
"2r sin 2'. (B.12)

The matching of this expression with the inner expansions provides the strain rate SHe

and the frame velocity VHe
frame:

VHe
frame =

p
1 + ↵2(CHe + A)", (B.13)
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where A is defined by (3.12). This expression is analogue to an expression already
given in Alekseenko et al. (2007), p. 250.

The velocity field induced by the distant helices is obtained by summing the N � 1
contributions taken at �k = 2pk/N, k = 1, . . . , N � 1. There are many simplifications
thanks to the relations

N�1X

k=1

exp(i�k)

1 � exp(i�k)
= 1 � N

2
, (B.14a)

N�1X

k=1

log(1 � exp(i�k)) = log N, (B.14b)

N�1X

k=1

Li2(exp(i�k)) = p2

6
1 � N

N
. (B.14c)

After a long but straightforward calculation, we obtain for the contribution from
distant helices

u(BS) ⇠ CDHe" sin ' � 2SDHe"2r sin 2', (B.15)

where SDHe is given by (4.18) and

CDHe = �
p

1 + ↵2(↵2 � 1)(N � 1)

2↵
� 1

2
log N +

1X

m=1

cm(↵)%
⇣m

N

⌘
, (B.16)

with %(x) defined in (4.19).
The velocity field obtained by multiple helices is the sum of the contributions

from a single helix and distant helices. From the complete matching of the dipolar
component, we obtain using (B 12) and (B 15), an expression for the velocity VMHe

frame
of the frame for multiple helices:

VMHe
frame =

p
1 + ↵2(CMHe + A)", (B.17)

where CMHe = CHe + CDHe reduces to

CMHe = ↵2

2
�

p
1 + ↵2(↵2 � 1)N

2↵
+ 1

2
log
✓

↵

"(1 + ↵2)3/2N

◆
+ N

1X

k=1

cNk(↵). (B.18)

It is this expression of Vframe, with A ⇡ 0.22 � W2
0/4 which has been used in expression

(3.5) for W00 and in (5.1a–c).
Note finally that the expressions (B 9) and (B 15), and (4.3) and (4.8) for rings,

contain no cos 2� terms. This property validates the hypothesis made in § 3.3 that
there is no homogeneous solution proportional to cos 2� in the inner expression
(3.14a) of the quadrupolar contribution to the radial velocity.
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