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In rotating fluids, the viscous smoothing of inviscid singular inertial waves leads to the8
formation of internal shear layers. In previous works, we analysed the internal shear layers9
excited by a viscous forcing (longitudinal libration) in a spherical shell geometry (He et al.,10
J. Fluid Mech. 939, A3, 2022; 974, A3, 2023). We now consider the stronger inviscid forcing11
corresponding to the vertical oscillation of the inner boundary. We limit our analysis to two-12
dimensional geometries but examine three different configurations: freely-propagating wave13
beams in an unbounded domain and two wave patterns (a periodic orbit and an attractor)14
in a cylindrical shell geometry. The asymptotic structures of the internal shear layers are15
assumed to follow the similarity solution of Moore & Saffman (Phil. Trans. R. Soc. Lond.16
A, 264 (1156), 1969, 597-634) in the small viscous limit. The two undefined parameters of17
the similarity solution (singularity strength and amplitude) are derived by asymptotically18
matching the similarity solution with the inviscid solution. For each case, the derivation19
of the latter is achieved either through separation of variables combined with analytical20
continuation or the method of characteristics. Global inviscid solutions, when obtained,21
closely match numerical solutions for small Ekman numbers far from the critical lines, while22
viscous asymptotic solutions show excellent performance near those lines. The amplitude23
scalings of the internal shear layers excited by an inviscid forcing are found to be divergent as24
the Ekman number E decreases, specifically O(E−1/6) for the critical point singularity and25
O(E−1/3) for attractors, in contrast to the convergent scalings found for a viscous forcing.26

Key words:27

1. Introduction28

Inertial waves are ubiquitous in rotating fluids. They are associated with the Coriolis restoring29
force. They propagate at a fixed angle π/2−θc relative to the rotation axis that only depends on30
the inertial wave frequencyω∗ through the dispersion relationω∗ = 2Ω∗ cos θc (Ω∗ being the31
rotation rate) (Greenspan 1968). This angle is conserved when waves reflect on boundaries.32
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Owing to this property, the width of an inertial wave beam contracts or expands, depending33
on the inclination of the boundary relative to the propagation angle θc and the rotation axis34
(Phillips 1963; Le Dizès 2020). The contraction effect is responsible for the creation of35
inviscid singularities on the critical characteristics, such as the tangent lines from the critical36
points on a convex boundary (Le Dizès 2024), and the attractors inside a bounded domain37
(Ogilvie 2020). Inviscid singularities can be understood as the outcome of the hyperbolic38
character of the Poincaré equation, namely, the ability to transport singularities (Kerswell39
1995) and to form an ill-posed Cauchy problem in closed domains (Rieutord et al. 2000).40
In numerical simulations and experiments, these inviscid singularities are smoothed out41

by viscosity, giving rise to oscillatory internal shear layers around the critical characteristics42
(Kerswell 1995). These layers become the dominant feature of a global viscous solution43
when inviscid singularities are present. The internal shear layers associated with a critical44
slope singularity have been experimentally observed in both rotating (Greenspan 1968) and45
stratified (Mowbray &Rarity 1967; Zhang et al. 2007) fluids, owing to the similarity between46
the dispersion relation of inertial waves and that of internal gravity waves. Similarly in a47
bounded domain, attractors give rise to internal shear layers that have been observed in48
various configurations (Maas et al. 1997; Hazewinkel et al. 2008; Klein et al. 2014).49
The mathematical description of the internal oscillatory shear layers relies on local50

asymptotic analysis in the limit of the small Ekman number E (defined as the ratio between51
the viscous term and the Coriolis term, see below). Although different scalings have been52
identified for the width of these layers in forced and eigenvalue problems, including E1/3,53
E1/4, E1/5 and E1/6 (Kerswell 1995; Rieutord &Valdettaro 2018), the scaling in E1/3 appears54
as the natural scaling in a forced problem for the width of the internal shear layer associated55
with a critical slope singularity or an attractor. For the former, the scaling was derived by56
dominant balance (Walton 1975a,b; Kerswell 1995), and numerically validated (Lin & Noir57
2021). For the latter, it was inferred byOgilvie (2005) and numerically validated byGrisouard58
et al. (2008).59
The viscous structure of these layers has been the subject of many works. The first60

theoretical work in an oscillatory context goes probably back toWalton (1975a). The building61
block is now believed to be a class of similarity solutions that was introduced by Moore &62
Saffman (1969) in rotating fluids and Thomas & Stevenson (1972) in stratified fluids. These63
solutions depend on an index m that is related to the strength of the underlying inviscid64
singularity (Le Dizès 2024). The similarity solutions were initially used to describe in the far65
field the solution generated by a localized oscillating source (Hurley & Keady 1997; Voisin66
2003). In this context, Machicoane et al. (2015) have shown that the index m is linked to67
multipolar character of the source. Tilgner (2000) and Le Dizès (2015) have also shown that68
they describe the thin shear layers generated from the border of an oscillating disk. The use69
of the similarity solutions to describe the oscillatory internal shear layers generated from a70
critical point was first made by Le Dizès & Le Bars (2017) in the case of a viscous forcing71
for a librating object in an unbounded domain. He et al. (2022, 2023) extended these results72
to a bounded geometry for both a periodic wave pattern and an attractor. For the attractor73
case, they used original ideas that were introduced in an inclined rotating square subject to74
a body forcing by Ogilvie (2005). These ideas will also be used in the present study.75
In our previous works (Le Dizès & Le Bars 2017; He et al. 2022, 2023), the internal shear76

layers were generated by libration, that is by a viscous forcing at the critical point. In the77
present study, we consider an inviscid forcing, specifically vertical oscillation, where internal78
shear layers are forced through pressure coupling. For such a forcing, the nature of the internal79
shear layers generated from a critical point is expected to be different. Le Dizès (2024) has80
explained that in contrast to the viscous case, the amplitude of the internal shear layer cannot81
be obtained in closed form from a local analysis of the critical point. Our analysis will82
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therefore go through the derivation of global inviscid solutions before considering internal83
shear layers. It will be limited to two-dimensional geometries.84
We start with the classical problem of an oscillating cylinder in an unbounded domain.85

The inviscid problem has been solved in a stratified fluid by Hurley (1997). We provide here86
the inviscid solution in a rotating fluid using the same approach. This solution is singular87
along the characteristics issued from the critical points. From the behavior of the solution88
close to the singularity, we obtain the index and the amplitude of the similarity solution that89
describes the viscous structure of the internal shear layer. An alternative method based on a90
global viscous solution is also given in Appendix B. The approximation that is obtained is91
compared with viscous numerical results obtained for very small Ekman numbers. We then92
consider the cylindrical shell geometry. The ray patterns strongly depend on the frequency.93

For a frequency ω∗ =
√

2Ω∗, the propagation is at 45 degrees with respect to the rotation94
axis. We first consider this case for which the ray trajectories are periodic. A global inviscid95
solution is obtained by writing down the conditions of reflection on each trajectory. This96
solution is singular on the critical lines. To obtain an approximation valid close to these lines,97
we adapt the method used in He et al. (2022) for a viscous forcing. Both the index and the98
amplitude of the similarity solutions needed to build this asymptotic solution are obtained99
by matching this solution with the global inviscid solution. Again, the theoretical results are100
compared with numerical results. In the last section, we consider the case of an attractor. An101
asymptotic solution is obtained close to the attractor using the analysis developed in He et al.102
(2023), and then compared to numerical results. Additional numerical results for particular103
attractors for which there is no asymptotic theory are also provided in Appendix D. The paper104
is concluded by summarizing the main results, emphasizing the difference between inviscid105
and viscous forcings, and discussing the applicability of the results in a three-dimensional106
context.107

2. Framework108

2.1. Geometry and governing equations109

We consider the internal shear layers generated by a two-dimensional cylindrical body110
oscillating vertically in either an unbounded or bounded domain. For the former, the111
configuration is a circular cylinder immersed in an unbounded fluid, as shown in figure112
1a; for the latter, the geometry is a cylindrical annulus, as shown in figure 1b. In both113
cases, the cylinders’ axes are horizontal and extend to infinity, making the problems two-114
dimensional. We adopt a Cartesian coordinate system, where the axis Oz is vertical to the115
horizontal plane Oxy. The cylinders’ axes are along the axis Oy such that cross-sections lie116
in the vertical plane Oxz. The flow is that of an incompressible fluid with constant kinematic117
viscosity ν∗, rotating around the axis Oz with a uniform rotation rate Ω∗. Although the flow118
field only depends on x and z, it has three velocity components.119
Due to the two dimensional nature of the problem, we can use a polar coordinate system120

to describe the flow field, with the radial coordinate % =
√

x2 + z2 and angular coordinate121
ϑ = arctan (z/x). The flow domain is defined by % ∈ [%∗i , %

∗
o], where %∗o is infinite for the122

unbounded case. In the bounded case, we write [%∗i , %
∗
o] = [η%∗, %∗], with η ∈]0, 1[ defining123

the aspect ratio. For convenience of comparison, the radial range of the unbounded domain124
is chosen as [%∗i , %

∗
o] = [η%∗,+∞], with the same inner radius as the bounded domain.125

For both configurations, lengths are non-dimensionalised by %∗, resulting in non-126
dimensional radial ranges of [η, 1] for the bounded domain and [η,+∞] for the unbounded127
domain. Thus, the non-dimensional radius of the forced cylinder is η in both cases. This128
choice of non-dimensionalisation is made to facilitate the comparison between inviscid129
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(a) A cylinder oscillating vertically in an
unbounded rotating fluid.

(b) A cylindrical shell domain of rotating fluid
with an inner cylinder oscillating vertically.

Figure 1: Two dimensional configurations in unbounded (a) and bounded (b) domains.

results in unbounded and bounded domains. Time is non-dimensionalised by the angular130
period 1/Ω∗. Using these scales, the Ekman number is defined as131

E =
ν∗

Ω∗%∗2
. (2.1)132

The imposed harmonic forcing is the vertical oscillation of the cylinder in the unbounded133
domain or the inner cylinder in the bounded domain (see red arrows in figure 1), with the134
displacement amplitude ε = ε∗/%∗ (ε � 1) and the frequencyω = ω∗/Ω∗. As in our previous135
works (Le Dizès & Le Bars 2017; He et al. 2022, 2023), we focus on the linear harmonic136
response and consider solutions in the form137

(v, p)e−iωt + c.c., (2.2)138

where c.c. denotes the complex conjugate. The velocity v and pressure p satisfy the linearised139
incompressible Navier-Stokes equations in the rotating frame:140

− iωvx − 2vy +
∂p
∂x
− E∇2vx = 0, (2.3a)141

−iωvz +
∂p
∂z
− E∇2vz = 0, (2.3b)142

−iωvy + 2vx − E∇2vy = 0, (2.3c)143

∂vx
∂x
+
∂vz
∂z
= 0, (2.3d)144

with the Laplacian operator145

∇2 = ∂2/∂x2 + ∂2/∂z2. (2.4)146

As the oscillations are assumed to be very small (ε � 1), the (inner) cylinder can be147
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assumed fixed at leading order. The boundary conditions at the surface of the (inner) cylinder148
read149

v = ez, at % =
√

x2 + z2 = η. (2.5)150

We apply no-slip boundary conditions at the outer cylinder. In the unbounded case, we apply151
a condition of radiation which states that the field should be composed of outgoing waves152
at infinity. In a viscous fluid, this condition is equivalent to the vanishing of the solution at153
infinity. In the numerical code, the condition of radiation will be applied by damping the154
waves propagating after a large but finite radial distance.155
We shall confine ourselves to the inertial wave regime, namely, 0 < ω < 2, within which156

the dominant structures of the linear response are internal shear layers.157
As shown in figure 1, the imposed vertical oscillation (2.5) is anti-symmetric and158

symmetric about the horizontal axis Ox and vertical axis Oz respectively. These symmetries,159
in turn, constrain the symmetries of the directly forced velocity components vx and vz .160
Mathematically, vx satisfies161

vx (%,−ϑ) = −vx (%, ϑ); vx (%, π − ϑ) = −vx (%, ϑ), (2.6a, b)162

and vz satisfies163

vz (%,−ϑ) = vz (%, ϑ); vz (%, π − ϑ) = vz (%, ϑ). (2.7a, b)164

The symmetries of the transverse field vy are not as straightforward. We note however that vy165
should satisfy the same mathematical relations as vx , due to the governing equation (2.3c).166
Thus, vy satisfies the following relations that are analogous to (2.6)167

vy (%,−ϑ) = −vy (%, ϑ); vy (%, π − ϑ) = −vy (%, ϑ). (2.8a, b)168

Since vy is perpendicular to the Oxz plane, it is anti-symmetric about the two axes Ox and169
Oz.170

2.2. Numerical method171

The numerical method from our previous work (He et al. 2023) is adopted here. The172
governing equations (2.3) are numerically solved in polar coordinates (%, ϑ). In terms of173
the streamfunction ψ and the associated variable χ,174

v% = −
1
%

∂ψ

∂ϑ
, vϑ =

∂ψ

∂%
, vy = χ, (2.9a − c)175

the governing equations (2.3) are recast to176

− iω∇2ψ + 2
(
sin ϑ

∂ χ

∂%
+

cos ϑ
%

∂ χ

∂ϑ

)
− E∇4ψ = 0, (2.10a)177

−iωχ − 2
(
sin ϑ

∂ψ

∂%
+

cos ϑ
%

∂ψ

∂ϑ

)
− E∇2 χ = 0, (2.10b)178

with the operator179

∇2 =
∂2

∂%2 +
1
%

∂

∂%
+

1
%2

∂2

∂ϑ2 . (2.11)180

The streamfunction ψ and the associated variable χ are expanded by Fourier series in the181
angular direction as182

ψ =

+∞∑
l=−∞

ψl (%)eilϑ, χ = −i
+∞∑
l=−∞

χl (%)eilϑ . (2.12a, b)183
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The projection of the governing equations (2.10) onto this basis leads to184

iω∇2
l ψl + ( χ′l−1 − χ

′
l+1) −

1
%

[
(l − 1) χl−1 + (l + 1) χl+1

]
+ E∇4

l ψl = f ψ
l
, (2.13a)185

iωχl + (ψ ′l−1 − ψ
′
l+1) −

1
%

[
(l − 1)ψl−1 + (l + 1)ψl+1

]
+ E∇2

l χl = f χ
l
, (2.13b)186

with187

∇2
l =

d2

d%2 +
1
%

d
d%
−

l2

%2 . (2.14)188

The right-hand side terms f ψ
l
and f χ

l
represent a sponge layer absorbing outgoing waves and189

will be specified later.190
Not all Fourier components in the expansion (2.12) are necessary in our particular case.191

From the symmetry properties of the velocity fields (2.6-2.8), ψ and χ should satisfy192

ψ(−ϑ) = ψ(ϑ); ψ(π − ϑ) = −ψ(ϑ) (2.15a, b)193

and194

χ(−ϑ) = −χ(ϑ); χ(π − ϑ) = −χ(ϑ) (2.16a, b)195

respectively. The Fourier expansion (2.12) can thus be reduced to196

ψ = 2
+∞∑
l′=1

ψ2l′−1(%) cos [(2l ′ − 1)ϑ], χ = 2
+∞∑
l′=1

χ2l′ (%) sin (2l ′ϑ), (2.17a, b)197

where only Fourier components ψ1, χ2, ψ3, χ4, · · · with positive l are solved.198
The spectral equations (2.13) are supplemented with boundary conditions at the inner and199

outer boundaries of the radial domain. The vertical oscillation (2.5) at the inner boundary200
yields the following boundary condition201

ψl =
%

2
δ1l,

dψl

d%
=

1
2
δ1l, χl = 0 at % = η. (2.18)202

The boundary condition at the outer boundary is203

ψl =
dψl

d%
= χl = 0 at % = 1 or %→ +∞, (2.19)204

for the bounded or unbounded domain respectively.205
Special treatment is required for the unbounded domain, which is truncated at a finite206

radius. The position of the outer boundary is chosen to be far from the source, within the207
limit of numerical resources. A sponge layer is added near the outer boundary to absorb208
all outgoing waves. We directly implement the sponge layer in the spectral equations (2.13)209

through the right-hand terms f ψ
l
and f χ

l
. They take the form of a damping function as follows210

f ψ
l
=

1
2Υ

[
1 + tanh

(
% − %s
Λ

)]
∇2
l ψl, (2.20a)211

f χ
l
=

1
2Υ

[
1 + tanh

(
% − %s
Λ

)]
χl . (2.20b)212

The parameter Υ is the time scale at which waves are damped and is simply taken as ω−1.213
The parameter %s is the position where the sponge layer is centred and should be close to214
the outer boundary. The parameter Λ controls the domain range affected by the sponge layer.215
Suitable values of %s and Λ are chosen by trial and error.216
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Figure 2: Tangent characteristic lines (blue dashed lines) of a cylinder in an unbounded
domain. (x±, z±) are characteristic coordinates. (x ‖, x⊥) are local coordinates attached to
critical rays L1(x− = η; z− > 0), L2 (x+ = −η; z+ > η), L3 (x− = η; z− < 0) and L4

(x+ = η; z+ > η) in the first quadrant.

Finally, the spectral equations (2.13) are truncated at the Fourier order L and further217
discretized using the Chebyshev collocation method, with the derivatives relative to %218
replaced by the Chebyshev differentiation matrices of order N + 1. The resulting block219
tridiagonal system is solved by the block tridiagonal algorithm as described in He et al.220
(2023).221

2.3. Inviscid framework in global and local coordinate systems222

In this part, we are going to summarize the general inviscid framework in global and local223
coordinate systems that will be frequently adopted when developing theories for different224
configurations.225
In the inviscid case (E = 0), the governing equations (2.3) can be recast into the famous226

Poincaré equation in the Cartesian coordinate system227

∂2ψ

∂x2 +

(
1 −

4
ω2

)
∂2ψ

∂z2 = 0, (2.21)228
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with the streamfunction ψ defined as229

vx = −
∂ψ

∂z
, vz =

∂ψ

∂x
. (2.22a, b)230

The velocity component vy perpendicular to the plane Oxz is related to vx by231

vy =
2
iω

vx . (2.23)232

In the inertial wave regime (0 < ω < 2), the Poincaré equation (2.21) is a two-dimensional233
hyperbolic equation, the solution of which can be described in terms of its characteristics.234
As in Voisin (2021), the global characteristic coordinates are defined as235

x± = sin θcx ∓ cos θc z, z± = ± cos θcx + sin θc z, (2.24a, b)236

with237

ω = 2 cos θc, (2.25)238

where θc is the acute angle between the characteristics and the horizontal plane. The239
characteristic coordinates x± and z± are perpendicular and parallel to the characteristics,240
respectively; particularly, |x± | = η denote the positions of the characteristics tangent to the241
cylinder (see blue symbols in figure 2). The canonical form of the Poincaré equation (2.21)242
is simply ∂2ψ/∂x+∂x− = 0; the corresponding solution is separable in terms of x±, namely,243

ψ(x+, x−) = ψ+(x+) + ψ−(x−). (2.26)244

The corresponding velocity vector in the Oxz plane is245

vz+ez+ + vz−ez− (2.27)246

with247

vz± (x±) =
dψ±
dx±

, (2.28)248

where ez± are unit vectors in the z± directions. The velocity vector can be projected into the249
Cartesian coordinates, to yield the velocity components in the latter250

vx = (vz+ − vz− ) cos θc, vz = (vz+ + vz− ) sin θc, vy =
2
iω

vx = −i(vz+ − vz− ). (2.29a, b, c)251

Usually, the inviscid solution may become singular on critical characteristics. In this252
case, it is preferable to describe the solution in terms of local coordinates (x ‖, x⊥) around253
the critical characteristics, where x ‖ measures the distance to the source along the critical254
characteristic and x⊥ the displacement relative to it. The orientations of the local coordinates255
(x ‖, x⊥) depend on the direction of the wave propagation on the critical characteristics. For256
a fixed frequency ω that corresponds to a fixed θc , inertial waves propagate in four possible257
directions, which are θc , π − θc , π + θc and 2π − θc with respect to the positive horizontal258
direction (see red symbols in figure 3). The direction of the local parallel coordinate x ‖259
follows the propagation direction; the direction of the local perpendicular coordinate x⊥ is260
chosen such that a nearby non-critical ray remains on the same side (with respect to positive261
or negative x⊥) of the critical ray after reflection (see black symbols in figure 3). In these262
local frames, the streamfunction is related to the local velocity components (v‖, v⊥) through263

v‖ = ε
∂ψ

∂x⊥
, v⊥ = −ε

∂ψ

∂x ‖
, (2.30a, b)264

where ε = 1 for the rays with the inclined angles π − θc and 2π − θc , and ε = −1 for the rays265
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Figure 3: Critical rays with four different propagation directions (in red) and their local
coordinates (in black). Schematic of the reflection on a boundary is shown in orange.

with inclined angles θc and π + θc (see figure 3). In the inviscid case, the streamfunction and266
the parallel velocities depend on the local perpendicular coordinate x⊥ only, namely,267

ψ(x⊥), v‖ (x⊥) = ε
dψ(x⊥)

dx⊥
. (2.31a, b)268

The velocity components (vx, vz ) in theCartesian coordinates are obtained through projecting269
v‖e‖ into the latter. Notably, vy is related to v‖ through a phase shift, namely,270

vy = ±iv‖ . (2.32)271

The sign of the phase is “ + ” for the rays with the inclined angles π − θc and π + θc , and it272
is “ − ” for the rays with the inclined angles θc and 2π − θc (see figure 3).273

2.4. Viscous similarity solution describing internal shear layers274

Nowwe briefly describe the general asymptotic structure of internal shear layers, irrespective275
of the configurations.We only show the expressions in two dimensions that are relevant to the276
current work. Similar descriptions can be found in our previous works (Le Dizès & Le Bars277
2017; He et al. 2022, 2023).278
In the small viscosity limit (E → 0), the quantitative feature of the internal shear layers can279

be described by the famous similarity solution of Moore & Saffman (1969), characterised by280
a width scaling as E1/3. This similarity solution is expressed in the local coordinates (x ‖, x⊥)281
described above. A similarity variable is introduced as282

ζ =
x⊥

E1/3

(
2 sin θc

x ‖

)1/3
. (2.33)283
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At leading order, the main velocity component is along the critical characteristics, namely284
v‖ , which takes the form285

v‖ = C0Hm(x ‖, x⊥) = C0

(
x ‖

2 sin θc

)−m/3
hm(ζ ), (2.34)286

with the special function introduced by Moore & Saffman (1969)287

hm(ζ ) =
e−imπ/2

(m − 1)!

∫ +∞

0
eipζ−p3

pm−1dp. (2.35)288

The perpendicular velocity v⊥ is O(E1/3) smaller. Owing to the fluid rotation, the similarity289
solution also possesses a velocity component perpendicular to the plane (e‖ , e⊥). It is related290
to v‖ by a simple phase shift according to the relation (2.32).291
There are two free parameters in the similarity solution (2.34): the amplitude C0 and the292

index m. The calculation of these parameters for each configuration constitutes the core of293
our work. It will mainly follow the line of our previous works (Le Dizès & Le Bars 2017;294
He et al. 2022, 2023) performed for a viscous forcing. One can first note that the similarity295
solution is indeed associated with an inviscid singularity, which is visible when considering296
the outer limit (|ζ | → ∞) of the similarity solution297

v‖ ∼

{
C0x−m⊥ Em/3, ζ → +∞;
C0(−x⊥)−me−imπEm/3, ζ → −∞.

(2.36)298

Note the behavior in |x⊥ |−m on both sides of the singularity. The index m is then directly299
related to the strength of the underlying inviscid singularity. Note also the phase shift in e−imπ300
for x⊥ < 0. This phase shift is associated with the direction of propagation of the singular301
field, which has to be in the direction of +e‖ (Le Dizès 2024). The similarity solution (2.34)302
can be expressed in terms of a streamfunction ψ. Integration of the similarity solution (2.34)303
leads to304

ψ = ε
C0E1/3

m − 1
Hm−1(x ‖, x⊥). (2.37)305

Note that, the streamfunction ψ is O(E1/3) smaller than v‖ .306

2.4.1. Reflections on boundaries and axes307

In a bounded domain, the self-similar beam is expected to reflect on the boundaries. The308
reflection law, based on the preservation of the self-similar structure and the non-penetrability309
condition, has been discussed in Le Dizès (2020); He et al. (2022, 2023). For an incident310
beam v (i)

‖
= C (i)

0 Hm(x (i)
‖
, x (i)
⊥ ) and its reflected counterpart v (r )

‖
= C (r )

0 Hm(x (r )
‖
, x (r )
⊥ ), the311

conservation of the similarity variable and the non-penetrability condition lead to relations312
for the travelled distance and amplitude before and after the reflection313

x (r )
‖b

x (i)
‖b

= α3,
C (r )

0

C (i)
0

= αm−1, (2.38a, b)314

where the subscript b indicates that the values are taken at the reflection point. The reflection315
factor α is given by316

α =
sin θ (r )

sin θ (i) , (2.39)317

where θ (r ) and θ (i) represent the angles of the reflected and incident beams relative to the318
tangent surface at the reflection point (see orange symbols in figure 3). The value, when319
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compared to 1, indicates a contraction (< 1) or expansion (> 1) of the beam width. Notably,320
there is no contraction or expansion on the horizontal or vertical axis, and the reflection321
factor remains consistently equal to 1. The reflection law on a boundary (2.38) demonstrates322
that both the distance to the source and the amplitude are a priori modified by reflection.323
The symmetries of the problem with respect to the Ox and Oz axes can be treated as324

reflection laws in the reduced domain that we consider (the upper-right quarter). Indeed,325
when a beam reaches the reduced domain boundary corresponding to one of the two axes,326
it effectively crosses the boundary and continues outside the reduced domain. However,327
the problem symmetry imposes that a symmetrical beam enters the reduced domain as328
the first beam leaves it. When this image beam is considered as a reflected beam, we329
can obtain reflection laws on the two axes as if they were real boundaries. These laws330
are obtained by writing the solution close to the axes as the sum of these two beams331

v (i)
‖

(
x (i)
‖
, x (i)
⊥

)
e(i)
‖
+ v (r )

‖

(
x (r )
‖
, x (r )
⊥

)
e(r )
‖
. If we apply the conditions of symmetry (2.6-2.7)332

on this expression, we immediately obtain that vx should vanish on both axes. As x (r )
⊥ = x (i)

⊥333
on Ox and on Oz (see figure 3), we get that the reflection factor α is 1 for both axes. Similar334
to the reflection law on a boundary (2.38), we can then write the relations between the two335
beams as336

x (r )
‖b
= x (i)

‖b
, C (r )

0 = eiϕC (i)
0 , (2.39a, b)337

where the phase shift ϕ is338

ϕ =

{
π, on Ox,
0, on Oz.

(2.40)339

Therefore, the “reflection” on the Oz axis can be considered as a regular reflection on a340
vertical surface (i.e. without phase shift) while the “reflection” on the Ox axis is a special341
reflection on an horizontal surface, as the reflected beam has gained a phase shift of π.342

3. Unbounded domain343

We first consider the unbounded domain, without outer cylinder. To illustrate the wave344

pattern, the numerical contours of |vy | are shown in figure 4 for the frequency ω =
√

2 at345

the Ekman number E = 10−10. We clearly observe strong shear layers originating from the346
critical points of the cylinder, where the local slope of the boundary coincides with one of347
the directions of propagation.348
In order to derive the similarity solutions for the internal shear layers around the tangent349

characteristics, there are two different technical paths. The first common step is to derive350
the global inviscid solution. Afterwards, the two paths diverge. One path is to obtain the351
local inviscid solutions around the tangent lines from the global inviscid solution and then352
obtain the local viscous solutions by matching the local inviscid solutions with the similarity353
solution. The other path is to obtain the global viscous solution by adding viscous attenuation354
to the global inviscid solution and then obtain the local viscous solutions around the tangent355
lines from the global viscous solution. One can clearly find that the second method is more356
advantageous, as no self-similar assumption of the internal shear layers shall be made.357
However, we will adopt the first method in the main text, as it is still effective and will358
also be adopted in the bounded domain. The details of the second method are shown in359
Appendix B. One should note that, the two methods yield the same expressions of the local360
viscous solutions around the tangent lines (see Appendix B).361
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Figure 4: Contour of |vy | by numerical method for ω =
√

2, with η = 0.35 and E = 10−10

in an unbounded domain. Numerical domain size is [0.35, 3.5], with sponge layer
specified by Υ = ω−1, %s = 2.45 and Λ = 0.2 (see equation 2.20); the resolution is

N = 3000 and L = 6000; the result is shown in the truncated domain [0.35, 1.1].

3.1. Global inviscid solution362

The global inviscid solution is obtained by solving the Poincaré equation (2.21) analytically,363
with the boundary condition at the surface of the cylinder (2.5)364

ψ = x at x2 + z2 = η2. (3.1)365

Note that, we have replaced the no-slip boundary condition with the free-slip counterpart. At366
the other end far from the cylinder, the streamfunction is allowed to freely radiate to infinity.367
As discussed before, the Poincaré equation (2.21) in the inertial range 0 < ω < 2 is actually368

a hyperbolic equation. A similar equation, along with the boundary condition (3.1), appears369
in studies of internal wave generation, where the analytical techniques for solving it are well370
developed (Appleby & Crighton 1986, 1987; Hurley 1997; Hurley & Keady 1997; Voisin371
2003; Voisin et al. 2011; Voisin 2021). The general technique involves solving an elliptic372
equation in the evanescent regime and analytically continuing the solution to the propagating373
regime. We can easily adapt this technique to our problem. We first solve Poincaré equation374
(2.21) in the regime ω > 2 where the equation is elliptic. Using a coordinate stretching375
similar to that of Voisin (2021)376

x? =

√
ω2 − 4

2
x, z? =

ω

2
z, (3.2a, b)377

the elliptic equation (2.21) is recast into a standard Laplacian equation378

∂2ψ

∂x2
?

+
∂2ψ

∂z2
?

= 0, (3.3)379

with the boundary condition specified at the surface of an ellipse380

ψ =
2

√
ω2 − 4

x? at *
,

2x?
√
ω2 − 4η

+
-

2

+

(
2z?
ωη

)2
= 1. (3.4)381

The Laplacian equation for a region outside an ellipse can be solved analytically using elliptic382
coordinates383

x? = η sinhσ cos τ, z? = η coshσ sin τ, (3.5a, b)384
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where σ is a non-negative real number and τ ∈ [0, 2π]. Recasting the Laplacian equation385
into the (σ, τ) coordinates and using separation of variables, we obtain the solution386

ψ(σ, τ) = η
2

ω −
√
ω2 − 4

e−σ cos τ. (3.6)387

The next step is to analytically continue the solution (3.6) from the evanescent regime388
ω > 2 to the propagating regime 0 < ω < 2. The mathematical details of the analytical389
continuation are given in Appendix A. The solution (3.6) is analytically continued into the390
formula (2.26) with391

ψ± =
1
2

ei(θc−π/2)
[
x± −

√
x2
± − η

2
]
, (3.7)392

where the square root is determined by393

(x2
± − η

2)1/2 =

{
|x2
± − η

2 |1/2 sign(x±), |x± | > η;
∓i|x2

± − η
2 |1/2 sign(z±), |x± | < η.

(3.8)394

The solution is separable in terms of the characteristic coordinates x±, which is a natural395
property of the two-dimensional hyperbolic equation.396
Of particular interest are the velocities along the characteristics. They can be obtained by397

taking derivatives of ψ± with respect to x± (2.28), which leads to398

vz± =
1
2

ei(θc−π/2) *..
,
1 −

x±√
x2
± − η

2

+//
-
. (3.9)399

Thus, we have obtained the global inviscid velocities along the characteristics. Obviously,400
the global inviscid solution (3.9) is singular at the points where |x± | = η, that is on the401
characteristics tangent to the cylinder.402
The velocity components (vx, vz, vy ) in the Cartesian coordinates are related to vz± by403

(2.29). In figures 5 and 6, we compare the global inviscid solution (3.9; red dashed lines)404
and the numerical counterpart (black solid lines) at E = 10−10 for the velocity profiles of405
(vx, vz, vy ) along the cuts z = −x + 1.0 and z = x + 0.3 (see figure 4), respectively. The cut406
z = −x + 1.0 goes through the critical lines L2 and L4, while z = x + 0.3 goes through L1407
(see figure 2). Far from the critical lines, the two solutions agree with each other very well at408
the small Ekman number. Close to the critical lines, the singularity of the inviscid solution409
is clearly visible, necessitating viscous smoothing.410

3.2. Local inviscid solutions411

Nowwe try to obtain the local inviscid solutions around the singular lines that will be utilised412
for asymptotic matching. Due to symmetry, we only consider the local inviscid solutions near413
the four critical rays L1 − L4 in the first quadrant; see red arrows in figure 2. The definitions414
of the corresponding local coordinates for the four rays are shown in black in figure 2. The415
transformations between the local and global coordinates perpendicular to the characteristics416
are as follows417

x⊥L1 = x− − η; x⊥L2 = −x+ − η; x⊥L3 = −x− + η; x⊥L4 = −x+ + η. (3.10a, b, c, d)418

The positions of the tangent lines |x± | = η become simply x⊥ = 0 in the local coordinates.419
The singular part of the global velocity vz± (3.9) corresponds to the local parallel velocity420
v‖ close to the critical characteristic. Thus, we obtain the local inviscid parallel velocity v‖421
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Figure 5: Comparison between numerical, global inviscid (3.9) and global viscous (B 13)
solutions for the unbounded case at E = 10−10 on the line z = −x + 1.0 (see figure 4) for
velocity components vx (a, d), vz (b, e) and vy (c f ). Insets show local profiles around the

critical line L2. The Jupyter notebook for producing the figure can be found at
https://cocalc.com/share/public_paths/

c2d25c747f2c92625d0c85d1985e04f0296247d2/figure%205.
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Figure 6: Similar comparison to figure 5 but for the line z = x + 0.3 (see figure 4). Insets
show local profiles around the critical line L1. The Jupyter notebook for producing the

figure can be found at https://cocalc.com/share/public_paths/
c2d25c747f2c92625d0c85d1985e04f0296247d2/figure%206.
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Figure 7: Comparison of velocity profiles between the numerical (superscript “NS") and
asymptotic (superscript “AS") solutions for vy at E = 10−10 on the four short white cuts
S1 − S4 shown in figure 4. The Jupyter notebook for producing the figure can be found at

https://cocalc.com/share/public_paths/
c2d25c747f2c92625d0c85d1985e04f0296247d2/figure%207.

along the lines L1 − L4 as follows422

v‖ =

√
η

2
√

2
x−1/2
⊥




ei(θc+π/2), L1;
ei(θc+π/2), L2;
eiθc, L3;
ei(θc−π) L4.

(3.11a, b, c, d)423

The phases are determined by the square roots in the global coordinates according to (3.8).424
Note that these solutions are only for the positive sides of the local perpendicular coordinates425
x⊥ (see figure 2); the counterparts on the negative sides possess an additional phase e−iπ/2.426

3.3. Viscous similarity solutions427

The matching of the local inviscid solutions (3.11) with the similarity solution (2.34) is428
straightforward. By doing so, we obtain the index429

m = 1/2 (3.12)430

and the amplitudes431

C0 =

√
η

2
√

2
E−1/6




ei(θc+π/2), L1;
ei(θc+π/2), L2;
eiθc, L3;
ei(θc−π) L4.

(3.13a, b, c, d)432

Obviously, the amplitudes scale with the Ekman number as E−1/6. Note that, there is no phase433
shift from L1 to L2 on the vertical axis Oz, and there is a phase shift of π on the horizontal434
axis Ox. These are consistent with the phase shifts (2.40) that were obtained from symmetry435
conditions directly.436
After obtaining the index and the amplitudes, we need to determine the local coordinates437

before calculating the asymptotic solutions. The coordinate x⊥ can be measured according to438
the definitions shown in figure 2.Determining the parallel coordinates x ‖ requires information439
about the source position (x ‖ = 0). As in Le Dizès & Le Bars (2017), the critical point (Sc440
in figure 2) is considered as the source, from which two rays propagate northward and441
southward, traveling along the ray path L1 → L2 and L3 → L4, respectively. Thus, x ‖ for442
each line is calculated by measuring the distance to the critical point along the ray path.443
The excellent performance of the asymptotic solutions against the numerical solutions is444

https://cocalc.com/share/public_paths/c2d25c747f2c92625d0c85d1985e04f0296247d2/figure%207
https://cocalc.com/share/public_paths/c2d25c747f2c92625d0c85d1985e04f0296247d2/figure%207
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shown in figure 7 for the velocity profiles vy at the Ekman number E = 10−10 around the445
four critical lines L1 − L4.446

4. Bounded domain447

In a bounded domain, the geometry of the characteristics becomes important. In a cylindrical448
annulus of fixed aspect ratio, the characteristic patterns only depend on the forcing frequency.449
As shown by Rieutord et al. (2001), characteristics either form periodic orbits or attractors.450
Both ray patterns were considered in He et al. (2022, 2023) in the case of a viscous forcing.451
In these works, the asymptotic solution was obtained by propagating the similarity solutions452
from the critical point with the amplitudes obtained from the unbounded domain analysis.453
This approach has been theoretically justified by Le Dizès (2024). In that case, the author454
showed that the characteristics of the similarity solution only depend on the local property of455
the viscous forcing close to critical point. Le Dizès (2024) also explained that this result is not456
valid for an inviscid forcing. The amplitude of the similarity solution in a closed geometry is457
expected to depend on the global ray pattern.458

As in the unbounded domain considered in § 3, we shall first derive an inviscid solution.459
Unfortunately, a global inviscid solution in a cylindrical annulus cannot be obtained by460
separation of variables, since the Poincaré equation (2.21) is not separable on both boundaries461
(Rieutord et al. 2001). However, in two dimensions, one can use themethod of characteristics.462
The expressions for the streamfunction and velocities (2.26-2.28), which are dependent of463
the global characteristic coordinates x±, are valid in the whole domain. They can be used to464
obtain equations involving vz± or ψ± by propagating the boundary conditions along the lines465
x± = const. This is the method of characteristics (Maas & Lam 1995; Ogilvie 2005) that we466
shall use for both periodic orbits and attractors.467

4.1. Periodic orbits468

Similar to He et al. (2022), we consider the simple periodic orbit at the frequency ω =
√

2469
and aspect ratio η = 0.35. The corresponding inclined angle is θc = π/4. Figure 8(a) shows470
the numerical result for the amplitude of vy at E = 10−11, where internal shear layers are471
observed around the critical characteristics L1 − L8 issued from the critical point Sc (see472
figure 8b). One also clearly notices that the solution is much larger within the area enclosed473
by the critical lines and boundaries than in the rest of the domain.474

4.1.1. Global inviscid solutions475

To derive the inviscid solution for this particular ray pattern, we consider an arbitrary circuit476
issued from a point on the inner boundary different from Sc , as shown by the blue lines477
P1P2P3P4P5P6P7P8P1 in figure 8(b). The circuit is entirely determined by the co-latitude478
angle θ of the point P1 on the inner boundary.We denote by v‖ j the velocity along the segment479
PjPj+1 ( j = 1, 2, 3, · · · , 8, P9 = P1) in the direction Pj → Pj+1 as indicated in figure 8(b). If480
x±j denotes the constant value of x± on each segment PjPj+1 using the convention defined in481
figure 2, the velocity v‖ j corresponds to vz− (x−) for j = 1, 5, 7, −vz− (x−) for j = 3, vz+ (x+)482
for j = 2, 6 and −vz+ (x+) for j = 4, 8.483

According to the non-penetrability conditions on the boundaries and symmetry conditions484
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Figure 8: Periodic orbit in a bounded domain for η = 0.35 and ω =
√

2: (a) numerical
result of |vy | at E = 10−11 with the resolution (N, L) = (2500, 8000); (b) critical

characteristics L1 − L8 (red color) and a neighboring ray path P1P2P3P4P5P6P7P8 (blue
color) with the co-latitude θ. Note that L6 coincides with L8.

on the axes, the velocities v‖ j of the segments are related to each other by485

v‖1 sin (π/4 − θ) − v‖8 sin (π/4 + θ) = cos θ, (4.1a)486

v‖2 = v‖1, (4.1b)487

v‖3 = v‖2/k3, (4.1c)488

v‖4 = v‖3/k4, (4.1d)489

v‖5 = −v‖4, (4.1e)490

v‖6 sin (π/4 + θ) − v‖5 sin (π/4 − θ) = sin θ, (4.1f)491

v‖7 = v‖6/k7, (4.1g)492

v‖8 = v‖7/k8, (4.1h)493

where the reflection coefficients on the outer boundary are494

k3 =
1
k4
=

η sin (π/4 + θ)√
1 − η2 sin2(π/4 + θ)

, k7 =
1
k8
=

η sin (π/4 − θ)√
1 − η2 sin2(π/4 − θ)

. (4.2a, b)495

By symmetry, one has v‖2 = v‖4, and v‖6 = v‖8. The relations (4.1) can thus be reduced to496
two functional equations for v‖1 and v‖8, namely,497

v‖1 sin (π/4 − θ) − v‖8 sin (π/4 + θ) = cos θ, (4.3a)498

v‖1 sin (π/4 − θ) + v‖8 sin (π/4 + θ) = sin θ. (4.3b)499

By solving the above equations for v‖1 and v‖8 and using the relations for the other500
components, we can obtain unique expressions for v‖ j as functions of the co-latitude θ,501
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namely,502

v‖1 = v‖2 = v‖4 = −v‖5 =
1
√

2
sin (π/4 + θ)
sin (π/4 − θ)

, (4.4a)503

v‖3 =
1
√

2

√
1 − η2 sin2(π/4 + θ)

η sin(π/4 − θ)
, (4.4b)504

v‖6 = v‖8 = −
1
√

2
sin (π/4 − θ)
sin (π/4 + θ)

, (4.4c)505

v‖7 = −
1
√

2

√
1 − η2 sin2(π/4 − θ)

η sin(π/4 + θ)
, (4.4d)506

with θ ∈ [0, π/4].507
The above global inviscid solutions apply only to the area swept by the circuit P1 · · · P8P1508

with θ ∈ [0, π/4], which is on one side of the critical lines (see figure 8(b)). On the other side,509
the ray path does not touch the inner boundary and is not forced. The solution is therefore510
undetermined in this region. We choose to put it to zero. This choice is consistent with the511
numerical results displayed in figure 8(a): the two regions which are not touched by rays512
emitted from the inner core are indeed black, that corresponds to a small amplitude.513
The above expressions (4.4) can be rewritten in terms of the characteristic variables (x+, x−)514

defined in (2.24). By doing so, we obtain the functions vz±(x±) that appear in (2.27), as we515
did for the unbounded domain (see expression (3.9)). The result is516

vz+ =
1
√

2




0, x+ < −η;
−x+√
η2−x2

+

, −η < x+ < η;

0, x+ > η,

(4.5)517

and518

vz− =
1
√

2




sign(x+) −x−√
η2−x2

−

,
η
√

2
< x− < η;

0, η < x− <
√

1 − η2;
−x−√

x2
−−(1−η2)

,
√

1 − η2 < x− < 1.
(4.6)519

Note that the same term
√

x2
± − η

2 appears in formula (3.9) and (4.5-4.6) thanks to the use520

of η for the radius of the oscillating cylinder in both the unbounded and bounded cases. The521
expression (4.5) for vz+ is singular at x+ = ±η, which correspond to the critical lines L2 and522

L4; the expression (4.6) for vz− is singular at x− = η and x− =
√

1 − η2, which correspond to523
the critical lines L1, L5 and L3. For instance, close to L1, one has, as x− → η524

vz− ∼




√
η

2
√
η − x−

, x− < η;

0, η < x−.

(4.7)525

Note that on the line L6 (or L8) corresponding to x+ = 0, no singularity is present.526
With the expressions (4.5-4.6) for vz± , the velocity components (vx, vz, vy ) are obtained527

through the transforms (2.29). In figures 9 and 10, we compare the global inviscid solution528
(4.5-4.6) with the numerical solution obtained at E = 10−11 for the velocity profiles of529
(vx, vz, vy ) along the cuts z = −x + 0.8 and z = x + 0.3 (see figure 8a), respectively. The530
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Figure 9: Comparison between inviscid and numerical solutions for the periodic orbit case
on the line z = −x + 0.8 (see figure 8a) for velocity components vx (a, d), vz (b, e) and vy
(c f ) at E = 10−11. The vertical axes are in symlog scale. Insets show local profiles around

the critical line L2. The Jupyter notebook for producing the figure can be found at
https://cocalc.com/share/public_paths/

c2d25c747f2c92625d0c85d1985e04f0296247d2/figure%209.
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Figure 10: Similar comparison to figure 9 but on the cut z = x + 0.3 (see figure 8a). The
Jupyter notebook for producing the figure can be found at https://cocalc.com/share/
public_paths/c2d25c747f2c92625d0c85d1985e04f0296247d2/figure%2010.
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cut z = −x + 0.8 goes through the critical lines L2, L4 and L6 (or L8), while z = x + 0.3531
goes through L1 and L3 (see figure 8b). Far from the critical lines, the two solutions agree532
with each other very well. On the other hand, near the critical lines, the inviscid solution533
fails to capture the local shear-layer structures (see insets in figures 9d and 10d), as for the534
unbounded case. Close to the critical lines, viscosity has to be introduced to smooth out the535
singularity. It is the subject of the next subsection.536

4.1.2. Viscous solution close to the critical line537

We are going to construct a viscous solution close to the critical line following the approach538
that has been described in He et al. (2022). The idea is to assume that the critical point Sc is539
the singularity source, from which two singular beams are generated on either side of Sc and540
along L1 and L5. These beams are assumed to have the similarity form (2.34) described in541
section §2.4. Based on the nature of the singularity of the inviscid solution in |x⊥ |−1/2, one542
can expect that the similarity solution describing these beams will have an index m = 1/2.543
Nevertheless, we shall keep this parameter undetermined as well as the complex amplitudes544
of the similarity solution generated on each side.545
Starting from the critical point, the northward beam will travel along the circuit L1 →546

L2 → · · · → L5, while the southward beam follows the opposite direction. L1 and L5 are the547
initial segments for the northward and southward beams respectively. Since the ray path is548
periodic, wave beams will return to the critical point after one cycle. They will then continue549
to propagate for another cycle, and so on, until they are fully dissipated by viscosity. For the550
nth cycle on the segment L j , the asymptotic solution of the northward or southward beam is551
denoted as552

v‖ j,n = Cj,nHm(x ‖ j,n, ζ j,n), (4.8)553

where the first subscript j denotes the segment L j and the second subscript n denotes the554
nth cycle (n = 0 being for the very first cycle). The expressions of the amplitudes and local555
coordinates for n = 0 are determined by reflection laws on the axes and boundaries. They have556
been derived for each segment in He et al. (2022). For completeness, we have reproduced557
these results in appendix C. For the subsequent cycles, the perpendicular coordinate remains558
unchanged, while the amplitude and parallel coordinate are modified, as explained in He559
et al. (2022). They can be expressed in terms of the values obtained for the first cycle n = 0560
as561

x ‖ j,n = x ‖ j,0 + nL j, (4.9a)562

ζ j,n = ζ j,0(x ‖ j,n/x ‖ j,0)1/3, (4.9b)563

Cj,n = Cj,0einπ . (4.9c)564

After one cycle, the parallel coordinate increases by the distance traveled along the closed565
circuit L j (see equation (C 2) below); the amplitude is modified by a phase shift π which is566
acquired at the reflection on the horizontal axis Ox.567
The final asymptotic solution is the sum of all v‖ j,n from n = 0 to +∞. As demonstrated568

by He et al. (2022), this infinite series converges to a finite value if there exists a nonzero569
phase shift after the completion of each cycle. This requirement is satisfied as the phase shift570
along one cycle is π. The resulting expression for the segment L j is571

v‖ j = lim
N→+∞

N∑
n=0

v‖ j,n = Cj,0Gm(x ‖ j,0, x⊥j,0,L j ), (4.10)572
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with573

Gm(x ‖, x⊥,L) =
(

x ‖
2 sin θc

)−m/3
gm(ζ,L/x ‖ ), (4.11a)574

gm(ζ,L/x ‖ ) =
e−imπ/2

(m − 1)!

∫ ∞

0

eipζ−p3
pm−1

1 + e−p3L/x‖
dp. (4.11b)575

Note that the solution is expressed in terms of the variables in the very first cycle (n = 0)576
only. The above discussion holds both for the northward and southward beams. Finally, the577
asymptotic solution is the sum of two contributions, namely,578

v‖ j = CN
j,0Gm(xN

‖ j,0, xN
⊥j,0,L j ) + CS

j,0Gm(xS
‖ j,0, xS

⊥j,0,L j ), (4.12)579

with ‘N’ and ‘S’ denoting ‘northward’ and ‘southward’ respectively. The amplitudes and580
local coordinates for the very first cycle (n = 0) are given in appendix C in tables 3 and 4 for581
the northward and southward beams, respectively. The orientation of v‖ j is given in figure582
3. It corresponds to the orientation of the northward beam. From v‖ j , one can deduce the583
corresponding transverse velocity component vy using (2.32).584
We are now able to do the matching of this expression with the behavior of the global585

inviscid solution close to the critical line. The behavior of the asymptotic solution (4.12) as586
one goes away from the critical line is easily obtained using587

Gm(x ‖, x⊥) ∼
{ 1

2 x−m⊥ Em/3, ζ → +∞
1
2 (−x⊥)−me−imπEm/3, ζ → −∞.

(4.13)588

It gives for example on L1589

v‖1 = vz− ∼



1
2 x−m
⊥1 Em/3(CN

1,0 − e−imπCS
5,0), x⊥1 > 0

1
2 (−x⊥1)−mEm/3(CN

1,0e−imπ − CS
5,0), x⊥1 < 0,

(4.14)590

where x⊥1 = x− − η = (x + z −
√

2η)/
√

2 is the local coordinate of the northward beam (see591
table 3). Note that we have replaced CS

1,0 with −CS
5,0 using the relation in the second column592

of the last row of the table 4.593
The matching of these behaviors with the inviscid solution around L1 (equation (4.7))594

immediately gives m = 1/2, as expected, and595

CN
1,0 =

√
η

2
eiπ/2E−1/6, CS

5,0 =

√
η

2
E−1/6. (4.15a, b)596

One can then check that with these values, we recover the behavior of the global inviscid597
solution close to the other lines L j , j = 2, .., 5.598
It is interesting to compare these expressions with those obtained in an unbounded domain599

(compare (3.13a) with (4.15a) for the northward beam and (3.13c) with (4.15b) for the600
southward beam). They both scale as E−1/6 and exhibit a π/2 phase shift between northward601
and southward beams. Yet, the norm and the phase of the beam amplitudes are different in602
unbounded and bounded cases.603
It is also worth mentioning that (4.15) could have been deduced using another argument.604

Le Dizès (2024) demonstrated that the singular beams emitted along L1 and L5 from Sc605
depend on the waves emitted along the characteristic direction L6 (L8), see figure 8(b). In606
the unbounded case, the waves emitted in that direction have a specific expression that was607
deduced from the global inviscid solution. For the bounded case with periodic orbits, we608
claim that nothing can be emitted along L6. The reason is the boundary condition on L6 on609
the outer core which imposes the vanishing of the normal velocity, that is the vanishing of610
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Figure 11: Comparison of velocity profiles (vy) between the numerical and asymptotic
solutions for the periodic orbit case at E = 10−11 on the five cuts S1 − S5 shown in figure

8. The Jupyter notebook for producing the figure can be found at
https://cocalc.com/share/public_paths/

c2d25c747f2c92625d0c85d1985e04f0296247d2/figure%2011.

the velocity on L6. The amplitude of the singular beams emitted along L1 and L5 is then611
completely determined by the local behavior around Sc in that case. More precisely, if one612
uses equations (49) and (57a,b) of Le Dizès (2024) with F ′(0) = 0 in (49), expressions613
(4.15a,b) are recovered.614
In figure 11, the asymptotic solution (4.12) obtained with CN

j,0 and CS
j,0 given by (4.15a, b)615

is compared with the numerical solution obtained for E = 10−11. This comparison is done616
for the velocity profiles vy on the five cuts S1 − S5, shown in figure 8. We can see that the617
agreement is excellent on all the cuts. This confirms that the asymptotic solution derived618
above describes correctly the solution close to the critical line in the limit of small Ekman619
numbers.620
Note that we have not derived the viscous solutions for the weaker internal shear layers621

around L6 (L8) (see figure 8 and 9). As discussed earlier, they are not related to inviscid622
singularities. Instead, they result from the split reflections on the inner boundary. A related623
technique for deriving the corresponding viscous solutions, developed by He et al. (2022),624
can be applied here. The process is rather straightforward and thus omitted.625

4.2. Attractors626

We now consider the more generic case of an attractor. The frequency is chosen to be627
ω = 0.8102, the same as in our former work (He et al. 2023). The aspect ratio η = 0.35628
is also the same. These two parameters are chosen to ensure that the contraction factor629
of the attractor is significantly different from the two limit values, 1 and 0. Additionally,630
the phase shift along the attractor must be zero to derive an asymptotic solution within our631

https://cocalc.com/share/public_paths/c2d25c747f2c92625d0c85d1985e04f0296247d2/figure%2011
https://cocalc.com/share/public_paths/c2d25c747f2c92625d0c85d1985e04f0296247d2/figure%2011
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Figure 12: Attractors in a bounded domain for η = 0.35 and ω = 0.8102. (a) Numerical
result of |vy | at E = 10−11 with the resolution (N, L) = (2500, 8000); (b) Ray paths (blue

and green) from the critical point converge to two attractors (red).

framework. Numerical results for attractors that do not satisfy the above conditions are shown632
in Appendix D.633
The qualitative results obtained by numerical method for E = 10−11 and ray propagation634

are shown in figure 12. There are two attractors present: the polar attractor P(P)
0 · · · P(P)

7635

and the equatorial attractor P(E )
0 · · · P(E )

5 , reached by the rays propagating northward and636
southward, respectively. As discussed by He et al. (2023), when the wave pattern forms637
attractors, the problem is complicated by the presence of both critical point and attractor638
singularities. For the case of a viscous forcing, He et al. (2023) have shown that one can639
construct two asymptotic solutions corresponding to the two underlying singularities, which640
are valid close to the critical line and attractor, respectively.641
For an inviscid forcing, the singular solution generated from the critical point cannot be642

obtained in a general setting as the amplitude of wave beams emitted along the critical lines643
is a priori unknown (Le Dizès 2024). However, as we shall see, an asymptotic solution valid644
around an attractor can be constructed using the method of Ogilvie (2005), provided that the645
attractor has no phase shift (He et al. 2023). This phase shift condition is satisfied by both646
attractors shown in figure 12, as both attractors have two contact points on the horizontal647
axis Ox and the overall phase shift for one cycle is zero.648
We now adapt the method developed in He et al. (2023) to build an asymptotic solutions649

close to the attractors. The first step is to find a local inviscid solution close to each attractor.650
By contrast with the periodic orbit considered in § 4.1, we shall not need a global inviscid651
solution. For convenience, we denote the J vertices of an attractor as P0, P1, · · · , PJ−1, as652
shown in figure 12. The index J is equivalent to the index 0, namely, PJ = P0. In the following,653
the subscript j denotes the variables related to the vertex Pj or the segment PjPj+1. The654
analysis is done for a given attractor, either the polar attractor or the equator attractor.655
In He et al. (2023), the method of Ogilvie (2005) was adapted to derive a functional656

equation governing the local inviscid streamfunction ψ j of the segment PjPj+1. We can657
simply replace the forcing term of the functional equation with the formula of the vertical658
oscillation. The inviscid functional equation for an attractor forced by the vertical oscillation659
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is obtained as660

ψ j (αx⊥j ) − ψ j (x⊥j ) = ε jδ, (4.16)661

with662

δ = x0, (4.17)663

and664

α = α0α1 · · · αJ−1. (4.18)665

The parameter δ is the forcing term resulting from the boundary condition imposed by the666
vertical oscillation of the inner boundary (3.1); its value is simply the horizontal coordinate667
x0 of P0, since only P0 is subject to the vertical oscillation. The parameter α (< 1) is the668
contraction factor of the attractor. The parameter ε j is the sign in the streamfunction definition669
(2.30) in terms of the local coordinates. The above functional equation means that, after one670
cycle along the attractor, the beam width is contracted by a factor α while being forced by a671
constant term ε jδ coming from the vertical oscillation of the inner boundary.672
The dominant solution to the functional equation (4.16) is673

ψ j (x⊥j ) ∼
ε jδ

ln α
ln |x⊥j |. (4.19)674

According to (2.30a), the corresponding parallel velocity is675

v‖ j ∼
δ

ln α
x−1
⊥j, (4.20)676

by which one can also deduce the transverse velocity vy j using (2.32). Once again, we match677
the above inviscid solution with the outer limit of similarity solution (2.36). Finally we obtain678
the singularity strength679

m = 1 (4.21)680

and the amplitude681

C0 =
δ

ln α
E−1/3. (4.22)682

Note that, the contraction factor α should be significantly different from 1 and 0 where ln−1 α683
is singular. The contraction factors for the polar and equatorial attractors shown in figure 12684
are 0.354524 and 0.392994 respectively, satisfying the above condition.685
We need to determine the local coordinates in order to plot the similarity solution. The686

perpendicular coordinate x⊥j can be easily calculated by measuring the distance relative to687
each segment PjPj+1. The parallel coordinate x ‖ j is obtained by an argument which has been688
detailed in He et al. (2023). This coordinate is decomposed into689

x ‖ j = L(s)
j + x ′

‖ j, (4.23)690

where L(s)
j is the distance between Pj and the virtual source, and x ′

‖ j
, the distance measured691

from Pj along the segment PjPj+1. According to the reflection law (2.38a), L(s)
j ( j > 0) is692

related to the distance L(s)
0 of the first point P0 to the source by693

L(s)
j = (· · · ((L(s)

0 + l0)α3
1 + l1)α3

2 + · · · + l j−1)α3
j, (4.24)694

where · · · stands for a series of left brackets and l j stands for the length of the segment695

PjPj+1. When j = J, the distance L(s)
J is taken to be the same as L(s)

0 , ensuring that the696
distance to the virtual source does not change after one complete cycle along the attractor.697
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Figure 13: Comparison of velocity profiles (vy) between the numerical and asymptotic
solutions for the attractor case at E = 10−11 on the two cuts shown in figure 12a. Blue and
green vertical lines are positions of northward and southward critical rays respectively.

The Jupyter notebook for producing the figure can be found at
https://cocalc.com/share/public_paths/

c2d25c747f2c92625d0c85d1985e04f0296247d2/figure%2013.
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This gives an equation for L(s)
0 that can be solved as698

L(s)
0 =

*
,
l0 +

l1

α3
1
+

l2

α3
1α

3
2
+ · · · +

lJ−1

α3
1 · · · α

3
J−1

+
-

α3

1 − α3 . (4.25)699

Using (4.23) and (4.24), we have then a formula for each parallel coordinate x ‖ j . We are now700
able to plot the similarity solution for each segment of the attractor.701
The performance of this asymptotic solution against the numerical solution is shown in702

figure 13 for the velocity profiles of vy on the two cuts shown in figure 12 at E = 10−11.703
Excellence agreement is achieved around the positions of the attractors (x∞). Additionally,704
in the numerical results, we observe that the numerical solution close to the critical line (that705
is close to x1, x2, ...) is negligible compared to that around the attractor x∞. On the contrary,706
in the viscous case, the solutions at the two positions are comparable (see figure 8 of He et al.707
(2023)).708
The Ekman number scalings of the velocity amplitudes at the critical positions on the two709

cuts are shown in figure 14. At the attractor location x∞, the scaling is E−1/3, as predicted.710
At the location x1, which is the first crossing point with the critical line, the scaling is close711
to E−1/6, the same as that for the periodic orbit. This is in agreement with the prediction712

https://cocalc.com/share/public_paths/c2d25c747f2c92625d0c85d1985e04f0296247d2/figure%2013
https://cocalc.com/share/public_paths/c2d25c747f2c92625d0c85d1985e04f0296247d2/figure%2013
https://cocalc.com/share/public_paths/c2d25c747f2c92625d0c85d1985e04f0296247d2/figure%2014
https://cocalc.com/share/public_paths/c2d25c747f2c92625d0c85d1985e04f0296247d2/figure%2014
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obtained by Le Dizès (2024) for the amplitude of the viscous beam created from a critical713
point by an inviscid forcing.714

5. Conclusion715

Using asymptotic analysis and numerical integration of the linearized governing equations,716
we have studied the internal shear layers generated in a rotating fluid by vertical oscillations717
of a two-dimensional cylinder, both in an unbounded and in a bounded domain where the718
outer boundary is a fixed cylinder with the same axis. We have shown that these internal719
shear layers can always be described by the class of similarity solutions introduced byMoore720
& Saffman (1969). Our main work has been to find the index (or singularity strength) m721
and amplitude C0 characterizing these solutions for the different configurations that we have722
considered. This has been done by various techniques. In the unbounded case and in the723
bounded case with periodic orbits, we have first obtained a global inviscid solution, then724
performed the asymptotic matching of this solution with the local viscous approximation725
deduced by propagating the similarity solution from the critical point. In both cases, we have726
compared the global inviscid solution and the local viscous approximation with numerical727
results obtained for small Ekman numbers, and an excellent agreement has been observed. In728
the bounded case with attractor, only a local inviscid approximation close to the attractor has729
been derived from which the adequate viscous approximation describing the internal shear730
layer has been obtained. This approximation has been shown to capture the behaviour of the731
numerical solution close to the attractor.732
In all cases, the width of the internal shear layer is O(E1/3), as expected from the scaling733

of the similarity solution. However, different Ekman scalings for the amplitude C0 have been734
obtained, with a scaling in E−1/6 for the internal shear layer created from a critical point,735
and in E−1/3 for the internal shear layer close to the attractor. These large amplitudes are736
specific to the inviscid forcing. For a viscous forcing, weaker amplitudes in E1/12 and E1/6737
were obtained for the internal shear layers near a critical line and an attractor, respectively738
(Le Dizès & Le Bars 2017; He et al. 2022, 2023).739
These differences in scalings can be directly attributed to the different index m obtained for740

the similarity solution describing the internal shear layer, and to the strength of the forcing,741
as C0 is directly obtained by the relation742

C0 ∼ O(AFE−m/3), (5.1)743

where AF denotes the forcing magnitude which is O(E1/2) for a viscous forcing and O(1)744
for an inviscid forcing. For the inviscid forcing, we have shown that m = 1/2 for the critical745
point singularity and m = 1 for the attractor, while for the viscous forcing, it was m = 5/4 for746
the critical point singularity and m = 1 for the attractor. The change of scaling of C0 around747
an attractor between inviscid and viscous forcings is therefore only due to the change of the748
strength of the forcing, as the internal shear layer keeps the same similarity structure with749
m = 1. This is different for the internal shear layer issued from a critical point. In the viscous750
case, Le Dizès & Le Bars (2017) obtained an index m larger than 1, that is a singularity751
stronger than that of the attractor, while m is smaller than 1 in the inviscid case. This explains752
the dominance of the attractor over the critical point internal shear layer in the inviscid case,753
while an opposite situation was observed in the viscous case (He et al. 2023). The different754
values of m and C0 according to the forcing and the nature of the singularity are summarized755
in table 1.756
It is worth recalling the hypotheses that have been made to derive the approximations757

from which the above scalings have been deduced. We have seen that in a bounded domain,758
the presence of a phase shift has a crucial importance. For the periodic orbit case, we have759
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Forcing
Singularity Critical point Attractor

Viscous forcing
m = 5/4

C0 ∼ O(E1/12)
m = 1

C0 ∼ O(E1/6)

Inviscid forcing
m = 1/2

C0 ∼ O(E−1/6)
m = 1

C0 ∼ O(E−1/3)

Table 1: Different values of singularity strength (m) and viscous scalings of amplitudes
(C0) for different forcings and inviscid singularities. Note that, in a bounded domain, the
scalings of the critical-point singularity apply to periodic orbits with a phase shift, while

those of the attractor singularity apply to attractors without a phase shift.

been able to construct a solution because a phase shift was present. When there is no phase760
shift, both the methods used to derive the global inviscid solution and the local viscous761
approximations break down: the functional relations (4.3) have no solution, and the sum that762
gives (4.10) diverges. In that case, we suspect that a resonance with an inviscid eigenmode763
could occur. Inviscid eigenmodes associated with periodic orbits are indeed known to exist764
(Rieutord et al. 2001) and a resonance was already observed by Rieutord &Valdettaro (2010)765
for a tidal forcing. It would be interesting to see whether this situation is possible with our766
forcing.767
For the attractor, no phase shift should be present after one cycle along the attractor in768

order to construct the local approximation. The reason has been explained in He et al. (2023).769
With a phase shift, the solution (4.19) in ln |x⊥ | does not exist anymore. The solution close770
to the attractor with a phase shift is therefore not expected to be associated with a similarity771
solution of index m = 1. Its amplitude is also expected to be smaller. This is in qualitative772
agreement with the preliminary results that are provided in Appendix D.1 for an attractor773
with a phase shift. A much weaker amplitude is indeed obtained on the attractor in that case,774
but surprisingly the E−1/3 scaling seems to be still valid. Developing an asymptotic theory775
to explain this observation is one of our future objectives.776
Every attractor exists in a frequency range where the associated Lyapunov number tends777

to zero and minus infinity at the two ends (Rieutord et al. 2001). The attractor we have778
considered is at a frequency far from these two ends. At the frequency where the Lyapunov779
number is zero, the corresponding contraction factor (4.18) tends to 1. At the same time, the780

amplitude C0 (4.22) and the distance L(s)
0 of the first point to the source diverge, suggesting781

that a stronger solution may exist. This is confirmed by the numerical example shown in782
figure 16 of Appendix D.2 where an amplitude scaling as E−1/2 is obtained. Such a scaling783
could be related to a resonance with an attractor eigenmode, as first explained by Rieutord784
& Valdettaro (2010). At the frequency where the Lyapunov number is −∞, the attractor785
converges towards the critical point. The attractor solution and the solution generated from786
the critical point are not separated anymore. The numerical results shown in figure 17 of787
Appendix D.3 demonstrate that the solution has an amplitude scaling close to E−0.286 in that788
case. An asymptotic theory explaining this scaling remains to be developed.789
In this work, we have only considered two-dimensional (2D) configurations. Some of the790

results are expected to be also valid in three-dimensional axisymmetric (3DA) configurations.791
For instance, in 3DA, the characteristics in a meridional plane remain the same as in 2D, so792
the critical lines and the attractors are located at the same place. A similarity solution can793
also be constructed to describe the internal shear layers far from the axis in 3DA. It has the794
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same expression as in 2D, rescaled by the square root of the distance to the rotation axis.795
It has already been used for the case of a viscous forcing (Le Dizès & Le Bars 2017; He796
et al. 2022, 2023). Yet, there is an important difference that is worth mentioning. In 3DA,797
the similarity solution gains a π/2 phase jump as it crosses the axis, whereas there is no such798
phase jump in 2D. This naturally affects the total phase shift obtained on a periodic orbit in799
3DA, which will then in general be different from the 2D problem. In view of the crucial role800
played by this phase shift in the determination of the amplitude of the similarity solution,801
one can therefore expect some important effects, especially for the configurations where the802
phase shift is non-zero in one case, and zero in the other.803
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Appendix A. Mathematical details of analytically continuing the solution (3.6)811

In this section, we will show how to analytically continue the solution (3.6) from the812
evanescent regime (ω > 2) to the propagating regime (0 < ω < 2). As in Voisin (2021),813
the continuation is implemented with the Lighthill’s radiation condition, by adding to the814
frequency a small positive imaginary part ε which will tend to zero. Equivalently, the815
following replacement will be performed816

ω → ω + i0 = lim
ε→0+

(ω + iε ). (A 1)817

Following Voisin (2021), we aim to express the stretched elliptic coordinates (σ, τ) in terms818
of the more comprehensible characteristic coordinates (x±, z±) (2.24). Combining (3.2) and819
(3.5), we have820

sinhσ cos τ =
√
ω2 − 4

2
x
η
, coshσ sin τ =

ω

2
z
η
. (A 2a, b)821

Expanding the above expressions with ω = 2 cos θc + iε (0 < ε/2 � 1), we obtain822

sinhσ cos τ ∼ i
x
η

(
sin θc − i

ε

2
cot θc

)
, coshσ sin τ ∼

z
η

(
cos θc + i

ε

2

)
. (A 3a, b)823

Moreover, using the definitions of the characteristic coordinates (2.24), we get824

cosh
(
σ ∓ iτ − i

π

2

)
∼

x±
η
∓ i

ε

2
1

sin θc
z±. (A 4)825

When ε tends to 0, we can write826

σ ∓ iτ − i
π

2
= arcosh

(
x±
η

)
. (A 5)827

Then, replacing e−σ±iτ in (3.6) with the above formula, we obtain the solution (2.26) and828

(3.7). Note that the term 2/(ω −
√
ω2 − 4) in (3.6) simply corresponds to eiθc .829

The determination of the square roots (3.8) is derived by the replacement830

x± → x± ∓ i0 sign(z±). (A 6)831
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Appendix B. Global viscous solution in the unbounded domain832

This appendix is based on a generous contribution from Bruno Voisin.833
In the unbounded domain, a global viscous solution can be obtained from the global834

inviscid solution, by following Hurley (1997); Hurley & Keady (1997). The global inviscid835
solution (3.7,3.9) can be re-expressed as a spectral integral, with the assistance of a Bessel836
function J1. Then an exponential factor accounting for viscous attenuation can be added into837
the integral. Using the inverse Fourier transform838 ∫ ∞

0
J1(κ)exp(iκx)

dκ
κ
= i

[
x −

√
(x + i0)2 − 1

]
, (B 1)839

taken for example from table 5 of Voisin (2003), we have840

ψ± = ±
η

2
eiθc sign z±

∫ ∞

0
J1(κη)exp(∓iκx± sign z±)

dκ
κ
. (B 2)841

Similarly, writing842 ∫ ∞

0
J1(κ)exp(iκx)dκ = 1 −

x√
(x + i0)2 − 1

, (B 3)843

we have844

vz± =
η

2
ei(θc−π/2)

∫ ∞

0
J1(κη)exp(∓iκx± sign z±)dκ. (B 4)845

The Bessel function J1 in these integrals represents the spatial spectrum of the cylinder,846
consistent with the application of the boundary integral method to internal gravity waves by847
Voisin (2021); see the second entry in table 5 there. Introducing Cartesian coordinates (k,m)848
and characteristic coordinates (k±,m±) in wavenumber space, related by849

k± = k sin θc ∓ m cos θc, m± = ±k cos θc + m sin θc, (B 5a, b)850

the complex exponential may be interpreted as the phase factor of each individual plane wave851
component, exp(ik±x± + im±z±) with852

k± = ∓κ sign(z±), m± = 0, (B 6a, b)853

consistent with the dispersion relation m+m− = 0.854
In the presence of viscosity, the equations of motion (2.3) yield the wave equation855

[
(iω + E∇2)2∇2 + 4

∂2

∂z2

]
ψ = 0, (B 7)856

with the dispersion relation857
[
ω + iE(k2 + m2)

]2
(k2 + m2) = 4m2. (B 8)858

Using characteristic coordinates in wavenumber space (B 5), the dispersion relation can be859
expressed as860

m±m∓ = iE(k2
± + m2

±)2 cos θc −
E2

4
(k2
± + m2

±)3, (B 9)861

with862

m∓ = ∓k± sin(2θc) − m± cos(2θc). (B 10)863

For small Ekman number E � 1, this becomes864

m± = ∓i
E

2 sin θc
k3
±. (B 11)865
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Critical line x⊥ x ‖ v‖

L1 x− − η z−
η1/2

23/2 ei(θc+π/2)
(

2 sin θc
Ex‖

)1/6
h1/2(ζ )

L2 −x+ − η z+
η1/2

23/2 ei(θc+π/2)
(

2 sin θc
Ex‖

)1/6
h1/2(ζ )

L3 −x− + η −z−
η1/2

23/2 eiθc
(

2 sin θc
Ex‖

)1/6
h1/2(ζ )

L4 −x+ + η z+ −
η1/2

23/2 eiθc
(

2 sin θc
Ex‖

)1/6
h1/2(ζ )

Table 2: Local expansions of the waves close to the critical rays.

turning the streamfunction into866

ψ± = ±
η

2
eiθc sign z±

∫ ∞

0
J1(κη)exp(−βκ3 |z± |)exp(∓iκx± sign z±)

dκ
κ
, (B 12)867

and the velocity into868

vz± =
η

2
ei(θc−π/2)

∫ ∞

0
J1(κη)exp(−βκ3 |z± |)exp(∓iκx± sign z±)dκ, (B 13)869

with870

β =
E

2 sin θc
. (B 14)871

In this way, adapting the approach of Hurley (1997) and Hurley & Keady (1997), a global872
viscous solution has been obtained. It is similar, given the different geometry, to the solution873
of Le Dizès (2015, eqs. (3.21)-(3.22)) and Le Dizès & Le Bars (2017, eq. (3.4)) for the waves874
from a librating disk. Voisin (2020) has shown that this solution describes the wave structure875
both in the far field and in the near field, provided the assumption E � 1 holds.876
In figures 5 and 6, we compare the numerical solution (black solid lines) with the global877

viscous solution (B 13; green dotted lines) for E = 10−10. One can see that they closely agree878
with each other everywhere.879
For small E, close to the critical rays, the main contribution to the integral (B 13) comes880

from large wavenumbers. Replacing the Bessel function by its expansion for large arguments881

J1(κη) ∼

√
2
πκη

sin(κη − π/4), (B 15)882

gives883

vz± ∼
η1/2

23/2 eiθc
(
2 sin θc
E |z± |

)1/6 {
ih1/2



(
2 sin θc
E |z± |

)1/3
(∓x± sign z± − η)


884

−h1/2



(
2 sin θc
E |z± |

)1/3
(∓x± sign z± + η)



}
, (B 16)885

with h1/2 the Moore-Saffman function (2.35). For the rays L1 to L4, this gives the local886
expressions in table 2, consistent with (2.34) and (3.13).887
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Critical line Amplitude CN
j,0 x ‖ j,0 x⊥j,0

L1 CN
1,0

−x+z√
2

x+z−
√

2η
√

2

L2 CN
1,0 l1 +

x+z−
√

2η
√

2
−x+z−

√
2η

√
2

L3 CN
1,0k−1/2

3c (l1 + l2)k3
3c +

x−z+
√

2η
√

2
−x−z+

√
2−2η2

√
2

L4 CN
1,0 l1 + l2 + l3k−3

3c +
−x−z+

√
2−2η2

√
2

x−z−
√

2η
√

2

L5 −CN
1,0 l1 + l2 + l3k−3

3c + l4 +
−x+z+

√
2η

√
2

x+z−
√

2η
√

2

Table 3: Amplitudes and local coordinates of the northward beam from L1 to L5.

Critical line Amplitude CS
j,0 x ‖5,0 x⊥j,0

L5 CS
5,0

−x−z+
√

2η
√

2
−x−z+

√
2η

√
2

L4 −CS
5,0 l5 +

x+z−
√

2η
√

2
−x+z+

√
2η

√
2

L3 −CS
5,0k1/2

4c (l5 + l4)k−3
4c +

−x+z+
√

2η
√

2
x+z−
√

2−2η2
√

2

L2 −CS
5,0 l5 + l4 + l3k3

4c +
−x−z+

√
2−2η2

√
2

x−z+
√

2η
√

2

L1 −CS
5,0 l5 + l4 + l3k3

4c + l2 +
x−z+

√
2η

√
2

−x−z+
√

2η
√

2

Table 4: Amplitudes and local coordinates of the southward beam from L5 to L1.

Appendix C. Properties of the similarity solution on the first cycle for the periodic888
orbit case (θc = π/4).889

In this section, we provide the value of the quantities needed to define the similarity solution890
(2.34) on the first cycle of the periodic orbit issued from the critical point Sc for the case891
θc = π/4.892
The results are shown in tables 3-4 for the northward and southward beams, respectively.893

The amplitudeCj,0 and the local coordinates (x ‖ j,0, x⊥j,0) for the first cycle are given for each894
segment L1, ..., L5 defined in figure 8(b). Note that, the amplitudes are expressed in terms of895
CN

1,0 and CS
5,0 for the northward and southward beams respectively. The expressions of CN

1,0896

and CS
5,0 are given by (4.15).897

The lengths l1, .., l5 of the segment L1, .., L5 that appear in the expression of x ‖ are given898
by899

l1 = η, , l2 =

√
1 − η2 − η, l3 = 2η, l4 = l2, l5 = l1. (C 1)900

After one cycle, the parallel coordinate increases by the distance traveled along the closed901
circuit, which is902

L j =

{
l1 + l2 + l3k−3

3c + l4 + l5, for L1, L2, L4, L5;
(l1 + l2 + l4 + l5)k3

3c + l3, for L3.
(C 2)903
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Figure 15: Attractors at η = 0.44 and ω = 1.1329: (a) contour of numerical |vy | at
E = 10−11; (b) profile of vy at E = 10−11 on the white cut in (a); (c) Ekman number
scalings of the velocity amplitude at the critical positions on the white cut in (a).

Appendix D. Numerical solutions for different types of attractors904

In this section, we consider the numerical solutions obtained for frequencies and aspect ratios905
for which the attractor has particular properties.906
In § D.1, we consider an attractor with a phase shift. In § D.2 and § D.3, we consider an907

attractor without phase shift but for which the contraction factor is either 1 or 0. This type of908
attractors are obtained on the border of the frequency range of existence of a given attractor.909
Here we consider the frequencies ωl = 0.806225774 and ωr = 0.824949354 which are the910
limit values for the existence of the equatorial attractor for the aspect ratio η = 0.35 (Rieutord911
et al. 2001).912

D.1. Attractor with a phase shift913

We can obtain attractors with a phase shift at η = 0.44 and ω = 1.1329. As shown in figure914
15(a), both the polar and equatorial attractors have one touching point on the horizontal axis915
Ox. Therefore, the phase shift for them is π. Figure 15(b) shows the profile vy on the white916

cut in figure 15(a) at E = 10−11, which illustrates that the solution at the attractor position is917
much weaker than those at other critical positions. Figure 15(c) demonstrates that the Ekman918
number scalings of the velocity amplitude are still E−1/6 and E−1/3 close to the critical point919
and attractor respectively.920

D.2. Extremely weak attractor without phase shift921

Figure 16 shows the results for the equatorial attractor at ω = ωl , for which the contraction922
factor is close to 1. The equatorial attractor is then extremely weak with a Lyapunov number923
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Figure 16: Equatorial attractor at η = 0.35 and ω = 0.806225774: (a) contour of
numerical |vy | at E = 10−11; (b) profiles of vy on the white cut in (a) at different Ekman

numbers (x∞, attractor position); (c − d) Ekman number scalings for the width and
velocity amplitude of the shear layer around the equatorial attractor.

close to 0. For this frequency, the equatorial attractor is composed of two segments connecting924
the inner core equator with the outer core equator.925
Figure 16(a) shows that the response around the equatorial attractor is stronger than around926

the polar attractor. Its amplitude strongly increases with the Ekman number, as observed in927
figure 16(b). As shown in figure 16(c, d), the width and the velocity amplitude of the internal928
shear layer around the equatorial attractor scale as E1/4 and E−1/2 respectively. This is clearly929
different from the scalings in E1/3 and E−1/3 that we have obtained for an attractor with a930
contraction factor different from 1.931
Such scalings were already obtained by Rieutord & Valdettaro (2010) for attractors with932

vanishing Lyapunov number forced by tides. They explained them by a resonance with an933
attractor eigenmode. The scaling in amplitude comes from the frequency of this eigenmode934
which expands as ω ∼ ωl + E1/2ω1, while the scaling in E1/4 of the width is directly related935
to the structure of this eigenmode.936

D.3. Extremely strong attractor without phase shift937

In figure 17, we show the results for the equatorial attractor at ω = ωr . For this frequency,938
the attractor is extremely strong as its Lyapunov number and contraction factor are close to939
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Figure 17: Same caption as in figure 16 but for η = 0.35 and ω = 0.824949354.

minus infinity and zero respectively. Figure 17(a) shows that the equatorial attractor touches940
the inner boundary at the critical point. The singularities associated with the critical point941
and the attractor have then merged in that case. The velocity profiles for the internal shear942
layer around the equatorial attractor are shown in figure 17(b). Figure 17(c) shows that the943
width of the internal shear layer still scales with E1/3. However, figure 17(d) shows that944
the amplitude scaling of the velocity is close to E−0.286. This amplitude is smaller than the945
E−1/3 we have found for a regular attractor. Surprisingly, the merging of the singularities has946
therefore not boosted the response. The amplitude scaling is just in between the E−1/3 and947
E−1/6 obtained for the attractor solution and the critical-point solution when they are well948
separated from each other.949
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