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Reflection of oscillating internal shear layers:
nonlinear corrections
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In this work, we perform weakly nonlinear analysis of the reflection process of a thin
oscillating wave beam on a non-critical surface in a fluid rotating and stratified along the
same vertical axis in the limit of weak viscosity, i.e. small Ekman number E. We assume
that the beam has the self-similar viscous structure obtained by Moore & Saffman (Phil.
Trans. R. Soc. A, vol. 264, 1969, pp. 597–634) and Thomas & Stevenson (J. Fluid Mech.,
vol. 54, 1972, pp. 495–506). Such a solution describes the viscous internal shear layers of
width O(E1/3) generated by a localized oscillating source. We first show that the reflected
beam conserves at leading order the self-similar structure of the incident beam and is
modified by an O(E1/6) correction with a different self-similar structure. We then analyse
the nonlinear interaction of the reflected beam with the incident beam of amplitude ε
and demonstrate that a second-harmonic beam and localized meanflow correction, both
of amplitude ε2E−1/3, are created. We further show that for the purely stratified case
(respectively the purely rotating case), a non-localized meanflow correction of amplitude
ε2E−1/6 is generated, except when the boundary is horizontal (respectively vertical). In this
latter case, the meanflow correction remains localized but exhibits a triple-layer structure
with a large O(E4/9) viscous layer.

Key words: boundary layer separation, internal waves, waves in rotating fluids

1. Introduction

Waves are ubiquitous in rotating and stratified fluids and participate in the dynamics of
a very large variety of geophysical and astrophysical flows. In addition to transporting
momentum, they are expected to be involved in mixing and dissipation processes. Of
special interest are the viscous harmonic wave beams that are created from critical surfaces
and boundary singularities because they are very thin and possess a universal transverse
structure (Moore & Saffman 1969; Thomas & Stevenson 1972; Le Dizès & Le Bars 2017).
The goal of the present article is to analyse the reflection of such beams on a flat boundary
in order to understand how second-harmonic and meanflow corrections are created during
the reflection process.

In the ocean, the tidal motion of water on submarine topography is an important source
of waves (Wunsch 1975). Supercritical topographies, that is, topographies steeper than the
direction of propagation of the waves, are of particular interest because they are known
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899 A21-2 S. Le Dizès

to create strong concentrated beams. These beams and their role in tidal conversion have
been studied experimentally (Zhang, King & Swinney 2007; King, Zhang & Swinney
2009; Echeverri & Peacock 2010) as well as theoretically (Llewellyn Smith & Young 2003;
St Laurent et al. 2003; Balmforth & Peacock 2009). Similar concentrated wave beams
are also found in rotating fluids (Kerswell 1995; Le Dizès & Le Bars 2017). They have
mainly been studied in spherical geometries (Calkins et al. 2010; Koch et al. 2013; Cébron
et al. 2019; Lin & Noir 2020) in the context of planetary applications (Le Bars, Cébron
& Le Gal 2015). These wave beams are the temporal equivalent of the thin shear layers
found at the periphery of Taylor–Proudman columns between differentially rotating discs
or spheres (Proudman 1956; Stewartson 1966). They have been the subject of works by
Kerswell (1995), Walton (1975), Tilgner (2000) and Le Dizès (2015) among others. Moore
& Saffman (1969) and Thomas & Stevenson (1972) found independently for a rotating
fluid and a stratified fluid, respectively, a self-similar viscous solution describing such a
wave beam. These solutions were further studied and used by Peat (1978), Tabaei & Akylas
(2003), Voisin (2003), Cortet, Lamriben & Moisy (2010) and Machicoane et al. (2015).
In Le Dizès & Le Bars (2017), it was shown that these self-similar solutions are able to
describe the wave beams that are created at the edge of a librating disc and at the critical
latitude of a librating sphere in an open domain.

As soon as the domain is closed, the problem becomes more complex as beams reflect
on boundaries. Depending on the geometry, concentrated beams can then also be formed
as the result of a focusing process on an attractor (Maas et al. 1997; Rieutord, Georgeot &
Valdettaro 2001; Grisouard, Staquet & Pairaud 2015; Beckebanze et al. 2018).

The reflection process of a wave beam has been documented (e.g. Phillips 1966). In
contrast to a beam of light, a wave beam conserves its angle of propagation with respect
to the direction of stratification or of the rotation axis. The beam structure is also expected
to be conserved during the reflection process (Kistovich & Chashechkin 1994) except in
the critical situation where the boundary is aligned with the direction of propagation of
the reflected beam (Dauxois & Young 1999). A viscous correction is also created during
the reflection process that was first calculated by Beckebanze et al. (2018).

Although a plane wave is known to be generically unstable by triadic resonance (Davis
& Acrivos 1967; Staquet & Sommeria 2002), a thin wave beam is less sensitive to such an
instability (McEwan & Plumb 1977; Dauxois et al. 2018). Moreover, it is also very weakly
affected by nonlinear effects (Tabaei & Akylas 2003). Nonlinearities seem to be created
mainly when two beams interact (Lamb 2004). This interaction process has been analysed
theoretically by Tabaei, Akylas & Lamb (2005) and Jiang & Marcus (2009) in order to
determine the amplitude and direction of propagation of nonlinearly generated waves. The
case of a reflected beam is a particular case because the interacting beams have the same
frequency. The first-order interaction therefore creates meanflow and second-harmonic
corrections. In two dimensions, the meanflow correction tends to remain localized (Tabaei
et al. 2005) so many works have focused on the second-harmonic wave beam generated
during the reflection process (Peacock & Tabaei 2005; Gostiaux et al. 2006; Rodenborn
et al. 2011). Yet, non-local meanflow corrections could a priori be created in a stratified
fluid, or a rotating fluid. In a stratified fluid, they take the form of horizontal layers.
Bretherton (1969), Bordes et al. (2012) and Kataoka & Akylas (2015) have shown they are
amplified by three-dimensional effects. In a rotating fluid, they take the form of columnar
flows. They seem to be generated by the nonlinear interaction occurring in the viscous
boundary layer. They have been documented for precession (Busse 1968; Hollerbach &
Kerswell 1995; Noir, Jault & Cardin 2001), libration (Busse 2010; Sauret et al. 2010; Sauret
& Le Dizès 2013; Lin & Noir 2020) and tides (Tilgner 2007; Morize et al. 2010; Favier
et al. 2014).
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Reflection of oscillating internal shear layers 899 A21-3

In the present paper, we consider the generic situation of an axisymmetric (or
two-dimensional) oscillating viscous beam, described by the self-similar solution of
Moore & Saffman (1969) and Thomas & Stevenson (1972), impacting an axisymmetric
(or planar) surface in a stratified and rotating fluid. Our objective is to analyse the
weakly nonlinear structure of the solution generated during the reflection process. More
specifically, we provide the scalings and the equations governing the meanflow and
second-harmonic corrections in the limit of small Ekman numbers.

The paper is organized as follows. In § 2, we provide the theoretical framework and
describe the reflection process of the self-similar wave beam solution. We show that a
viscous correction is created during the reflection. The Reynolds stress responsible for
the generation of a second-harmonic and of a meanflow correction is also discussed in
this section. In § 3, we analyse the second-harmonic correction while § 4 is devoted to the
meanflow correction. The structure of the meanflow correction is found to be particular
when the fluid is non-rotating or non-stratified. These cases are treated in §§ 4.2 and 4.3.
The results are briefly summarized in § 5 and compared to those of other works in § 6.

2. Framework

We consider an incompressible viscous fluid, rotating around an axis Ox with an angular
velocity Ω and stably stratified along this axis with a constant buoyancy frequency N.
The fluid is characterized by a kinematic viscosity ν and a diffusivity κ . In the rotating
frame, the velocity field v = (vr, vφ, vz), the pressure p and the buoyancy b of the fluid
perturbations are governed, under the Boussinesq approximations, by the equations

Dv

Dt
+ 2Ωez × v = −∇p − bez + ν∇2v, (2.1a)

∇ · v = 0, (2.1b)
Db
Dt

= N2vz + κ∇2b, (2.1c)

where D/Dt = (∂/∂t + v · ∇). Vanishing buoyancy and no-slip boundary conditions are
assumed on solid boundaries.

We consider a thin oscillating wave beam in the form of an oscillating viscous internal
shear layer. Its frequency ω is related to the angle θ of propagation with respect to the
horizontal plane by the relation

ω2 = N2 sin2 θ + 4Ω2 cos θ 2. (2.2)

We consider a generic case for which 0 < θ < π/2. As explained in the introduction, these
internal shear layers are generated from oscillating objects or supercritical topographies in
typical situations illustrated in figure 1. In this work, we are interested in the reflection of
such a wave beam on an axisymmetric boundary making an angle α with respect to the
horizontal plane. Our objective is to quantify the nonlinear corrections which are created
during the reflection process. The presentation is provided for an axisymmetric beam in
a cylindrical geometry but the same analysis can be done if the beam possesses another
azimuthal symmetry, or if the beam and the boundary have a planar geometry.

2.1. Incident beam structure
The incident beam is assumed to be described by the similarity solution of Moore &
Saffman (1969) and Thomas & Stevenson (1972).
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899 A21-4 S. Le Dizès
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FIGURE 1. Sketches of typical applications. (a) Reflection on an outer boundary of a wave
beam generated by the libration of an inner core. (b) Reflection on a mountain of a wave beam
generated by a tidal wave on a supercritical topography.

Using the notation introduced in Le Dizès & Le Bars (2017), this harmonic solution can
be written as X (i) = Re((v(i), b(i), p(i))e−iωt), where the velocity v

(i)
∥ along the direction of

propagation, the azimuthal velocity v
(i)
φ and the buoyancy b(i) are all proportional to

Hµ(x (i)
⊥ , x (i)

∥ , r) = 1
√

r
(

x (i)
∥

)µ/3 hµ

⎛

⎜⎝
x (i)

⊥(
L2

dx (i)
∥

)1/3

⎞

⎟⎠ (2.3)

with

v
(i)
∥ = ε(i)Hµ, v

(i)
φ = −2Ωi cos θ

ω
ε(i)Hµ, b(i) = N2i sin θ

ω
ε(i)Hµ. (2.4a–c)

In (2.3), r is the radial coordinate and x (i)
∥ and x (i)

⊥ are the coordinates parallel and normal
to the direction of propagation of the incident wave beam in the (r, z) plane (see figure 2a).

The function hµ is given by

hµ(ζ ) = e−iµπ/2

(µ − 1)!

∫ +∞

0
eipζ−p3

pµ−1 dp. (2.5)

The index µ characterizes the nature of the singularity which has given birth to the beam
(Moore & Saffman 1969; Thomas & Stevenson 1972). For instance, an axisymmetric Dirac
source is known to be associated with an index µ = 1 (Tilgner 2000; Le Dizès 2015).
Stronger singularities associated with larger values of µ can also be found. Le Dizès &
Le Bars (2017) demonstrated that the singularity associated with the critical latitude on a
sphere gives rise to an index µ = 5/4 (this situation is illustrated in figure 1a). Expression
(2.4a–c) is also encountered in the far field of any localized source (Voisin 2003). In that
case, the index µ characterizes the multipole order of the source (Machicoane et al. 2015);
it is an integer in two dimensions, with µ = 1 for a dipole, but a half-integer in three
dimensions, with µ = 3/2 for a dipole (Voisin 2003).

�)
)C

E�
��

7B
� B

D:
��

� 
��

��
� �

#
 �

��
� 

	�
	

/
BI

A"
B4

78
7�

�D
B#

��
))

CE
���

I
I

I
 6

4#
5D

�7
:8

 B
D:

�6
BD

8 
�1A

)8
DA

4)
�B

A4
"�3

84
6)

BD
�2

�.
E�

6E
��

8A
6�

#
4D

!�
0-

C8
D�

#
8A

)E
��B

A�
��

�,
*:

��
��

��
4)

��
�

��
��


�
�E

*5
 8

6)
�)B

�)�
8�

.4
#

5D
�7

:8
�.

BD
8�

)8
D#

E�
B�

�*
E8

��4
+4

�"4
5"

8�
4)

��
))

CE
���

I
I

I
 6

4#
5D

�7
:8

 B
D:

�6
BD

8�
)8

D#
E 

https://doi.org/10.1017/jfm.2020.464
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Reflection of oscillating internal shear layers 899 A21-5
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FIGURE 2. Reflection process. (a) Definition of the coordinate systems for 0 < θ < α <
π − θ . Here the reflected beam is contracted because π/2 < α < π − θ . The relationships
between the various coordinate systems are provided in appendix A. (b) Characteristic of the
reflection process according to α (assuming 0 < θ < π/2).

The constant Ld is given by

L2
d = N2 sin2 θ(ν + κ) + 8Ω2ν cos2 θ

2 sin θ cos θ(4Ω2 − N2)ω
. (2.6)

Its norm defines a characteristic diffusion scale. In the non-stratified case (N = 0), L2
d =

ν/(2Ω sin θ). In the non-rotating case (Ω = 0), L2
d = −(ν + κ)/(2N cos θ). When L2

d <

0, the quantity (L2
dx (i)

∥ )1/3 in (2.3) is defined as −|L2
dx (i)

∥ |1/3.
The beam gets wider and wider as it propagates. We consider its characteristics at

a typical distance lc = x (i)
∥c from its source. If we use a characteristic frequency fc (say

max(2Ω, N)) and define the Ekman number by

E = ν

fcl2
c
, (2.7)

the characteristic width of the beam is given by

L(i) = E1/3Λlc, (2.8)

where Λ is a positive dimensionless number given by

Λ =
∣∣∣∣
N2fc sin2 θ(1 + Pr−1) + 8Ω2fc cos2 θ

2 sin θ cos θ(4Ω2 − N2)ω

∣∣∣∣
1/3

, (2.9)

in which Pr = ν/κ is the Prandtl number.
In the following, we assume that E ≪ 1 and that Λ is neither zero nor infinite. The

Prandtl number Pr is assumed to be a fixed non-zero constant. The beam is therefore thin
with a width scaling as E1/3. This similarity solution is a leading-order approximation of
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899 A21-6 S. Le Dizès

a viscous solution in the limit E → 0. The pressure p(i) and the normal velocity v
(i)
⊥ are

O(E1/3) as the first-order correction to the similarity solution.
Note that the present similarity solution is a special case of a general expression of the

form

v∥ = 1√
r

∫ +∞

0
G(k) exp

(
iϵokx⊥/L(i)) exp

(
−k3x∥/lc

)
dk, (2.10)

which describes a viscous beam propagating in the direction of positive x∥. For our
similarity solution, G(k) = ε(i)e−iµπ/2kµ−1/(µ − 1)!. With the frame convention shown in
figure 2(a), the parameter ϵo is equal to 1 if N < 2Ω and to −1 if N > 2Ω . The singular
case N = 2Ω is not considered in the present work.

In the following, all the spatial and temporal variables are assumed to have been
non-dimensionalized using lc and fc.

2.2. Reflection on an inclined boundary
After having covered a distance lc, the incident beam reaches an inclined boundary and is
reflected as illustrated in figure 2(a). This reflection process is analogous to that described
by Phillips (1966) for a plane wave in a non-rotating fluid, and further analysed by
Kistovich & Chashechkin (1994) and Tabaei et al. (2005). According to the boundary
inclination angle α, the beam is expected to expand or contract (see figure 2b). As in
Kistovich & Chashechkin (1994), we assume that the beam keeps its self-similar structure
(2.3) with new variables x (r)

∥ and x (r)
⊥ associated with the direction of the reflected beam.

We consider the situation illustrated in figure 2(a) where θ (i) = θ and θ (r) = π − θ and
look for a solution X (r) = Re((v(r), b(r), p(r))e−iωt) with

v
(r)
∥ = ε(r)Hµ, v

(r)
φ = 2Ωi cos θ

ω
ε(r)Hµ, b(r) = N2i sin θ

ω
ε(r)Hµ. (2.11a–c)

The reflected beam amplitude ε(r) and the value x (r)
∥c of x (r)

∥ at the impact point Ic(rc, zc)
should be chosen such that the sum of incident and reflected beams satisfies the condition
of non-penetrability on the surface. To apply this condition, it is convenient to introduce
local variables tangential and normal to the boundary (see figure 2a):

xt = cos α(r − rc) + sin α(z − zc), xn = − sin α(r − rc) + cos α(z − zc), (2.12a,b)

such that the condition vn(xn = 0) = 0 gives

− sin(α − θ)ε(i)Hµ(sin(α − θ)xt, x (i)
∥c

, rc)

+ sin(α + θ)ε(r)Hµ(sin(α + θ)xt, x (r)
∥c

, rc) = 0. (2.13)

This equation is satisfied if and only if

x (i)
∥c

x (r)
∥c

= K3,
ε(i)

ε(r)
= Kµ−1, (2.14a,b)

with

K = sin(α − θ)

sin(α + θ)
. (2.15)

Equations (2.14) were already obtained by Kistovich & Chashechkin (1994). They noted
that the reflected beam can be interpreted as a beam generated by a virtual source of the
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Reflection of oscillating internal shear layers 899 A21-7

same nature as the incident beam but located at a distance x (r)
∥c from the reflection point

given by (2.14). Close to the impact point, the width of the reflected beam is given by
L(r) = L(i)/K. The coefficient K is therefore the contraction factor of the reflected beam.
We can indeed check that the reflected beam expands (0 < K < 1) for θ < α < π/2 and
contracts (K > 1) for π/2 < α < π − θ in agreement with figure 2(b). This formula for
the contraction factor is not new and is related to the wavelength contraction factor that a
plane wave experiences at reflection (Phillips 1966).

In a region of order E1/3 around the impact point that we call the interaction
region, a compact expression of the total harmonic field composed of the incident and

reflected beams can be obtained. If we redefine ε = ε(i)/r1/2
c /

(
x (i)

∥c

)µ/3
, and introduce the

local variables r̃ = (r − rc)/E1/3 and z̃ = (z − zc)/E1/3, we can write the leading-order
expression of the velocity and buoyancy fields in the interaction region as

(v, b) ∼ ε
(
ṽ0, b̃0

)
= ε

(
ṽ(i)

0 + ṽ(r)
0 , b̃(r)

0 + b̃(i)
0

)
, (2.16)

ṽ0r = cos θ
(

h̃(i)
µ − h̃(r)

µ

)
, (2.17a)

ṽ0φ = −2Ω cos θ

ω

(
h̃(i)

µ − h̃(r)
µ

)
, (2.17b)

ṽ0z = sin θ
(

h̃(i)
µ + h̃(r)

µ

)
, (2.17c)

b̃0 = i
N2 sin θ

ω

(
h̃(i)

µ + h̃(r)
µ

)
(2.17d)

and

h̃(i)
µ = hµ

(− sin θ r̃ + cos θ z̃
Λ

)
, h̃(r)

µ = Khµ

(
K

sin θ r̃ + cos θ z̃
Λ

)
. (2.18a,b)

Note that in terms of local boundary layer variables x̃t = xt/E1/3 and x̃n = xn/E1/3, h̃(i)
µ

and h̃(r)
µ can also be written as

h̃(i)
µ = hµ

(
sin(α − θ)

Λ
(x̃t + cot(α − θ)x̃n)

)
, (2.19a)

h̃(r)
µ = Khµ

(
sin(α − θ)

Λ
(x̃t + cot(α + θ)x̃n)

)
, (2.19b)

and the tangential and normal velocity components read

ṽ0t = cos(α − θ)h̃(i)
µ − cos(α + θ)h̃(r)

µ , (2.20a)

ṽ0n = − sin(α − θ)h̃(i)
µ + sin(α + θ)h̃(r)

µ . (2.20b)

It is worth mentioning that the above solution is a leading-order approximation obtained
by applying slip boundary conditions. This solution does not satisfy the vanishing
buoyancy and no-slip boundary conditions. This means that a viscous/diffusive boundary
layer is expected close to boundary. In the next subsection, we show that this viscous

�)
)C

E�
��

7B
� B

D:
��

� 
��

��
� �

#
 �

��
� 

	�
	

/
BI

A"
B4

78
7�

�D
B#

��
))

CE
���

I
I

I
 6

4#
5D

�7
:8

 B
D:

�6
BD

8 
�1A

)8
DA

4)
�B

A4
"�3

84
6)

BD
�2

�.
E�

6E
��

8A
6�

#
4D

!�
0-

C8
D�

#
8A

)E
��B

A�
��

�,
*:

��
��

��
4)

��
�

��
��


�
�E

*5
 8

6)
�)B

�)�
8�

.4
#

5D
�7

:8
�.

BD
8�

)8
D#

E�
B�

�*
E8

��4
+4

�"4
5"

8�
4)

��
))

CE
���

I
I

I
 6

4#
5D

�7
:8

 B
D:

�6
BD

8�
)8

D#
E 

https://doi.org/10.1017/jfm.2020.464
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


899 A21-8 S. Le Dizès

boundary layer is responsible for a viscous correction to the reflected beam. More
precisely, we shall see that the reflected beam expands in the interaction region as

(v(r), b(r)) = ε
[(

ṽ(r)
0 , b̃(r)

0

)
+ E1/6

(
ṽ(r)

1 , b̃(r)
1

)
+ O

(
E1/3)

]
, (2.21)

whereas the incident beam is just

(v(i), b(i)) = ε
[(

ṽ(i)
0 , b̃(i)

0

)
+ O

(
E1/3)

]
. (2.22)

2.3. Viscous correction to the reflected beam
As long as the slope inclination is not critical, that is, α is different from θ and
π − θ , the width of the viscous boundary layer is O(E1/2). In the viscous boundary
layer, the relevant variables are the local tangent variable x̃t and the viscous boundary
variable x̄n = E−1/6 x̃n = E−1/2xn . The form of the solution can be obtained by expanding
the leading-order expression (2.17) as x̃n → 0 using the viscous boundary variable.
Using (2.20), we observe that ṽ0t, ṽ0φ , b̃0 remain O(1) whereas ṽ0n ∼ x̃n∂x̃n ṽ0n(x̃t, 0) =
E1/6 x̄n∂x̃n ṽ0n(x̃t, 0) as x̃n → 0. It follows that one can look for a viscous boundary solution
of the form

vt = ε
(
ṽ0t0(x̃t) + v̄0t(x̃t, x̄n)

)
, (2.23a)

vn = εE1/6v̄1n (x̃t, x̄n) , (2.23b)

vφ = ε
(
ṽ0φ0 (x̃t) + v̄0φ (x̃t, x̄n)

)
, (2.23c)

b = ε
(

b̃00 (x̃t) + b̄0 (x̃t, x̄n)
)

, (2.23d)

p = εE1/3 (
p̃00 (x̃t) + E1/6p̄1 (x̃t, x̄n)

)
, (2.23e)

where ṽ0t0, ṽ0φ0, b̃00 and p̃00 are the expressions as x̃n goes to 0 of the leading-order solution
in the interaction region. Only p̃0 has not been provided above. Its exact expression will
turn out not to be necessary for the analysis.

The governing equations reduce to

−iωv̄0t − 2Ω v̄0φ cos α − b̄0 sin α − ∂2v̄0t

∂ x̄2
n

= 0, (2.24a)

−iωv̄0φ + 2Ω v̄t0 cos α − ∂2v̄0φ

∂ x̄2
n

= 0, (2.24b)

2Ω v̄0φ sin α − b̄0 cos α + ∂ p̄1

∂ x̄n
= 0, (2.24c)

−iωb̄0 − 2Ω v̄0φ cos α − N2v̄0t sin α − 1
Pr

∂2b̄0

∂ x̄2
n

= 0, (2.24d)

∂ v̄1n

∂ x̄n
+ ∂(ṽ0t0 + v̄0t)

∂ x̃t
= 0, (2.24e)
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Reflection of oscillating internal shear layers 899 A21-9

which give
[(

iω + ∂2

∂ x̄2
n

)2 (
iω + 1

Pr
∂2

∂ x̄2
n

)
+ 4Ω2 cos2 α

(
iω + 1

Pr
∂2

∂ x̄2
n

)

+N2 sin2 α

(
iω + ∂2

∂ x̄2
n

)]
v̄0t = 0. (2.25)

Among the six independent solutions, three correspond to exponentially decreasing
solutions of the form e−λj x̄n , j = 1, 2, 3 with Re(λj) > 0. The solution for v̄0t can then be
written as v̄0t =

∑3
j=1 āj(x̃t)e−λj x̄n , which gives similar expressions for v̄0φ and b̄0 using

(2.24a), (2.24b) and (2.24d). The conditions that vt, vφ and b vanish at x̄n = 0 then
provide the functions āj, j = 1, 2, 3 as linear combinations of ṽ0t0, ṽ0φ0 and b̃00. Note that
if Pr = ∞, (2.25) is of fourth order. There are then two unknown functions, which are
obtained by applying the boundary conditions at x̄n = 0 on vt and vφ only.

To get v̄1n , we use (2.24e) which gives

v̄1n = −ṽ′
0t0(x̃t)x̄n −

3∑

j=1

ā′
j(x̃t)

1 − e−λj x̄n

λj
. (2.26)

The first term automatically matches the expression of the normal velocity in the
interaction region as x̃n → 0. It is the second term that gives the viscous correction
for which we are looking. As x̄n → ∞, this term tends to a function ū∞

1n(x̃t) =
−

∑3
j=1 ā′

j(x̃t)/λj that should match a contribution in the interaction region. Using the fact
that āj(x̃t), j = 1, 2, 3 are a linear combination of ṽ0t0, ṽ0φ0 and b̃00, they can be written as
Cjhµ(sin(α − θ)x̃t/Λ) (see (2.17) and (2.19)). It then immediately follows that

ū∞
1n(x̃t) = C∞

1nhµ+1(sin(α − θ)x̃t/Λ), (2.27)

where C∞
1n is a complex constant. Such a normal flow can be matched in the interaction

region to a solution of the same form as the reflected beam (2.11) by changing µ into
µ + 1. More precisely, if we have (2.27), the viscous correction to the reflected beam
would read in the interaction region as

⎛

⎜⎜⎜⎜⎜⎝

v
(r)
1r

v
(r)
1φ

v
(r)
1z

b(r)
1

⎞

⎟⎟⎟⎟⎟⎠
= εE1/6C∞

1n

⎛

⎜⎝

cos θ
(2iΩ/ω) cos θ

sin θ
(iN2/ω) sin θ

⎞

⎟⎠ h̃(r)
µ+1, (2.28)

where h̃(r)
µ has been defined in (2.19b). It is worth mentioning that this O(E1/6) viscous

correction is larger than the first viscous correction to the similarity solution describing
the beam, which is O(E1/3).

A viscous correction to the reflected beam was calculated by Beckebanze et al. (2018)
in the purely stratified case. By comparing their expression (6.9) with ours, one can see
that both expressions are similar. They obtained that the spectral density of the viscous
correction is kÛ(k) if the spectral density of the incident beam is Û(k) (our function G(k)
in (2.10)): this corresponds to the passage from hµ to hµ+1 in our analysis.
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899 A21-10 S. Le Dizès

2.4. Reynolds stress
In this section, our objective is to estimate the nonlinear terms v · ∇v and v · ∇b, or
Reynolds stress, that appear in the governing equations (2.1a)–(2.1c). Owing to the
particular form of the similarity solution, it is straightforward to show that these terms are
at most O(ε2) everywhere except close to the source, the rotation axis and the reflection
point. As already mentioned, our interest is in a reflection point distinct from the beam
source and the rotation axis.

In the interaction region, the two beams interact with each other, making the Reynolds
stress of order ε2E−1/3. Simple expressions for the Reynolds stress can be obtained using
(2.17a)–(2.17d) and (2.28). As expected, the Reynolds stress is composed of a steady and
a second-harmonic part:

N = N (0) +
(
N (2)e−2iωt + c.c.

)
, (2.29)

where

N (0) = v · ∇

⎛

⎜⎜⎜⎜⎝

v∗
r

v∗
φ

v∗
z

b∗

⎞

⎟⎟⎟⎟⎠
+ c.c.; N (2) = v · ∇

⎛

⎜⎝

vr
vφ

vz
b

⎞

⎟⎠ , (2.30a,b)

the superscript ∗ denoting the complex conjugate. The expressions of N (0) =
ε2E−1/3(N (0)

0 + E1/6N (0)
1 + · · · ) and N (2) = ε2E−1/3N (2)

0 + · · · are given in appendix B.

2.5. Notation
We have introduced a number of notations that we shall use in the rest of the paper.

Whereas the harmonic solution is denoted without a superscript, the second-harmonic
correction as well as the amplitude of the terms oscillating at a frequency 2ω, such as the
second-harmonic part of the Reynolds stress N (2), will be denoted with the superscript
(2). The meanflow correction and the steady terms such as N (0) will always be indicated
by the superscript (0).

The subscripts will be of three types. The letters and special characters ⊥ and ∥ indicate
the system of coordinates used for the velocity components. Three different systems of
coordinates are used: (r,φ, z) for the global cylindrical coordinate system, (xt,φ, xn)
for the boundary coordinate system and (x∥,φ, x⊥) for the beam-associated coordinate
system (see figure 2a and appendix A for the relations between the coordinate systems).
In this last case, the superscripts (i), (r), (2) or (0) indicate whether it corresponds to the
incident, reflected, second-harmonic or steady beam. For the Reynolds stress, the subscript
b indicates the fourth component of the vector N .

The first subscript number is associated with the order of the expansion. The subscript 0
always indicates the leading-order expression; larger numbers correspond to higher-order
terms ordered in decreasing amplitude order. A second subscript number 0 or ∞ will
exceptionally be used to indicate the value taken as one of the variables goes to zero or
infinity.

The symbols placed above the characters correspond to the regions where the solution
is considered:

(i) tilde (˜) for the interaction region;
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Reflection of oscillating internal shear layers 899 A21-11

(ii) overbar (¯) for the viscous boundary layer;
(iii) check (ˇ) for the E4/9 viscous layer; and
(iv) without symbol for the outer region, that is, in a beam region far from the interaction

region.

For the spatial variables, the symbol will imply a particular rescaling with respect to
the global outer variable, by E1/3 in the interaction region (i.e. x̃n = xn/E1/3, r̃ = (r −
rc)/E1/3, etc.), by E1/2 in the viscous boundary layer for the normal variable (x̄ = xn/E1/2),
by E4/9 in the E4/9 viscous layer for the normal variable (x̌n = xn/E1/4 = ř = (r − rc)/E4/9

for a vertical boundary).

3. Second-harmonic correction

The second-harmonic Reynolds stress creates a second-harmonic correction
X (2) = Re((v(2), b(2), p(2))e−2iωt) that can be written in the interaction region as

v(2)
r ∼ ε2E−1/3ṽ

(2)
0r (r̃, z̃), (3.1a)

v
(2)
φ ∼ ε2E−1/3ṽ

(2)
0φ (r̃, z̃), (3.1b)

v(2)
z ∼ ε2E−1/3ṽ

(2)
0z (r̃, z̃), (3.1c)

b(2) ∼ ε2E−1/3b̃(2)
0 (r̃, z̃), (3.1d)

p(2) ∼ ε2p̃(2)
0 (r̃, z̃), (3.1e)

where they satisfy

−2iωṽ
(2)
0r − 2Ω ṽ

(2)
0φ + ∂ p̃(2)

0

∂ r̃
= −Ñ (2)

0r , (3.2a)

−2iωṽ
(2)
0φ + 2Ω ṽ

(2)
0r = −Ñ (2)

0φ , (3.2b)

−2iωṽ
(2)
0z + b̃(2)

0 + ∂ p̃(2)
0

∂ z̃
= −Ñ (2)

0z , (3.2c)

−2iωb̃(2)
0 − N2ṽ

(2)
0z = −Ñ (2)

0b , (3.2d)

∂ ṽ
(2)
0r

∂ r̃
+

∂ ṽ
(2)
0z

∂ z̃
= 0. (3.2e)

These equations do not contain any viscous terms, which all come at higher orders. As
seen below, these equations with a non-penetrability condition on the boundary completely
define the leading order of the second-harmonic correction. This will allow us to say that
the generation process of the second-harmonic correction is essentially inviscid.

The system (3.2) can be manipulated to give

(N2 − 4ω2)
∂ ṽ

(2)
0z

∂ r̃
− (4Ω2 − 4ω2)

∂ ṽ
(2)
0r

∂ z̃
= −2iω

∂2(h̃(r)
µ h̃(i)

µ )

∂ r̃∂ z̃
≡ A(2). (3.3)

Using (3.2e), we then get for ṽ
(2)
0r and ṽ

(2)
0z :

L(2)ṽ
(2)
0r = −∂A(2)

∂ z̃
, L(2)ṽ

(2)
0z = ∂A(2)

∂ r̃
, (3.4a,b)
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899 A21-12 S. Le Dizès

with

L(2) = (N2 − 4ω2)
∂2

∂ r̃2
+ (4Ω2 − 4ω2)

∂2

∂ z̃2
, (3.5)

which also give for the tangential and normal components of the velocity:

L(2)ṽ
(2)
0t = −∂A(2)

∂ x̃n
, L(2)ṽ

(2)
0n = ∂A(2)

∂ x̃t
, (3.6a,b)

where L(2) can also be written as

L(2) = (N2 sin2 α + 4Ω2 cos2 α − 4ω2)
∂2

∂ x̃2
n

+ (N2 cos2 α + 4Ω2 sin2 α − 4ω2)
∂2

∂ x̃2
t

− sin 2α(N2 − 4Ω2)
∂2

∂ x̃t∂ x̃n
. (3.7)

When 2ω is not within 2Ω and N, (3.4a,b) and (3.6a,b) are elliptic equations:
oscillations with respect to one variable are evanescent with respect to the other. In that
case, we do not expect propagation outside the interaction region. The second-harmonic
correction is localized in that region.

The interesting case is when 2ω is within 2Ω and N. In other words, the
second-harmonic frequency corresponds to an inertia–gravity frequency. In that case, there
exists an angle θ2 (between 0 and π/2) that satisfies

4ω2 = N2 sin2 θ2 + 4Ω2 cos2 θ2, (3.8)

which corresponds to a direction of propagation of perturbations of frequency 2ω. The
other directions of propagation are π − θ2, π + θ2 and −θ2. This angle can be used to
write (3.7) as

L(2) = (N2 − 4Ω2)

(
sin(α + θ2)

∂

∂ x̃n
− cos(α + θ2)

∂

∂ x̃t

)

×
(

sin(α − θ2)
∂

∂ x̃n
− cos(α − θ2)

∂

∂ x̃t

)
. (3.9)

As shown by Tabaei et al. (2005), a general solution to (3.6a,b) can then be obtained
using Fourier transforms. For ṽ

(2)
0n , we get

ṽ
(2)
0n =

∫ +∞

−∞
exp (ik (x̃t + cot (α − θ2) x̃n))

×
(

A(k) +
∫ x̃n

+∞
exp(−ik cot(α + θ2)s)F(k, s) ds

)
dk

+
∫ +∞

−∞
exp (ik (x̃t + cot(α + θ2)x̃n))

×
(

B(k) −
∫ x̃n

+∞
exp(−ik cot(α − θ2)s)F(k, s) ds

)
dk, (3.10)
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Reflection of oscillating internal shear layers 899 A21-13

where F(k, x̃n) is

F(k, x̃n) = 1
2 sin 2θ2(N2 − 4Ω2)

∫ +∞

−∞
e−ikx̃tA(2) dx̃t. (3.11)

The unknown functions A(k) and B(k) are obtained by applying boundary conditions at
x̃n = 0 and x̃n = ∞. It is first important to note that owing to the special form of A(2)

given in (3.3), the function F satisfies the following property:

F(k, x̃n) = 0 (3.12)

for ϵok < 0. This property was proved in a general setting by Tabaei et al. (2005).
The condition at infinity is a condition of radiation: as x̃n goes to ∞, the solution should

match an outgoing wave packet. This condition can be analysed by adding viscous effects
along the direction of propagation. Outgoing wave packets can be written as (2.10), which
gives for a perturbation oscillating at 2ω:

V (2)
∥ = 1√

r

∫ +∞

0
G(2)(k) exp

(
iϵokx (2)

⊥ /Λ(2)/E1/3
)

exp
(
−k3x (2)

∥

)
dk, (3.13)

with

Λ(2) =
∣∣∣∣
N2fc sin2 θ2(1 + Pr−1) + 8Ω2fc cos2 θ2

4 sin θ2 cos θ2(4Ω2 − N2)ω

∣∣∣∣
1/3

. (3.14)

For large x̃n , expression (3.10) reduces to

ṽ
(2)
0n =

∫ +∞

−∞
exp (ik (x̃t + cot(α − θ2)x̃n)) A(k) dk

+
∫ +∞

−∞
exp (ik (x̃t + cot(α + θ2)x̃n)) B(k) dk. (3.15)

Since x (2)
⊥ = sin(α − θ2)(xt + cot(α − θ2)xn) for a wave packet propagating in the

direction θ2, the first term matches an outgoing wave packet of the form (3.13) propagating
in the direction θ2 if α < θ2 (respectively π + θ2 if α > θ2) only if

A(k) = 0, (3.16)

for ϵok > 0. Similarly, the second term matches an outgoing wave packet propagating in
the direction π − θ2 if α < π − θ2 (respectively −θ2 if α > π − θ2) only if

B(k) = 0, (3.17)

for ϵok < 0.
The condition of non-penetrability ṽ

(2)
0n (x̃n = 0) = 0 gives a second condition on A(k)

and B(k). Using (3.12), (3.16) and (3.17), we immediately get from (3.10)

A(k) = 0, (3.18a)

for ϵok < 0,

B(k) =
∫ +∞

0
(exp(−ik cot(α + θ2)s) − exp(−ik cot(α − θ2)s))F(k, s) ds, (3.18b)

for ϵok > 0. The functions A(k) and B(k) are thus fully determined.
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899 A21-14 S. Le Dizès

(a) (b)

(c) (d )

θ

θ

–θ2

E1/3

E1/2

E1/3

E1/3

E1/3

π  – θ2

π  – θ2

E1/3

E0

α

α α

α

θ
θ

FIGURE 3. Regions where the second-harmonic correction is O(ε2E−1/3). Outer region: light
grey; interaction region: grey; viscous boundary layer: dark grey. The red arrows indicate the
harmonic beam. Here θ < α < π − θ . (a) 2ω > max(N, 2Ω). No second-harmonic beam: the
second-harmonic correction is mainly confined in the interaction region and in the viscous
boundary layer. (b–d) 2ω < max(N, 2Ω). Second-harmonic beam: the second-harmonic
correction extends in an outer region. (b) N > 2Ω and α > π − θ2. The beam propagates in
the direction −θ2. (c) N > 2Ω and α < π − θ2. The beam propagates in the direction π − θ2.
(d) N < 2Ω . The beam propagates in the direction π − θ2.

As x̃n → +∞, expression (3.10) of ṽ
(2)
0n then reduces to

ṽ
(2)
0n ∼ ϵo

∫ +∞

0
exp(ikϵo(x̃t + cot(α + θ2)x̃n))B(ϵok) dk. (3.19)

Far from the interaction region, the solution is therefore propagating away in the direction
π − θ2 (or −θ2 if π − θ2 < α) and given by (3.13) with

G(2)(k) = ε2E−1/3 ϵo

Λ(2)
B

(
kϵo| sin(α + θ2)|

Λ(2)

)
ek3

, (3.20)

where B(k) is defined by (3.17), (3.18), (3.11) and (3.3), assuming x (2)
∥ = 1 at the generation

point Ic. The different situations are illustrated in figure 3.
Note that contrarily to the reflected harmonic wave beam, the second-harmonic wave

beam does not possess a priori a self-similar structure.
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Reflection of oscillating internal shear layers 899 A21-15

(a) (b) (c)

(e)(d )

θ

θ

E1/3

E1/3

E1/2

E4/9

E1/2

E1/2

E1/3

E4/9

E1/3

E1/3

E1/3

E1/3

E1/3

E0

E1/3

E1/3
E1/3

π /2

E1/3

E0

α

α

α

θ

FIGURE 4. Regions where the meanflow correction is O(ε2E−1/3) (grey regions) or O(ε2E−1/6)

(hatched regions). The different levels of grey are associated with different regions (from light to
dark: interaction region, E4/9 viscous layer and viscous boundary layer). (a) Ω /= 0, N /= 0; (b)
Ω /= 0, N = 0, α /= π/2; (c) Ω /= 0, N = 0, α = π/2; (d) Ω = 0, N /= 0, α /= 0; (e) Ω = 0,
N /= 0, α = 0.

In this section, we have obtained the leading-order expression of the second-harmonic
correction in the interaction region and in the beam where it propagates. In the viscous
boundary layer where viscous effects become important, the Reynolds stress takes a
different form and the no-slip boundary condition has to be applied. As for the harmonic
solution, solving this region is needed, if one is interested in finding the first O(E1/6)
viscous correction to the solution obtained above.

4. Meanflow correction

The meanflow correction corresponds to a perturbation with a frequency zero. In a
stratified and rotating fluid, this frequency is outside the inertia–gravity frequency range,
so we do not expect propagation. When N or Ω vanishes, this is no longer the case: the
frequency zero is within the inertia–gravity frequency range. The perturbation propagates
horizontally when Ω = 0 and vertically when N = 0. We therefore expect different
situations when N or Ω vanishes, and when the surface is vertical or horizontal in those
cases. What we get is illustrated in figure 4. The goal of the present section is to justify the
scaling shown in this figure and provide the structure of the meanflow correction in the
different regions for each case.

4.1. Generic configuration: rotating and stratified fluid (N /= 0, Ω /= 0)
In this section, we consider the generic configuration where neither N nor Ω vanishes.
The main contribution is obtained in the interaction region. In this region, the meanflow
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899 A21-16 S. Le Dizès

correction is found to be given by the following ansatz:

v(0)
r = ε2E−1/3

(
ṽ

(0)
0r (r̃, z̃) + E1/6ṽ

(0)
1r (r̃, z̃) + E1/3ṽ

(0)
2r (r̃, z̃)

)
, (4.1a)

v
(0)
φ = ε2E−1/3

(
ṽ

(0)
0φ (r̃, z̃) + E1/6ṽ

(0)
1φ (r̃, z̃) + E1/3ṽ

(0)
2φ (r̃, z̃)

)
, (4.1b)

v(0)
z = ε2E−1/3

(
ṽ

(0)
0z (r̃, z̃) + E1/6ṽ

(0)
1z (r̃, z̃) + E1/3ṽ

(0)
2z (r̃, z̃)

)
, (4.1c)

b(0) = ε2E−1/3
(

b̃(0)
0 (r̃, z̃) + E1/6b̃(0)

1 (r̃, z̃) + E1/3b̃(0)
2 (r̃, z̃)

)
, (4.1d)

p(0) = ε2p̃(0)
0 (r̃, z̃), (4.1e)

where r̃ and z̃ are the local variables. Inserting (4.1) in (2.1) using expression (B 2) for the
Reynolds stress, the meanflow amplitudes are found to satisfy the equations

−2Ω ṽ
(0)
0φ + ∂ p̃(0)

0

∂ r̃
= −Ñ (0)

0r , (4.2a)

2Ω ṽ
(0)
0r = −Ñ (0)

0φ , (4.2b)

b̃(0)
0 + ∂ p̃(0)

0

∂ z̃
= −Ñ (0)

0z , (4.2c)

−N2ṽ
(0)
0z = −Ñ (0)

0b , (4.2d)

∂ ṽ
(0)
0r

∂ r̃
+

∂ ṽ
(0)
0z

∂ z̃
= 0. (4.2e)

Equations (4.2b) and (4.2d) readily give ṽ
(0)
0r and ṽ

(0)
0z . These expressions are compatible

with (4.2e) which is automatically satisfied because of (B 4a). They give normal and
tangential velocities as

ṽ
(0)
0n = sin α

Ñ (0)
0φ

2Ω
+ cos α

Ñ (0)
0b

N2
= −2 sin 2θ

∂

∂ x̃t
Im

(
h̃(r)

µ h̃(i)∗
µ

)
, (4.3a)

ṽ
(0)
0t = − cos α

Ñ (0)
0φ

2Ω
+ sin α

Ñ (0)
0b

N2
= −2 sin 2θ

∂

∂ x̃n
Im

(
h̃(r)

µ h̃(i)∗
µ

)
. (4.3b)

Using (2.19), it is immediately seen that ṽ
(0)
0n (x̃n = 0) = 0. The condition of

non-penetrability is therefore automatically satisfied at leading order. The first-order
corrections ṽ

(0)
1r and ṽ

(0)
1z are also directly obtained from the governing equations at the

next order:
2Ω ṽ

(0)
1r = −Ñ (0)

1φ , −N2ṽ
(0)
1z = −Ñ (0)

1b , (4.4a,b)
which gives

ṽ
(0)
1n = −2 sin 2θ

∂

∂ x̃t
Im

(
C∞

1n h̃(r)
µ+1h̃(i)∗

µ

)
, (4.5a)

ṽ
(0)
1t = −2 sin 2θ

∂

∂ x̃n
Im

(
C∞

1n h̃(r)
µ+1h̃(i)∗

µ

)
. (4.5b)

In contrast to ṽ
(0)
0n , ṽ

(0)
1n does not cancel as x̃n → 0.
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Reflection of oscillating internal shear layers 899 A21-17

Equations (4.2a) and (4.2c) are not sufficient to determine the three other amplitudes
ṽ

(0)
0φ , b̃(0)

0 and p̃(0)
0 . For this purpose, one should consider the governing equations at the

third order:

2Ω ṽ
(0)
2r − ∇̄2ṽ

(0)
0φ = −Ñ (0)

2φ , (4.6a)

−N2ṽ
(0)
2z − 1

Pr
∇̄2b̃(0)

0 = −Ñ (0)
2b , (4.6b)

∂ ṽ
(0)
2r

∂ r̃
+

∂ ṽ
(0)
2z

∂ z̃
+ ṽ

(0)
0r

rc
= 0, (4.6c)

where Ñ (0)
2φ and Ñ (0)

2b are second-order corrections to the steady Reynolds stress. This
system gives the missing equation by plugging the expressions of ṽ

(0)
2r and ṽ

(0)
2z obtained

from the first two equations into the third one. If we then replace ṽ
(0)
0φ and b̃(0)

0 by
their expression in terms of p̃(0)

0 using (4.2a) and (4.2c), we obtain a non-homogeneous
fourth-order equation for p̃(0)

0 of the form
(

1
4Ω2

∂2

∂ r̃2
+ 1

N2Pr
∂2

∂ z̃2

)(
∂2

∂ r̃2
+ ∂2

∂ z̃2

)
p̃(0)

0 = M̃(r̃, z̃). (4.7)

The function M̃ can be expressed in terms of the components of Ñ (0)
0 , Ñ (0)

1 and Ñ (0)
2 .

We shall not provide its expression. For the present analysis, it is only important to know
that M̃ is a function localized in the interaction region (i.e. |M̃| → 0 exponentially fast
as r̃2 + z̃2 → ∞). Solutions to (4.7) localized in the interaction region therefore exist. The
solution is fully determined upon prescribing ∂r̃ p̃

(0)
0 and ∂z̃p̃

(0)
0 at the boundary x̃n = 0. As

shown in appendix C, this last step can be made by applying a condition of matching with
the solution in the viscous boundary layer.

To summarize this section, we have seen that the radial and axial components are
directly forced by the azimuthal and buoyancy component of the Reynolds stress which
is of order ε2E−1/3 in the interaction region. The azimuthal velocity and the buoyancy turn
out to be also O(ε2E−1/3) but they depend on higher corrections of the Reynolds stress and
also on the solution in the viscous boundary layer. Velocity components and buoyancy
are all found to be localized in the interaction region. This property is also verified by the
first-order meanflow correction. This guarantees that no meanflow correction is generated
outside the interaction region (at least up to O(ε2) terms).

As we shall see in the next sections, a different conclusion is reached when either N or
Ω cancels.

4.2. Non-stratified case (N = 0)
In the non-stratified case, the flow is characterized by its velocity and pressure field only
and we have ω = 2Ω cos θ and L2

d = ν/(2Ω sin θ). The meanflow correction depends on
whether the boundary is vertical or not.

4.2.1. Non-vertical boundary (α /= π/2)
When α /= π/2, in the interaction region, the meanflow correction is still given by an

ansatz of the form (4.1) with N = 0. It follows that (4.2) applies. The previous expressions
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899 A21-18 S. Le Dizès

for ṽ
(0)
0r and ṽ

(0)
0z are still solutions of the problem, and are such that ṽ

(0)
0n vanishes on the

boundary. However, the pressure p̃(0)
0 and the azimuthal velocity ṽ

(0)
0φ are now directly

obtained from (4.2a) and (4.2c) because b̃(0) = 0. We then obtain from these equations

p̃(0)
0 = −4 sin2 θRe

(
h̃(r)

µ h̃(i)∗
µ

)
+ F(r̃), (4.8a)

ṽ
(0)
0φ = − 2

Ω

∂

∂ r̃
Re

(
h̃(r)

µ h̃(i)∗
µ

)
+ 1

2Ω

∂F
∂ r̃

, (4.8b)

where F(r̃) is an unknown function. The function F is obtained by considering the outer
region |z − zc| = O(1), |r − rc| = O(E1/3) where a meanflow could a priori be created. In
this region, the Reynolds stress is small and we expect the solution to be a homogeneous
solution of the governing equations. Such a solution is given by an ansatz of the form
(E1/3u(0), v(0), w(0), E1/3p(0)) and satisfies the homogeneous equations

−2Ωv(0) + ∂p(0)

∂ r̃
= 0, (4.9a)

2Ωu(0) − ∂2v(0)

∂ r̃2
= 0, (4.9b)

∂p(0)

∂z
− ∂2w(0)

∂ r̃2
= 0, (4.9c)

∂u(0)

∂ r̃
+ ∂w(0)

∂z
= 0. (4.9d)

This system leads to the following equation for p(0):

4Ω2 ∂2p(0)

∂z2
+ ∂6p(0)

∂ r̃6
= 0. (4.10)

Using Fourier transform in r̃, and requiring the solution to vanish far from the boundary,
that is as z → −∞ assuming α > π/2, we get for p(0)

p(0) =
∫ ∞

−∞
P(k) exp

(
|k|3(z − zc)/(2Ω)

)
eikr̃ dk. (4.11)

The other components can all be expressed in terms of P(k):

u(0) =
∫ ∞

−∞
ik3P(k)/(2Ω) exp

(
|k|3(z − zc)/(2Ω)

)
eikr̃ dk, (4.12a)

v(0) = −
∫ ∞

−∞
ikP(k)/(2Ω) exp

(
|k|3(z − zc)/(2Ω)

)
eikr̃ dk, (4.12b)

w(0) =
∫ ∞

−∞
|k|P(k)/(2Ω) exp

(
|k|3(z − zc)/(2Ω)

)
eikr̃ dk. (4.12c)

As these expressions should match the forced solution in the interaction region, it is
immediate that F(r̃) = 0 and that the forced solution does not excite any outer meanflow
at the order ε2E−1/3. The meanflow in this region is created at the next order and is

�)
)C

E�
��

7B
� B

D:
��

� 
��

��
� �

#
 �

��
� 

	�
	

/
BI

A"
B4

78
7�

�D
B#

��
))

CE
���

I
I

I
 6

4#
5D

�7
:8

 B
D:

�6
BD

8 
�1A

)8
DA

4)
�B

A4
"�3

84
6)

BD
�2

�.
E�

6E
��

8A
6�

#
4D

!�
0-

C8
D�

#
8A

)E
��B

A�
��

�,
*:

��
��

��
4)

��
�

��
��


�
�E

*5
 8

6)
�)B

�)�
8�

.4
#

5D
�7

:8
�.

BD
8�

)8
D#

E�
B�

�*
E8

��4
+4

�"4
5"

8�
4)

��
))

CE
���

I
I

I
 6

4#
5D

�7
:8

 B
D:

�6
BD

8�
)8

D#
E 

https://doi.org/10.1017/jfm.2020.464
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Reflection of oscillating internal shear layers 899 A21-19

such that P(k) = ε2E−1/6P1(k). To obtain P1(k), we must consider the solution in the
viscous boundary layer and the forced solution in the interaction region at the next order.
The viscous boundary layer solution is given in appendix C Equations (C 1a), (C 1b),
(C 1c), (C 5), (C 7) and (C 10) together with (C 6) still apply when N = 0. However, these
expressions do not fully define the solution. A second equation for the functions at and
bt is missing. Contrarily to the case N /= 0, this equation is obtained by the condition
of matching of the azimuthal velocity component. In the viscous boundary layer, the
azimuthal velocity can be written as

v̄
(0)
0φ =

∫ x̄n

0

∫ s

+∞

(
2Ω cos α ū(0)

t (x̃t, x) + N̄ (0)
0φ (x̃t, x)

)
dx ds

+
at(1 − exp

(
(−1)3/4λx̄n)

)

iλ2
−

bt(1 − exp
(
(−1)5/4λx̄n)

)

iλ2
. (4.13)

In the interaction region, this component is given by (4.1b) and (4.8b) with F = 0. The
condition of matching then reads

− 2
Ω

∂

∂ r̃
Re

(
h̃(r)

µ h̃(i)∗
µ

) ∣∣∣∣
x̃n=0

=
∫ +∞

0

∫ s

+∞

(
2Ω cos α ū(0)

t + N̄ (0)
0φ

)
dx ds − i

λ2
(at − bt).

(4.14)

This is the second equation that fully determines the solution in the viscous boundary
layer. The weak meanflow that is created in the outer region is obtained by matching the
normal velocity. The two first orders of the solution in the interaction region are needed
to perform such a matching. By collecting the forced solution at the first and second order
given by (4.3a) and (4.5a), respectively, and an O(ε2E−1/6) homogeneous solution of the
form (4.12) that gives a normal velocity component in the outer region

v(0)
n = ε2E−1/6 cos α

2Ω

∫ +∞

−∞
|k|P1(k) exp

(
|k|3(z − zc)/(2Ω)

)
eikr̃ dk, (4.15)

we obtain, by matching normal velocities, the condition

−
∫ ∞

0
∂x̃t ū

(0)
t dx̄n + a′

t − ib′
t

(−1)3/4λ
= ṽ

(0)
1n |x̃n=0 + cos α

2Ω

∫ +∞

−∞
|k|P1(k)eikr̃ dk. (4.16)

This condition gives the function P1(k) that defines the homogeneous solution in the outer
region. In the outer region, we therefore expect an axial velocity and an azimuthal velocity
of order ε2E−1/6. The different regions for this case are summarized in figure 4(b).

4.2.2. Vertical boundary (α = π/2)
This case requires a special treatment because vertical boundaries correspond to critical

boundaries for meanflow corrections in a non-stratified fluid. In the interaction region, the
forced solution is unchanged and is still given by (4.1a)–(4.1d) with N = 0 and

ṽ
(0)
0r = 2 sin 2θ

∂

∂ z̃
Im

(
h̃(r)

µ h̃(i)∗
µ

)
, (4.17a)
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899 A21-20 S. Le Dizès

ṽ
(0)
0φ = − 2

Ω

∂

∂ r̃
Re

(
h̃(r)

µ h̃(i)∗
µ

)
, (4.17b)

ṽ
(0)
0z = 2 sin 2θ

∂

∂ r̃
Im

(
h̃(r)

µ h̃(i)∗
µ

)
, (4.17c)

p̃(0)
0 = −4 sin2 θRe

(
h̃(r)

µ h̃(i)∗
µ

)
. (4.17d)

The difference appears at higher order and close to the boundary owing to a change of
nature of the viscous boundary layer solution (e.g. λ = 0 in (C 5) when α = π/2). A larger
viscous layer of width O(E4/9) appears close to the boundary. To find the solution in this
layer, we introduce the new boundary layer variable ř = (r − rc)/E4/9 and the ansatz

v(0)
r = ε2E−2/9

(
∂r̃ṽ

(0)
0r |r̃=0 ř + v̌

(0)
0r (ř, z̃)

)
, (4.18a)

v
(0)
φ = ε2E−1/3

(
ṽ

(0)
0φ |r̃=0 ,+v̌

(0)
0φ (ř, z̃)

)
, (4.18b)

v(0)
z = ε2E−1/3

(
ṽ

(0)
0z |r̃=0 ,+v̌

(0)
0z (ř, z̃)

)
, (4.18c)

p(0) = ε2
(

p̃(0)
0 |r̃=0 + E1/9(∂r̃ p̃

(0)
0 |r̃=0 ř + p̌(0)

1 (ř, z̃)
)

, (4.18d)

where the functions v̌
(0)
0r , v̌

(0)
0φ , v̌

(0)
0z and p̌(0)

1 vanish as ř → −∞ such that the matching with
the interaction region is guaranteed. We obtain the system

−2Ω v̌
(0)
0φ + ∂ p̌(0)

1

∂ ř
= 0, (4.19a)

2Ω v̌
(0)
0r −

∂2v̌
(0)
0φ

∂ ř2
= 0, (4.19b)

∂ p̌(0)
1

∂ z̃
−

∂2v̌
(0)
0z

∂ ř2
= 0, (4.19c)

∂ v̌
(0)
0r

∂ ř
+

∂ v̌
(0)
0z

∂ z̃
= 0, (4.19d)

which gives

∂6p̌(0)
1

∂ ř6
+ 4Ω2 ∂2p̌(0)

1

∂ z̃2
= 0. (4.20)

Note that this equation is similar to (4.10) in the outer region. When α = π/2, the E4/9

viscous layer thus plays the same role as the outer region. Here, because the boundary
corresponds to ř = 0, it is convenient to integrate this equation using Fourier transform in
z̃. It leads to

p̌(0)
1 =

∫ +∞

−∞

(
a1(k)e−α1 ř + a2(k)e−α2 ř + a3(k)e−α3 ř) eikz̃ dk, (4.21)
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where αj, j = 1, 2, 3, are the three roots of α6
j = 4Ω2k2 with a negative real part (such that

p̌(0)
1 does vanish as ř → −∞). The other components are then given by

v̌
(0)
0r = −

∫ +∞

−∞

⎛

⎝
3∑

j=1

α3
j aj(k)
4Ω2

e−αj ř

⎞

⎠ eikz̃ dk, (4.22a)

v̌
(0)
0φ = −

∫ +∞

−∞

⎛

⎝
3∑

j=1

αjaj(k)
2Ω

e−αj ř

⎞

⎠ eikz̃ dk, (4.22b)

v̌
(0)
0z =

∫ +∞

−∞

⎛

⎝
3∑

j=1

ikaj(k)
α2

j
e−αj ř

⎞

⎠ eikz̃ dk. (4.22c)

The functions aj, j = 1, 2, 3 are obtained by matching this solution with the solution
in the viscous boundary layer. In the viscous boundary layer, the solution expands, using
r̄ = r̃/E1/6 = ř/E1/18, as

v(0)
r = ε2E−1/6v̄

(0)
0r (r̄, z̃), (4.23a)

v
(0)
φ = ε2E−1/3v̄

(0)
0φ (r̄, z̃), (4.23b)

v(0)
z = ε2E−1/3v̄

(0)
0z (r̄, z̃), (4.23c)

p(0) = ε2
(

p̄(0)
0 (z̃) + E1/6p̄(0)

1 (r̄, z̃)
)

, (4.23d)

and satisfies

−2Ω v̄
(0)
0φ + ∂ p̄(0)

1

∂ r̄
= 0, (4.24a)

−
∂2v̄

(0)
0z

∂ r̄2
+ ∂ p̄(0)

0

∂ z̃
= −Ñ (0)

0z |r̃=0 − N̄ (0)
0z , (4.24b)

−
∂2v̄

(0)
0φ

∂ r̄2
= −N̄ (0)

0φ , (4.24c)

∂ v̄
(0)
0r

∂ r̄
+

∂ v̄
(0)
0z

∂ z̃
= 0. (4.24d)

It follows, using p̄(0)
0 = p̃(0)

0 |r̃=0 and the no-slip condition on the boundary, that

v̄
(0)
0φ =

∫ r̄

0

∫ s

+∞
N̄ (0)

0φ (x, z̃) dx ds, (4.25a)

v̄
(0)
0z =

∫ r̄

0

∫ s

+∞
N̄ (0)

0z (x, z̃) dx ds, (4.25b)

which then gives

v̄
(0)
0r = −

∫ r̄

0
∂z̃v̄

(0)
0z (x, z̃) dx . (4.26)
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899 A21-22 S. Le Dizès

The matching of the three velocity components between the viscous boundary layer and
the E4/9 viscous layer gives

−
∫ +∞

−∞

⎛

⎝
3∑

j=1

α3
j aj(k)
4Ω2

⎞

⎠ eikz̃ dk = 0, (4.27a)

−
∫ +∞

−∞

⎛

⎝
3∑

j=1

αjaj(k)
2Ω

⎞

⎠ eikz̃ dk + ṽ
(0)
0φ |r̃=0 =

∫ ∞

0

∫ s

+∞
N̄ (0)

0φ (x, z̃) dx ds, (4.27b)

∫ +∞

−∞

⎛

⎝
3∑

j=1

ikaj(k)
α2

j
e−αj ř

⎞

⎠ eikz̃ dk + ṽ
(0)
0z |r̃=0 =

∫ ∞

0

∫ s

+∞
N̄ (0)

0z (x, z̃) dx ds. (4.27c)

These three equations permit one to obtain the functions aj, j = 1, 2, 3 and therefore the
solution in the E4/9 viscous layer. As the solution in the interaction region, this solution
vanishes as |z̃| → ∞. No solution is therefore created in the outer region for N = 0 when
the boundary is vertical. The different regions where the meanflow correction is important
are summarized in figure 4(c).

4.3. Non-rotating case (Ω = 0)

This case is similar to the case N = 0, except that critical surfaces for the meanflow
correction are now horizontal surfaces. We should then consider the case α = 0 separately.
Both cases can be analysed in exactly the same way as for N = 0. The characteristic
regions defining the solution for Ω = 0 are shown in figure 4(d,e).

5. Conclusion

In this work, we have analysed the nonlinear corrections generated by the reflection of
a thin axisymmetric beam of frequency ω on a solid axisymmetric surface. Although we
have focused on self-similar beams emitted by a localized source, the analysis and the
scaling remain the same for any other viscous beam of width E1/3. As also mentioned in
§ 2, the same analysis can be performed for a thin two-dimensional beam impacting a solid
planar surface. In that case, the 1/

√
r factor of the similarity solution (2.3) disappears

and everything is identical upon replacing r by x and φ by y, the only exception being
equations (4.6a)–(4.6c) where some curvature terms are present.

As expected, we have shown that a second-harmonic correction and a steady correction
are generated in the reflection process. However, both the structure and the scaling of these
corrections are different. For the second-harmonic correction, the generation process is
purely inviscid. If 2ω is in the inertial range (that is between 2Ω and N), a strong beam of
amplitude ε2E−1/3 is generated. Its structure is similar to the structure obtained by Tabaei
et al. (2005) for Ω = 0. It no longer has the self-similar structure of the harmonic beam but
still has a width O(E1/3) and a persistent length O(1). This beam propagates in a particular
direction that depends on the inclination angle of the boundary and on whether N is larger
or smaller than 2Ω . The different situations are summarized in figure 3.

For the steady correction, the generation process is completely different. In the
rotating and stratified case (Ω /= 0 and N /= 0), the steady correction is as large as the
second-harmonic correction (O(ε2E−1/3)) but is confined in the interaction region (O(E1/3)
region around the reflection point). The radial and axial components of the velocity are
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Reflection of oscillating internal shear layers 899 A21-23

found to be directly forced by the Reynolds stress by an inviscid mechanism similar to
what is known for the non-rotating case (Tabaei et al. 2005) while all the other components
are generated by a more complex mechanism involving viscous effects.

A steady beam is only observed when either Ω or N vanishes. In the non-stratified case
(N = 0), this beam is a column of width O(E1/3). In the non-rotating case, it is a horizontal
layer of width O(E1/3). In both cases, the amplitude is O(ε2E−1/6), that is, smaller than the
second-harmonic beam but larger than the correction generated in the incident or reflected
beam far from the interaction region. These beams are created by the interaction of the
incident beam with the viscous correction of the reflected beam. When the boundary is
vertical for the non-stratified case, or horizontal for the non-rotating case, the beam is
not observed. However, a thickening of the viscous boundary layer to O(E4/9) is observed
close the reflection point. The different configurations for the meanflow correction are
summarized in figure 4.

In the present paper, we have considered an axisymmetric beam impacting an
axisymmetric surface. It is worth mentioning that a similar analysis can be performed if the
beam exhibits a different azimuthal symmetry, for instance an m = 1 azimuthal symmetry
as in the case of precession or an m = 2 azimuthal symmetry as for a tidal forcing (Le Bars
et al. 2015). In those cases, the phase factor associated with the azimuthal symmetry is
passive: the second-harmonic correction exhibits a 2m azimuthal symmetry if the incident
beam has an m azimuthal symmetry, and the meanflow correction remains axisymmetric.
The same conclusion is true for a two-dimensional beam impacting a two-dimensional
surface: the beam can exhibit a three-dimensional modulation with an O(1) wavenumber
without affecting the analysis. In that case, a meanflow correction can indeed be generated
during the propagation of the incident beam as shown by Bordes et al. (2012) and Kataoka
& Akylas (2015) for a purely stratified fluid, but this meanflow correction remains of order
ε2 and thus smaller than the one computed here.

As both parameters E and ε are small, one can naturally address the question of
their relative smallness. By performing a weakly nonlinear analysis, we have implicitly
assumed that the nonlinear corrections remain small, and smaller than the magnitude of
the harmonic solution. This requires ε2E−1/3 ≪ ε. Actually, the condition of validity of
the analysis is stricter. Indeed, the order of the first nonlinear correction oscillating at the
frequency ω can be estimated to ε3E−2/3 in the interaction region. For the analysis to be
valid, this correction must remain smaller than the first viscous correction of order εE1/6.
The condition of validity of the weakly nonlinear analysis is then ε ≪ E5/12.

6. Comparison with existing results

Only a few studies have focused on thin viscous beams and analysed quantitatively the
scaling of the nonlinear corrections generated by the reflection of a wave beam on a solid
boundary. The most relevant studies have been performed for rotating flows in the context
of planetary applications.

Tilgner (2007) computed the meanflow generated by an oscillating tidal mode
(azimuthal wavenumber m = 2) in a spherical rotating shell (without stratification). In this
geometry, the harmonic response depends on the forcing frequency but the wave beam
tangent to the inner core at the critical latitude is generally found to be an important
feature of the harmonic solution (e.g. Rieutord & Valdettaro 2010). For ω = 0.88Ω ,
Tilgner (2007) did observe that the Reynolds stress is mainly localized along this beam,
with the largest contributions where the beam interacts with itself, that is, near the
points of reflections on the outer boundary, and where beams cross. He computed the
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899 A21-24 S. Le Dizès

meanflow correction but unfortunately used stress-free boundary conditions which makes
any comparison with the present results hazardous. Indeed, with stress-free boundary
conditions, the solutions in the viscous boundary layers completely change. This affects
the viscous correction to the reflected beam, and consequently the meanflow that is
generated. Nevertheless, assuming that the normalized harmonic mode is concentrated on
a single beam of width E1/3 and length O(1), one can still estimate the two global quantities
that Tilgner (2007) considered: a characteristic length l = (

∫
|∇ × N (0)|2 dV)−1/5 and

the kinetic energy associated with the azimuthal component of the meanflow Edr =∫
(v

(0)
φ )2 dV for a harmonic mode of normalized kinetic energy. To get a kinetic energy

equal to 1, ε should scale as E−1/6. It follows from our results that N (0) should scale
as ε2E−2/3 in a small domain of volume proportional to E2/3, which gives l ∝ E4/15,
that is, close to but different from the estimate E1/3 given by Tilgner (2007). For the
meanflow correction, we expect a scaling in ε2E−1/6 = E−1/2, localized in a vertical beam
of width E1/3. This gives Edr ∝ E−2/3. This is clearly different from the proposal in E−3/2

of Tilgner, but surprisingly not in contradiction with the value Edr ≈ 5 × 104 obtained for
this quantity for ω = 0.88 at E = 10−7.

More recently, Lin & Noir (2020) also computed the harmonic flow and the meanflow
correction generated by librating a rotating spherical shell. Interestingly, they considered
the frequency ω =

√
2Ω for which the ray trajectories, all inclined at 45◦ with respect to

the vertical, form simple patterns. In particular, the ray tangent to the inner core closes
on itself after a few reflections on the outer core. Lin & Noir (2020) did show that the
harmonic flow concentrates around this ray with a well-defined structure of width O(E1/3)
and amplitude ε = O(εlE1/12), where εl is the amplitude of libration. As this scaling
corresponds to the prediction obtained by Le Dizès & Le Bars (2017) for the similarity
solution generated by a librating sphere in an open domain, one could naturally think that
the harmonic solution of Lin & Noir (2020) may not be far from our beam solution. For
the meanflow correction, they did observe vertical localized structures of width scaling as
E1/3 at the location where the beam reflects on the outer boundary, in agreement with the
present study. Our scaling for the amplitude would give a meanflow of order ε2E−1/6 = ε2

l .
Lin & Noir (2020) observed a weak increase with E of the meanflow amplitude that
is better fitted by a law in ε2

l E−1/6. This may not be in contradiction with our analysis.
Indeed, Lin & Noir (2020) observed this scaling when the beam reflects on a boundary
that is librating. In that case, a harmonic flow stronger than the beam is therefore present in
the viscous boundary layer that could perhaps explain the enhanced meanflow generation.
Unfortunately, they did not document the much weaker meanflow that is generated when
only the inner boundary is librating.
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Appendix A. Relations between the systems of coordinates

In this work, several coordinate systems are considered in the (r, z) meridional plane (or
equivalently in the (x, z) plane):

(i) e(i)
⊥ , e(i)

∥ for the incident beam;
(ii) e(r)

⊥ , e(r)
∥ for the reflected beam; and

(iii) et, en for the boundary.
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Reflection of oscillating internal shear layers 899 A21-25

All can be expressed in terms of the vectors er and ez of the cylindrical basis. For the
situation illustrated in figure 2(a), that is, for 0 < θ < α < π − θ , we have the relations

e(i)
⊥ = − sin θ er + cos θ ez, (A 1a)

e(i)
∥ = cos θ er + sin θ ez, (A 1b)

e(r)
⊥ = sin θ er + cos θ ez, (A 1c)

e(r)
∥ = − cos θ er + sin θ ez, (A 1d)

et = cos α er + sin α ez, (A 1e)
en = sin α er − cos α ez. (A 1f )

It also useful to know the relations between the vectors associated with the beam and
those associated with the boundary:

e(i)
⊥ = sin(α − θ) et + cos(α − θ) en, (A 2a)

e(i)
∥ = cos(α − θ) et − sin(α − θ) en, (A 2b)

e(r)
⊥ = sin(α + θ) et + cos(α + θ) en, (A 2c)

e(r)
∥ = − cos(α + θ) et + sin(α + θ) en. (A 2d)

Appendix B: Reynolds stress expressions

In the interaction region, the four components of the second-harmonic Reynolds stress
can be written as N (2) ∼ ε2E−1/3Ñ (2)

0 , where

⎛

⎜⎜⎜⎜⎜⎝

Ñ (2)
0r

Ñ (2)
0φ

Ñ (2)
0z

Ñ (2)
0b

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 cos2 θ
∂(h̃(r)

µ h̃(i)
µ )

∂ r̃

−4iΩ cos2 θ

ω

∂(h̃(r)
µ h̃(i)

µ )

∂ r̃

2 sin2 θ
∂(h̃(r)

µ h̃(i)
µ )

∂ z̃

−2iN2 sin2 θ

ω

∂(h̃(r)
µ h̃(i)

µ )

∂ z̃

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B 1)

Similarly, the steady Reynolds stress expands (including O(E1/6) corrections) as N (0) =
ε2E−1/3(Ñ (0)

0 + E1/6Ñ (0)
1 + · · · ), where

⎛

⎜⎜⎜⎜⎜⎝

Ñ (0)
0r

Ñ (0)
0φ

Ñ (0)
0z

Ñ (0)
0b

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4 cos2 θ
∂Re(h̃(r)

µ h̃(i)∗
µ )

∂ r̃

−4Ω sin 2θ

ω

∂Im(h̃(r)
µ h̃(i)∗

µ )

∂ z̃

4 sin2 θ
∂Re(h̃(r)

µ h̃(i)∗
µ )

∂ z̃

−2N2 sin 2θ

ω

∂Im(h̃(r)
µ h̃(i)∗

µ )

∂ r̃

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B 2)
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899 A21-26 S. Le Dizès

and

⎛

⎜⎜⎜⎜⎜⎝

Ñ (0)
1r

Ñ (0)
1φ

Ñ (0)
1z

Ñ (0)
1b

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 cos2 θ
∂Re(C∞

1n h̃(r)
µ+1h̃(i)∗

µ )

∂ r̃

−2Ω sin 2θ

ω

∂Im(C∞
1n h̃(r)

µ+1h̃(i)∗
µ )

∂ z̃

2 sin2 θ
∂Re(C∞

1n h̃(r)
µ+1h̃(i)∗

µ )

∂ z̃

−N2 sin 2θ

ω

∂Im(C∞
1n h̃(r)

µ+1h̃(i)∗
µ )

∂ r̃

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B 3)

As above, the superscript ∗ denotes the complex conjugate.
Note in particular that

1
2Ω

∂Ñ (0)
jφ

∂ r̃
− 1

N2

∂Ñ (0)
jb

∂ z̃
= 0, (B 4a)

cos2 θ
∂Ñ (0)

jz

∂ r̃
+ sin2 θ

∂Ñ (0)
jr

∂ z̃
= 0, (B 4b)

for both j = 0 and j = 1.
The Reynolds stress has a different expression in the viscous boundary layer. The

expression of the steady Reynolds stress is useful for computing the meanflow correction
in § 4. It can be written as

N (0) = ε2E−1/3(Ñ (0)
0 |x̃n=0 + N̄ (0)

0 (x̃t, x̄n) + · · · ), (B 5)

where

N̄ (0)
0 (x̃t, x̄n) = (v̄0t∂x̃t + v̄1n∂x̄n )

⎛

⎜⎝

v̄∗
0r

v̄∗
0φ

v̄∗
0z

b̄∗
0

⎞

⎟⎠ + c.c. (B 6)

Appendix C: Meanflow correction in the viscous boundary layer

The viscous boundary layer close to the reflection point extends a distance O(E1/3)

along the boundary and a distance O(E1/2) normal to it. In this appendix, we compute the
meanflow correction in this region for a general configuration.

We introduce the boundary layer variable x̄n = (− sin α(r − rc) + cos α(z − zc))/E1/2

while keeping the local tangential variable x̃t = (cos α(r − rc) + sin α(z − zc))/E1/3. The
adequate ansatz for the meanflow correction is

v(0)
n = ε2E−1/6v̄

(0)
0n (x̃t, x̄n), (C 1a)

v(0)
t = ε2E−1/3v̄

(0)
0t (x̃t, x̄n), (C 1b)

v
(0)
φ = ε2E−1/3v̄

(0)
0φ (x̃t, x̄n), (C 1c)

b(0) = ε2E−1/3b̄(0)
0 (x̃t, x̄n), (C 1d)

p(0) = ε2(p̄(0)
0 (x̃t) + E1/6p̄(0)

1 (x̃t, x̄n)). (C 1e)
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Reflection of oscillating internal shear layers 899 A21-27

The governing equations reduce to

2Ω sin α v̄
(0)
0φ − cos α b̄(0)

0 + ∂ p̄(0)
1

∂ x̄n
= 0, (C 2a)

−2Ω cos α v̄
(0)
0φ − sin α b̄(0)

0 − ∂2v̄
(0)
0t

∂ x̄2
n

+ ∂ p̄(0)
0

∂ x̃t
= −Ñ (0)

0t |x̃n=0 − N̄ (0)
0t , (C 2b)

2Ω cos α v̄
(0)
0t −

∂2v̄
(0)
0φ

∂ x̄2
n

= −Ñ (0)
0φ |x̃n=0 − N̄ (0)

0φ , (C 2c)

−N2 sin α v̄
(0)
0t − 1

Pr
∂2b̄(0)

0

∂ x̄2
n

= −Ñ (0)
0b |x̃n=0 − N̄ (0)

0b , (C 2d)

∂ v̄
(0)
0n

∂ x̄n
+ ∂ v̄

(0)
0t

∂ x̃t
= 0, (C 2e)

where we have used the expressions (B 5) and (B 6) of the Reynolds stress. By definition,
the nonlinear terms Ñ (0)

0t |x̃n =0 , Ñ
(0)
0φ |x̃n=0 and Ñ (0)

0b |x̃n=0 are functions of x̃t only, obtained from
the expressions of the nonlinear terms in the interaction region as x̃n → 0, while N̄ (0)

0t ,
N̄ (0)

0φ and N̄ (0)
0b are functions of x̃t and x̄n that vanish as x̄n → ∞.

This system gives for v̄
(0)
0t

∂4v̄
(0)
0t

∂ x̄4
n

+
(
4Ω2 cos2 α + N2Pr sin2 α2) v̄

(0)
0t = Q̄ + Q̃|x̃n=0, (C 3)

with

Q̃|x̃n=0 = −2Ω cos α Ñ (0)
0φ |x̃n=0 − Pr sin α Ñ (0)

0b |x̃n=0, (C 4a)

Q̄ = −2Ω cos α N̄ (0)
0φ − Pr sin α N̄ (0)

0b + ∂2N̄ (0)
0t

∂ x̄2
n

. (C 4b)

A general solution that matches the solution in the interaction region as x̄n → ∞ is
obtained in the form

v̄
(0)
0t = ūt∞ + ū(0)

t + at exp((−1)3/4λx̄n) + bt exp((−1)5/4λx̄n), (C 5)

with λ = (4Ω2 cos2 α + N2Pr sin2 α2)1/4, ūt∞ = Q̃|x̃n=0/λ
4, where at(x̃t) and bt(x̃t) are

arbitrary functions and ū(0)
t (x̃t, x̄n) is a particular solution of (C 3) with only Q̄

on the right-hand side, which vanishes as x̄n goes to infinity and such that
ū(0)

t (x̄n = 0) = ∂x̄n ū(0)
t (x̄n = 0) = 0. The condition that v̄

(0)
0t vanishes at x̄n = 0 gives a first

condition on at and bt:
ūt∞ + at + bt = 0. (C 6)

The expression of v̄
(0)
0n that cancels at x̄n = 0 is obtained from (C 2e) as

v̄
(0)
0n = −(∂x̃t ūt∞)x̄n −

∫ x̄n

0
∂x̃t ū

(0)
t (x̃t, x) dx +

a′
t

(
1 − exp

(
(−1)3/4λx̄n

))

(−1)3/4λ

+
b′

t

(
1 − exp

(
(−1)5/4λx̄n

))

(−1)5/4λ
. (C 7)
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899 A21-28 S. Le Dizès

As x̄n → ∞, v̄
(0)
0t ∼ ūt∞ and v̄

(0)
0n ∼ −(∂x̃t ūt∞)x̄n . These expressions automatically match

the leading-order expressions of ṽ
(0)
0t and ṽ

(0)
0n obtained from (4.3a) and (4.3b) as x̃n → 0.

To obtain a second condition on at and bt, one then has to consider the next order. This
means that we must match the next term in the expansion of v̄

(0)
0n as x̄n → ∞ with the

first-order correction ṽ
(0)
1n of the normal velocity in the interaction region as x̃n → 0. This

gives

−
∫ ∞

0
∂x̃t ū

(0)
t dx̄n + a′

t − ib′
t

(−1)3/4λ
= ṽ

(0)
1n (x̃n = 0), (C 8)

which can be integrated once in x̃t to give, using (4.5a),

−
∫ ∞

0
ū(0)

t dx̄n + at − ibt

(−1)3/4λ
= −2 sin 2θ Im(C∞

1n h̃(r)
µ+1h̃(i)∗

µ ). (C 9)

This equation together with (C 6) allows us to get at and bt, and therefore v̄
(0)
0t and v̄

(0)
0n .

Expressions for v̄
(0)
φ and b̄(0)

0 are now deduced from v̄
(0)
0t using (C 2c) and (C 2d):

v̄
(0)
0φ =

∫ x̄n

0

∫ s

+∞

(
2Ω cos α v̄

(0)
0t (x̃t, x) + Ñ (0)

0φ |x̃n=0(x̃t) + N̄ (0)
0φ (x̃t, x)

)
dx ds, (C 10a)

b̄(0)
0 = Pr

∫ x̄n

0

∫ s

+∞

(
−N2 sin α v̄

(0)
0t (x̃t, x) + Ñ (0)

0b |x̃n=0(x̃t) + N̄ (0)
0b (x̃t, x)

)
dx ds. (C 10b)

As x̄n → ∞, these expressions must tend to the limits of ṽ
(0)
0φ and b̃(0)

0 as x̃n → 0,
respectively. Using (4.2a) and (4.2c), they therefore also provide the values of ∂r̃ p̃

(0)
0 and

∂z̃p̃
(0)
0 at x̃n = 0.

Note that if Pr = ∞ the resolution of the system (C 2) is easier. We immediately get v̄
(0)
0t

from (C 2d), then v̄
(0)
0n from (C 2e) with v̄

(0)
0n (x̄n = 0) = 0. The function v̄

(0)
0φ is still given

by (C 10a). We then get ∂r̃ p̃
(0)
0 (x̃n = 0) from (4.2a) which is the only condition needed to

solve (4.7) in that case.
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