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The stability of a horizontal boundary layer flow on a vertical wall in a viscous stably
stratified fluid is considered in this work. A temporal stability analysis is performed
for a tanh velocity profile as a function of the Reynolds number Re=UL/ν and the
Froude number F = U/(LN) where U is the main stream velocity, L the boundary
layer thickness, N the buoyancy frequency and ν the kinematic viscosity. The diffusion
of density is neglected. The boundary layer flow is found to be unstable with respect
to two instabilities. The first one is the classical viscous instability which gives
rise to Tollmien–Schlichting (TS) waves. We demonstrate that, even in the presence
of stratification, the most unstable TS wave remains two-dimensional and therefore
independent of the Froude number. The other instability is three-dimensional, inviscid
in nature and associated with the stratification. It corresponds to the so-called radiative
instability. We show that this instability appears first for Re>Re(r)c ≈1995 for a Froude
number close to 1.5 whereas the viscous instability develops for Re > Re(v)c ≈ 3980.
For large Reynolds numbers, the radiative instability is also shown to exhibit a much
larger growth rate than the viscous instability in a large Froude number interval.
We argue that this instability could develop in experimental facilities as well as in
geophysical situations encountered in ocean and atmosphere.
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1. Introduction
Boundary layers are ubiquitous in any flow close to boundaries. They are known

to be unstable with respect to viscous instabilities for Reynolds numbers above a few
thousands. In the presence of a stable stratification, such a flow on a vertical wall is
shown to be unstable with respect to a stronger instability associated with the emission
of internal gravity waves. The goal of the present article is to analyse the competition
between both instabilities for a simple model of boundary layer flow as a function of
viscosity and stratification strength.

The stability of boundary layer flows is a subject almost as old as fluid mechanics
and is covered by several textbooks (e.g. Betchov & Criminale 1967). In particular,
it is well established that an inflection-free boundary layer profile is unstable with
respect to a two-dimensional (2-D) viscous instability that gives rise to the so-called
Tollmien–Schlichting (TS) waves.
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The effect of a stable stratification has been mainly studied in the context of
atmospheric flows on flat horizontal surfaces (see Mahrt 2014, for a review). However,
in this context, the velocity profile usually exhibits an inflectional point which makes
it unstable with respect to the Kelvin–Helmholz instability. This instability is modified
by stratification as shown in Howard (1961), Miles (1961), Churilov (2005, 2008),
Candelier, Le Dizès & Millet (2011). The effect of stratification on TS waves is
less well understood. It was studied experimentally in Ohya & Uchida (2003). Wu &
Zhang (2008a) also demonstrated that it could be destabilizing. On a vertical wall, the
2-D TS waves are not expected to be affected by stratification. But as Squire theorem
is not applicable in the presence of stratification, more unstable three-dimensional
(3-D) TS waves could a priori exist.

The inclination of shear with respect to the direction of stratification is also known
to be a source of instability. Candelier, Le Dizès & Millet (2012) showed that an
inflection-free boundary layer profile becomes unstable with respect to an inviscid
‘radiative instability’ as soon as there is an angle between the directions of shear
and stratification, the instability being the strongest for an angle of π/2, that is for
a vertical wall. This instability, which results from the coupling between shear and
internal waves, has been obtained in other contexts: shallow water flows (Satomura
1981; Balmforth 1999; Riedinger & Gilbert 2014), compressible flows (Mack 1990;
Parras & Le Dizès 2010) and rotating flows (Riedinger, Le Dizès & Meunier 2010,
2011). It has often been associated with a phenomenon of resonant over reflection
(McIntyre & Weissman 1978; Grimshaw 1979; Lindzen & Barker 1985), negative
energy waves (Kopev & Leontev 1983) or spontaneous wave emission (Plougonven
& Zeitlin 2002; Le Dizès & Billant 2009). In the present work, we shall analyse the
effect of viscosity on the radiative instability of a boundary layer.

The paper is organized as follows. In § 2, we present the framework, the
perturbation equations and the numerical method. In § 3.1, we first analyse the
effect of stratification on the viscous instability and then in § 3.2 study the radiative
instability in the presence of viscosity. In § 3.3, we provide a summary of the stability
results. The last section (§ 4) is a brief discussion in the context of applications.

2. Mathematical formulation
2.1. Base flow and perturbation equations

We consider a horizontally directed flow adjacent to a vertical wall in a non-rotating,
incompressible viscous stably stratified fluid, as sketched in figure 1. The stratification
is assumed to be uniform with a constant buoyancy frequency

N =
√

g
ρ0

∂ρ

∂y
, (2.1)

where g is gravity, ρ0 is a characteristic value of the mean density ρ. As commonly
done in the context of boundary layer stability, we apply a local parallel-flow
assumption and assume that the base flow velocity field is given by the tanh profile

u=U0(z)ex =U tanh
( z

L

)
ex, (2.2)

where ex is the unit vector in the streamwise direction x. The local characteristic
velocity U and boundary layer thickness L are used to non-dimensionalize all the
variables. The local parallel-flow assumption gives a constraint on the streamwise
perturbation wavelength which should be much smaller than the viscous evolution
length. We shall discuss this constraint in § 4.



264 J. Chen, Y. Bai and S. Le Dizès

x

y

y

z

g

L

U

FIGURE 1. Sketch of the flow geometry.

The choice of a tanh profile (instead of a Blasius profile) has been made for
numerical convenience. Both the viscous and the radiative instabilities that we discuss
here are expected to be weakly sensitive to the details of the profile (as long as it
remains non-inflectional). In the very large Reynolds number limit, it is indeed known
that the characteristics of these instabilities only depend on the velocity derivatives
at the boundary (see Drazin & Reid (1981) for the viscous instability and Candelier
et al. (2012) for the radiative instability).

The base flow is defined by three parameters:

Re = UL
ν

the Reynolds number, (2.3a)

Sc = ν

D
the Schmidt number, (2.3b)

F = U
NL

the Froude number, (2.3c)

where ν and D are the kinematic viscosity and the mass diffusivity of the fluid.
In the present study, the Froude and Reynolds numbers are varied in the intervals

100< Re< 107, 0.01< F< 20. (2.4a,b)

We neglect the diffusion of mass and set Sc=∞. This hypothesis is valid for salty
water, for which Sc is around 700.

The goal of the present study is to perform a linear temporal stability analysis of
the base flow (2.2). Perturbations are then searched in the form of normal modes

(u′, v′,w′, p′, ρ ′)= (u, v,w, p, F2ρb)eikxx+ikyy−iωt, (2.5)

where kx and ky are real wavenumbers and ω the complex eigenfrequency. The
velocity, pressure and buoyancy amplitudes (u, v, w, p, b) satisfy the following
equations obtained by linearizing the Navier–Stokes and density equations under the
Boussinesq approximation

−iΦu+ dU0

dz
w=−ikxp+ 1

Re
∆zu, (2.6a)

−iΦv =−ikyp+ b+ 1
Re
∆zv, (2.6b)
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−iΦw=−dp
dz
+ 1

Re
∆zw, (2.6c)

−iΦb+ 1
F2
v = 0, (2.6d)

ikxu+ ikyv + dw
dz
= 0, (2.6e)

where

Φ = ω− kxU0(z), (2.7a)

∆z = d2

dz2
− kx

2 − ky
2. (2.7b)

The no-slip boundary condition gives u(0) = v(0) = w(0) = 0. Far away from the
boundary, we apply a condition of radiation which prescribes that the energy should
propagate outward.

2.2. Numerical method
The system (2.6a–e) is discretized using a pseudo-spectral method on the collocation
points of Laguerre polynomials. These polynomials are well adapted to semi-infinite
domain [0, +∞[ . This method has already been used in Riedinger et al. (2010)
and Candelier et al. (2012). The system of equations is then transformed into a
generalized eigenvalue problem A f = ωB f for f = [u, v, w, p, b], which is solved
using subroutines of Matlab c©.

The eigenfunctions obtained by this method automatically vanish at infinity. As
already explained by Riedinger et al. (2010), this is not an adequate behaviour for
all the physical perturbations.

By considering (2.6) for large z, it is easy to show that all solutions are a sum of
exponentials eiβz with Λ= k2

x + k2
y + β2 satisfying

(Λ− i(ω− kx)Re)[i(Λ− k2
y)Re−ΛF2(ω− kx)(Λ− i(ω− kx)Re)] = 0. (2.8)

The condition of radiation prescribes that the solution should expend at infinity
on three exponentials among the six possible (only the exponentials corresponding
to waves propagating energy outward are kept). When Im(ω) > 0, this condition
of radiation is equivalent to discarding the growing exponentials and keeping the
decreasing exponentials. It is therefore equivalent to the vanishing of the solution at
infinity. This implies that all unstable modes can a priori be captured by the spectral
code. When Im(ω)= 0 or Im(ω) < 0, the conditions of radiation and of vanishing do
not necessarily match. There are large regions of the complex ω plane where these
two conditions are not equivalent. In these regions, the modes obtained by the spectral
code are therefore ‘unphysical’. The boundaries of these regions correspond to curves
in the ω plane where one of the wavenumbers β satisfying (2.8) becomes real. These
curves are the so-called continuous spectrum. An illustration showing the numerical
spectrum and the continuous spectrum is displayed in figure 2(a) for a typical
example. In this figure, we have indicated by a dashed rectangle the region of the ω
plane where the interesting eigenvalues corresponding to the radiative instability are
expected. This region is very close to the continuous spectrum, which means that the
eigenfunctions decay slowly at infinity. As explained in Riedinger et al. (2010), the
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FIGURE 2. (Colour online) Continuous spectrum (solid lines) and numerical eigenvalues
(stars) for N = 100 and the parameters Re = 104, F = 1, kx = 1, ky = 10. The
‘unphysical’ domain is indicated by the letter ‘U’. (a) Integration on the real axis (α= 0);
(b) integration on a complex path z′ = ze−iα with α = π/20. The eigenvalue domain of
interest is indicated by the dashed rectangle.

exponentially decreasing behaviour of the solution can be improved by introducing a
complex mapping z= z′eiα where α is a fixed positive angle. Such a mapping modifies
an oscillating behaviour on the z variable, say eiβz with β > 0 to an exponentially
decreasing behaviour eiβ cos αz′e−β sin αz′ on the z′ variable. The mapping thus modifies
the spectrum and the continuous spectrum as shown in figure 2(b). The unstable
mode in the dashed rectangle is now further away from the continuous spectrum
curve. Being localized nearer to the origin, this mode is more easily resolved by the
pseudo-spectral code. Neutral eigenvalues as well as weakly damped eigenvalues can
also be captured by this method.

As soon as an eigenvalue is obtained, its robustness is tested by varying the angle
α and the number N of polynomials. We have typically used α=π/20 and N = 100.

3. Temporal stability results
3.1. Boundary layer instability (Tollmien–Schlichting waves)

Considering a boundary layer flow, the viscous instability associated with TS waves
is expected to be active. Without stratification (F =∞), the viscous instability of a
boundary layer profile has been known for a long time (see for instance Betchov
& Criminale 1967). In that case, Squire’s theorem is applicable: the most unstable
mode among all the possible wavenumbers kx and ky is obtained for ky = 0. Being
2-D without variation in the stratification direction y, this mode is also expected to
exist in the presence of stratification, as the equations for the transverse velocity v and
the buoyancy b are decoupled from the other velocity components and the pressure.
However, there is no Squire theorem which guarantees that this 2-D mode remains
the most unstable in the presence of stratification.

The effect of the Froude number on the growth rate curve in the (kx, ky) plane is
illustrated in figure 3. In these plots, we do see that for a given Reynolds number, the
instability domain associated with the viscous instability grows as the stratification
increases while the largest growth rate in this (kx, ky) domain is still reached for ky=0.
We have tried other values of the Reynolds number, and have always found that the
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FIGURE 3. Growth rate contours of the viscous instability in the (kx, ky) plane for
Re = 104 and different Froude numbers. (a) F = ∞ (unstratified case); (b) F = 1; (c)
F= 0.1. Contours are every 0.00025 from 0 to 0.0028.
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FIGURE 4. Characteristics of the most unstable TS wave as a function of Re. (a) Growth
rate Im(ω); (b) oscillation frequency Re(ω); (c) wavenumber kx.

most unstable TS wave, among all the possible wavenumbers kx and ky, remains 2-D
whatever the Froude number. Since this mode does not depend on F, it means that
its characteristics are not affected by the stratification. The characteristics of the most
unstable TS wave are therefore independent of the stratification. They are shown
in figure 4 as a function of the Reynolds number. The critical Reynolds number
is found to be Re(v)c ≈ 3981 for which the critical TS wave has the characteristics:
kx = 0.35, ω= 0.1. The growth rate decreases for large Reynolds numbers. It reaches
its maximum at the most dangerous Reynolds number Re(v)m ≈ 22 390 for the most
dangerous mode of characteristics kx = 0.13, ω= 0.016+ 0.0033i.

The eigenfunctions of the critical and most dangerous TS waves are presented
in figure 5. Note that the eigenfunctions of both modes are very similar. The only
noticeable difference is the stronger localization of the critical mode close to the
boundary. This can be related to the streamwise wavenumber difference and the
behaviour in e−kxz of the eigenfunctions far from the boundary.

The evidence that Squire’s theorem is not applicable in the presence of stratification
is given in figure 6 which is an extension in a larger (kx, ky) domain of the growth
rate contours. We clearly see the presence of 3-D modes which are more unstable than
all the 2-D modes. These 3-D unstable modes are associated with another instability,
the so-called radiative instability, analysed in the next section.

3.2. Radiative instability
The radiative instability is inviscid in nature and results from the coupling between
shear and internal gravity waves associated with the fluid stratification. The inviscid
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FIGURE 5. Eigenfunctions of the most unstable TS wave ((a,b) streamwise velocity u;
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FIGURE 6. Growth rate contours in the (kx, ky) plane for Re= 104 and F = 1 (enlarged
view of figure 3b). The two regions correspond to the viscous and radiative instability
respectively. Contours are every 0.001 from 0.001 to 0.012.

characteristics of this instability have been obtained for the tanh boundary layer profile
in Candelier et al. (2012).

In figure 7, we have plotted the growth rate of the (most unstable) radiative mode in
the (kx, ky) plane for various Froude and Reynolds numbers. (Several unstable radiative
modes may exist for a given set of parameters (kx, ky, Re, F). We always keep the
mode with the largest growth rate even if we do not systematically mention that it
is the most unstable radiative mode). We clearly see that viscous effects reduce the
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FIGURE 7. Growth rate contours of the radiative mode in the (kx, ky) plane for several sets
of Froude and Reynolds numbers. (a) Re= 107, F= 0.5; (b) Re= 104, F= 0.5; (c) Re=
107, F= 3; (d) Re= 104, F= 3. White crosses indicate local maxima of the growth rate,
the largest maximum being shown with an asterix. Contours are every 0.001 from 0.001
to 0.02.

domain of instability. In the inviscid limit, the maximum growth rate is obtained for
infinite kx and ky (Candelier et al. 2012). As soon as viscous effects are present, the
maximum growth rate is reached for finite kx and finite ky. In figure 8, we have
plotted the maximal value of the growth rate over all ky as a function of kx for various
Reynolds numbers and F= 0.5 and 3. The viscous damping of higher wavenumbers is
also clearly seen on these plots. It should be noticed that there are the two local peaks
of the growth rate curve for Re= 106 and 107. These peaks have also been indicated
by symbols in figure 7(a,c). While the first peak remains almost fixed, the location of
the second peak strongly varies with Reynolds number. This strong variation can be
associated with the extremely broad character of this peak and the fact that it goes to
infinity as Re→∞.

In figure 9, we have plotted the characteristics of the most unstable radiative mode
(growth rate maximized over all the possible wavenumbers (kx, ky)) as a function
of the Froude number for different Reynolds numbers. As expected, viscous results
tend to inviscid results as Re increases. Note however that the convergence is slow,
especially for small Froude numbers. This can be explained by the fact that even for
Re= 107, the most unstable wavenumbers are still of order 1 (remember, they should
go to infinity in the inviscid limit). For this Reynolds number, the most unstable
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wavenumbers correspond to the first peak of the growth rate curve in the (kx, ky) plane
for all Froude numbers F < 1 (see figure 7a). It jumps to the second local peak of
larger wavenumbers for higher Reynolds numbers, or for larger Froude numbers (see
figure 7c). This change of modes as Froude or Reynolds number increases generates
the jump observed in figure 9(c–f ).

The results for the radiative instability are summarized in figure 10. In this figure,
we have displayed the characteristics of the most unstable radiative mode as a
function of both parameters Re and F. Only the growth rate contours are expected to
be smoothed. The frequency, wavenumbers and phase velocities exhibit discontinuities
which are associated with the local growth rate peak jumps discussed above. We have
observed a single jump which is indicated by the dashed line in figure 10(b–d).

The critical Reynolds number for the radiative instability is found to be Re(r)c ≈ 1995
and is reached for F(r)

c ≈ 1.51. The characteristics of the critical radiative mode are
kx ≈ 0.615, ky ≈ 4.236, ω ≈ 0.535. As expected, the Froude number instability range
increases with the Reynolds number, but the most unstable growth rates are obtained
for strongly stratified configurations for which F is smaller than 1. In figure 10(a), the
white dotted line gives the Froude number which maximizes the radiative instability
for a prescribed Reynolds number.

The behaviour of constant growth rate curves for small Froude and large Reynolds
numbers can be obtained by adding the viscous corrections to the non-viscous
estimate. In this limit, Candelier et al. (2012) have indeed shown that the most
unstable inviscid mode was obtained for ky/kx ∼ 4.9/F. This means that for small
F, ky is much larger than kx as well as the wavenumber based on the characteristic
scale in the normal direction (z) which varies as kx. The viscous damping of the
mode is then expected to be just −k2

y/Re. If we assume that kx is approximately
constant, this gives a viscous growth rate which is constant on the line Re F2 = Cst,
as approximately observed in figure 10(a).

The eigenfunctions of the distinguished radiative modes marked by symbols
in figure 7 are shown in figures 11 and 12. Figure 11(a,b) shows the pressure
eigenfunction of the most unstable mode for a weakly stratified configuration (F= 3)
at Re= 104 and 107. The pressure eigenfunction for Re= 107 strongly resembles the
inviscid eigenfunction obtained by Candelier et al. (2012) for large Froude numbers
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FIGURE 9. Characteristics of the most unstable radiative mode (obtained by maximizing
the growth rate over all kx and ky) as a function of the Froude number F for different
Reynolds numbers. Re = 104 (dotted line), 105 (dash-dot line), 106 (dashed line), 107

(solid line), ∞ (thick grey line). (a) Growth rate Im(ω); (b) oscillation frequency Re(ω);
(c) streamwise wavenumber kx; (d) wavenumber ratio ky/kx; (e) phase velocity Re(ω)/kx
along x; ( f ) phase velocity Re(ω)/ky along y.

and large wavenumbers. For smaller Reynolds numbers, the eigenfunction is by
contrast different. These differences are not due to a change of instability mode. The
modes are on the same instability branch but they are associated with two different
local peaks of the growth rate contours in the (kx, ky) plane. For Re= 104, the most
unstable mode corresponds to the first peak, while it is the second peak for Re= 107
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(see figure 7c). It should be noted that the mode associated with the first peak is still
unstable for Re= 107, and its pressure eigenfunction is the same as for Re= 104, as
seen in figure 11(c).

In figure 12, we have considered a strongly stratified case (F= 0.5). Figure 12(a,b)
shows the pressure eigenfunction of the most unstable radiative mode for two different
Reynolds numbers. By comparing these two figures, we observe that the impact of
the Reynolds number is much weaker than for the weakly stratified case, as the
pressure eigenfunction is almost not modified. Besides, this eigenfunction is very
similar to the eigenfunction of the most unstable mode obtained for Re = 104 and
F = 3. However, it is very different from the most unstable inviscid eigenfunction
obtained by Candelier et al. (2012) for small Froude numbers. The inviscid mode
exhibits an oscillating structure which is not present in the viscous mode for Re= 104

and Re= 107 (see figure 12a,b). This difference is mainly due to a property already
mentioned above: the viscous mode is associated with the first peak and has a small
streamwise wavenumber (as for the modes shown in figure 11a,c). We suspect that
this peak could be of viscous nature. It indeed gives a mode with a non-oscillating
structure which resembles that of 2-D TS waves (see figure 5). If we consider the
mode associated with the second peak, we obtain an eigenfunction with an oscillatory
tail (figure 12c) which resembles the inviscid eigenfunction obtained for small Froude
numbers (see Candelier et al. (2012, figure 4)). It is important to stress that this
mode has almost the same growth rate as the most unstable mode.

3.3. Competition between radiative instability and viscous instability
As shown above, the viscous instability is present as soon as Re > 3981 for any
Froude number, while the radiative instability is active in a domain of the (Re, F)
plane which has been displayed in figure 10(a). Both instabilities are then expected
to be in competition in a large domain of the parameter space. In figure 13, we
have provided a summary of this competition by indicating 5 different domains
corresponding to a domain of no instability, 2 domains where there is a single
instability active, 2 other domains where one instability dominates the other. This
figure clearly demonstrates that the radiative instability is the dominant instability
in a large domain of the parameter space. It is the first instability to appear as the
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FIGURE 13. Domains of instability in the (Re, F) plane. (1) No instability; (2) viscous
instability without radiative instability; (3) radiative instability without viscous instability;
(4) both instabilities present but viscous instability dominates radiative instability; (5) both
instabilities present but radiative instability dominates viscous instability.

Reynolds number increases in the range 0.5<F< 5.3. For Re= 106, it dominates the
viscous instability in the large range 0.03< F< 30.

4. Discussion

In this article, we have demonstrated that a stably stratified boundary layer flow on
a vertical wall is affected by two instabilities: a classical 2-D viscous instability and
a 3-D non-viscous radiative instability. We have shown that the radiative instability
is the first instability to appear as the Reynolds number increases for 0.5< F < 5.3,
and is the dominant instability in a large Froude number interval around F = 1 for
large Reynolds numbers. In the domain of parameters where the instability growth
rate is the largest (large Reynolds numbers, small Froude numbers), the instability is
characterized by a streamwise wavelength scaling with the boundary layer thickness
and a small transverse wavelength proportional to F. The radiative instability is
oscillatory with a frequency close to 1 (that is U/L in dimensional form). The most
unstable mode extends up to a few boundary layer thickness.

The work has focused on the temporal stability property of a local boundary
layer profile. We have found that the streamwise wavenumber of the most unstable
radiative mode increases with the Reynolds number and remains always larger than
0.1 for F < 16. For TS waves, we have obtained that the streamwise wavenumber
weakly decreases with the Reynolds number but is still larger than 0.05 for Re= 107.
For both types of modes, there is then a clear separation of scales between the
instability wavelength and the O(Re) spatial evolution length of the boundary layer
flow. This justifies a posteriori the local parallel-flow assumption that we have made
in neglecting the spatial development of the flow. Nevertheless, it would be interesting
to perform a spatial stability analysis (in which the frequency is fixed, and one of
the wavenumbers unknown) to gain information on the spatial development of the
instability from a localized excitation, as done in Wu & Zhang (2008b).
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It may be useful to apply the present results to experimental facilities such as the
large stratified water flume of CNRM at Toulouse (Paci et al. 2011) to determine
whether the radiative instability could develop on the side wall. Toulouse facility is
30 m long and 1.6 m deep. In normal conditions of use, it typically generates on
the side walls a boundary layer flow of characteristics U = 0.1 m s−1, L = 10 cm
and N = 1 rad s−1 which gives Re = 10 000 and F = 1. The most unstable mode of
such a flow has the characteristics kx = 0.83, ky = 5.47, ω = 0.7+ 0.012i. It gives a
period T= 2πL/(U Re(ω))≈ 9 s, a growth time τ =L/(U Im(ω))≈ 80 s, a streamwise
wavelength 75 cm and a transverse wavelength 12 cm. Such a perturbation clearly fits
within the channel. It is much stronger than the viscous instability of the boundary
layer which has a growth time ten times larger for this Reynolds number. We believe
that this instability could be present on the side wall of the channel. We suspect that
it could affect the quality of the flow within the channel.

The radiative instability could also be present in real geophysical flows. Consider
a stably stratified nocturnal atmospheric boundary layer, as reported in Frehlich,
Meillier & Jensen (2008). The velocity and thickness of this boundary layer flow is
U = 10 m s−1 and L= 100 m, respectively. The buoyancy frequency associated with
the stratification is approximately N = 0.031 rad s−1 while the kinematic viscosity
is ν = 10−5 m2 s−1. This gives F = 3.2 and Re = 108. If such a flow was present
on a vertical cliff, it would be unstable with respect to a radiative instability by a
mode of characteristics kx = 0.95, ky = 13.84, ω = 0.27 + 0.0083i. This would give
a perturbation period T ≈ 3.5 mn and a characteristic growth time τ ≈ 20 mn. The
streamwise and transverse wavelengths of this perturbation would be 660 m and
45 m, respectively.

The deep ocean is stably stratified. If we assume a buoyancy frequency approxi-
mately equal to 0.01 rad s−1 (Alford & Gregg 2006) and a kinematic viscosity
ν = 10−6 m2 s−1, a boundary layer flow of velocity U = 0.15 m s−1 and thickness
L = 10 m would correspond to the parameters Re = 1.5 × 106 and F = 0.15. On a
vertical ridge or a very steep slope, such a flow would be unstable with respect to
the radiative instability by a mode of characteristics kx = 1.23, ky = 33, ω= 1+ 0.02i.
This would give a period T ≈ 7 mn, a growth time τ ≈ 1 h, and a spatial structure of
wavelength 51 m in the streamwise direction and 1.9 m in the transverse direction.

We have analysed the stability of a boundary layer flow on a vertical wall. For
oceanic applications, it would be more relevant to consider inclined slopes. In that
case, the radiative instability is still present but with a weaker growth rate (Candelier
et al. 2012). However, the radiative instability disappears on a horizontal surface.
For the flow on a surface of moderate slope, a stronger competition could exist
between viscous and radiative instability, but for large Reynolds numbers, the radiative
instability is always expected to dominate as its growth rate does not decrease with
the Reynolds number.

Note finally that we have not considered the effect of density diffusion. For both the
atmosphere and the ocean, one should consider the temperature diffusion, for which
the equivalent Schmidt number (Prandtl number) is of order 1. This stronger diffusion
is expected to enhance the damping of the mode but this effect should remain small
for the Reynolds numbers relevant to the geophysical applications (typically Re> 106).

The impact of the radiative instability on the dynamics of the atmosphere or the
ocean remains unknown. When it is present, does it only contribute to the local mixing
in the boundary layer, or does it induce a mixing further away from the boundary due
to the radiative extension of the instability mode are among the interesting questions
that have to be addressed. Answering these questions would require an understanding
of the nonlinear evolution of the instability. This could constitute a nice objective for
the future numerical or experimental works on the subject.
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