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In this study, we demonstrate, for the first time, the existence of a short-wave instability8
in a Lamb-Oseen vortex subjected to a triangular strain field generated by three satellite9
vortices, which we term the triangular instability. We identify this instability by numerically10
integrating the linearized Navier-Stokes equations around a quasi-steady base flow to capture11
the most unstable mode and validate it by comparing results with theoretical predictions.12
We evaluate this instability by calculating the growth rates associated with the parametric13
resonant coupling of two Kelvin waves with the triangular strain field in the limit of small14
strain rate and large Reynolds number. Our analysis reveals that resonance occurs only15
for combinations of the azimuthal wavenumbers 𝑚 = 1 and 𝑚 = −2 (or their symmetric16
counterparts with opposite signs). We observe several unstable modes with positive growth17
rates for a moderate viscous Reynolds number of 104 and a straining parameter value of18
𝜖 = 0.008, defined as the cube of the ratio of the core size to the distance from the satellite19
vortices. The most unstable mode arises at the crossing point of the second branch of the20
dispersion curves for 𝑚 = 1 and the first branch for 𝑚 = −2. This mode, with an axial21
wavenumber 𝑘 ≈ 5.18/𝑎 and frequency 𝜔 ≈ −0.312Ω (𝑎 and Ω represent the core size and22
the angular velocity at the center, respectively), exhibits the largest growth rate, persisting23
across varied Reynolds numbers and 𝜖 values, and suffers negligible critical layer damping.24

1. Introduction25

Vortices are a common phenomenon in fluid motion, occurring at scales ranging from the26
tiny vortices in a cup of coffee to the massive Great Red Spot on Jupiter. The study of vortex27
dynamics has been a central area of research since the 19th century, pioneered by Helmholtz28
and Lord Kelvin, and later advanced through the contributions of Saffman and other29
researchers in fluid dynamics and applied mathematics. The fundamental concepts in this field30
are comprehensively outlined in Saffman’s renowned book, ”Vortex Dynamics” (Saffman31
1995). A particularly significant aspect of vortices is their susceptibility to instabilities,32
which can arise from interactions with their surroundings or within the vortices themselves.33
In recent decades, extensive research has been conducted on vortex stability, with particular34
focus on vortex pairs, which are crucial in the context of aircraft trailing wakes and their35
amplification. An extensive summary of the general stability study of vortices can be found in36
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Ash et al. (1995), and the advancements in the study of vortex pair dynamics and instabilities37
have been thoroughly reviewed by Leweke et al. (2016). Such studies have also been essential38
for understanding how turbulence arises from instabilities caused by eddy interactions and39
the dynamics of coherent structures within turbulent flows (Pullin & Saffman 1998).40

Vortex pairs are known to experience two main types of instabilities: long-wave and41
short-wave instabilities. These are often referred to as cooperative instabilities, as they42
primarily result from the interaction between the vortices within the pair. They are also43
three-dimensional in nature. Long-wave instability, also known as Crow instability, occurs44
at scales much larger than the size of the vortex core. It was discovered by Crow (1970) for45
a vortex pair. More studies about the long-wave instabilities can be found in Brion et al.46
(2007), Leweke & Williamson (2011), and similar works. It is often observed in the sky,47
affecting the contrails of aircraft flying at high altitudes.48

In contrast, short-wave instability occurs at scales comparable to or smaller than the49
vortex core. Moore & Saffman (1975) and Tsai & Widnall (1976) were the first to50
discover and explain the mechanism of this instability. It is understood to occur because51
the streamlines of the vortex undergo elliptic deformation due to the strain induced by the52
adjacent vortex, causing two Kelvin waves (small perturbations) with specific azimuthal53
wavenumber combinations to resonate with the strain and become unstable. Due to the54
elliptic nature of the streamline deformation, this is also referred to as elliptic instability and55
is sometimes known as the Moore-Saffman-Tsai-Widnall (MSTW) instability. An extensive56
summary on the elliptic instability can be found in Kerswell (2002), and some important57
original contributions include Pierrehumbert (1986), Bayly (1986), Leweke & Williamson58
(1998), Le Dizès & Laporte (2002), Meunier & Leweke (2005), Schaeffer & Le Dizès (2010),59
etc. The modes with 𝑚 = 1 and 𝑚 = −1, also known as stationary helical modes, were found60
to be the most unstable.61

Tsai & Widnall (1976) analyzed the Rankine vortex, while Moore & Saffman (1975)62
focused on the Lamb-Oseen vortex. For the Rankine vortex, the eigenvalue problem for63
linearized disturbances on the unstrained vortex can be solved analytically, yielding the64
eigenmodes and eigenfunctions of the Kelvin waves. These eigenfunctions are expressed in65
terms of Bessel functions (Tsai & Widnall 1976; Saffman 1995; Fukumoto 2003).However,66
for the Lamb-Oseen and Batchelor vortices, obtaining explicit analytical expressions for the67
eigenfunctions is not possible. Nevertheless, their asymptotic forms can be derived in the limit68
of large k, as shown by Le Dizès & Lacaze (2005). Using the Wentzel–Kramers–Brillouin69
(WKB) approach, they provided approximate analytical expressions for the dispersion70
relation and eigenmodes and discussed the conditions for the existence of regular neutral71
core and ring modes. Sipp & Jacquin (2003), Fabre et al. (2006) solved the problem72
numerically using a Chebyshev spectral collocation method. Their findings revealed that73
many eigenmodes are suppressed due to critical layer damping, which arises due to the74
smooth distribution of vorticity. Additionally, Eloy & Le Dizès (2001) performed a detailed75
stability analysis of the Rankine vortex, identifying resonant combinations beyond the helical76
modes. Their analysis was also extended to consider a multipolar straining field.77

Another type of short-wave instability was found to occur theoretically in vortex rings by78
Hattori & Fukumoto (2003) and Fukumoto & Hattori (2005). It was caused by the inherent79
curvature of the vortex rings and occurred for combinations of azimuthal wavenumbers80
differing by one. The authors conducted stability analyses on the Rankine vortex to deduce81
the characteristics of curvature instability. Blanco-Rodrı́guez & Le Dizès (2017) theoretically82
computed the growth rates for a Batchelor vortex, and, along with Blanco-Rodrı́guez &83
Le Dizès (2016), demonstrated that curvature also contributes to elliptic instability. Hattori84
et al. (2019) further confirmed curvature instability in a vortex ring with swirl through85
numerical stability analysis using DNS. Recently,Xu et al. (2025) proposed a numerical86
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procedure to study instabilities in helical vortex systems and showed that curvature instability87
is also present in such systems.88

Although elliptic and curvature instabilities have been extensively studied over the past few89
decades, much less attention has been given to multipolar instabilities, particularly triangular90
instabilities. The only studies on triangular instability have been conducted for the Rankine91
vortex (Eloy et al. 2000; Eloy & Le Dizès 2001; Eloy et al. 2003), and there are no theoretical92
or numerical studies confirming the existence of triangular instability for Lamb-Oseen or93
Batchelor vortices. The existence of triangular instability in more realistic vortices like the94
Lamb-Oseen and Batchelor vortices could have significant implications and provide valuable95
insights for engineering applications such as turbomachines with three blades, like ship or96
aircraft propellers, wind turbines, and more. In such cases, the helical vortices that form97
around the central hub vortex may induce triangular straining on the hub vortex, potentially98
triggering instabilities. Additionally, long-lived non-axisymmetric vortices, such as dipoles,99
tripoles, and higher-order multipolar structures, have been observed in rotating turbulent100
flows through experiments and direct numerical simulations (Hopfinger & Van Heijst 1993;101
Carnevale & Kloosterziel 1994; Rossi et al. 1997; Dritschel 1998). Kelvin waves have also102
been identified on vortex filaments in transitional flows (Arendt et al. 1998), with elliptic and103
multipolar instabilities potentially explaining the emergence and growth of these waves.104

In this study, we aim to investigate the stability of a Lamb-Oseen vortex under triangular105
straining to short-wave instabilities through the parametric resonance of Kelvin waves. This106
is achieved by conducting a linear stability analysis using both direct numerical simulations107
(DNS) and theoretical analysis. Our objectives include computing and comparing the growth108
rates and structures of the unstable modes (if present) obtainedthrough a linearized DNS109
and theoretical analysis. Non-linear effects are not considered in this work. Although the110
simulations we conduct are linearized DNS, we will refer to them simply as DNS for brevity.111
In the DNS approach, we first determine the base flow and then integrate the linearized112
Navier-Stokes equations to identify the most unstable mode. In the theoretical analysis, we113
derive an approximation for the base flow under the assumption of a weak triangular straining114
field and use this approximation to derive linear perturbation equations for the strained Lamb-115
Oseen vortex. These equations are then used to compute the growth rates of the resonant116
modes. To identify the resonant modes, we solve the eigenvalue problem corresponding117
to the unperturbed vortex. Further details of the methods and analysis are provided in the118
subsequent sections.119

The paper is structured as follows. In Section 2, we formulate the problem and describe the120
numerical procedure in detail, both for obtaining the base flow, and performing the linearized121
DNS to identify the most unstable mode. In Section 3, we derive the base flow using theoretical122
analysis and outline the procedure for obtaining its analytical expressions. We then compare123
these theoretical results with those from DNS. In Section 4, we provide a comprehensive124
explanation of the linear stability analysis, including the linearized perturbation equations125
and the expressions for the growth rates of the resonant modes. We then compare the results126
from DNS and theory. Finally, in Section 5, we summarize the key findings of this work and127
discuss potential future research directions.128

2. Numerical procedure129

Before delving into the theoretical analysis, we present an outline and detailed description130
of the numerical procedure used to perform the DNS.131
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Figure 1: Geometry of the hub vortex and the three satellite vortices

2.1. Outline132

As an initial state, we consider a central hub Lamb-Oseen vortex surrounded symmetrically133
by three satellite Lamb-Oseen vortices in an incompressible, viscous fluid, where the satellite134
vortices provide triangular straining to the hub vortex, similar to the illustration in figure 1.135
The satellite vortices are positioned in the vertices of an equilateral triangle, with the hub136
vortex at its center. If Γ denotes the circulation of the hub vortex, the circulation of each137
satellite vortex is chosen to be −Γ. This choice ensures that the velocity induced by the other138
vortices at the center of any vortex vanishes. As a result, the vortices are not expected to move.139
In this manner, the system composed of hub and satellite vortices can form a quasi-steady140
state, the stability of which can be analysed.141

2.2. Numerical methods142

The numerical analysis will involve two main steps. First, we obtain the quasi-steady base143
flow by solving the two-dimensional (2-D) Navier-Stokes equations; then, we integrate the144
linearized Navier-Stokes equations around this base flow over a sufficiently long duration to145
determine the most unstable mode, if it exists, for a linear disturbance with a specified axial146
wavenumber, as detailed in the following paragraphs.147

The analysis is performed in polar coordinates. The base flow is computed in 2-D (𝑟, 𝜃),148
while the linear stability analysis extends to three dimensions (3-D) (𝑟, 𝜃, 𝑧). The linearized149
Navier-Stokes equations for the disturbances 𝑢, 𝑣, 𝑤 and 𝑝 around a given 2-D base flow150
(𝑈,𝑉) can be expressed as151
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where ∇2 = 𝜕2
𝑟 + (1/𝑟)𝜕𝑟 + (1/𝑟2)𝜕2

𝜃
+ 𝜕2

𝑧 . These equations are discretized and solved157
numerically on the same 2-D grid as the base flow. By assuming periodic boundary conditions158
in the 𝑧-direction, the above equations are separable in the 𝑧-direction, which allows us to159
consider a single wave of the form160

𝐹 (𝑡, 𝑟, 𝜃, 𝑧) = 𝑒i𝑘𝑧
∑︁
𝑚

�̂�𝑚(𝑡, 𝑟)𝑒i𝑚𝜃161

for 𝑢, 𝑣, 𝑤 and 𝑝. The 2-D numerical domain spans 0 ⩽ 𝑟 ⩽ 𝐿𝑟 and 0 ⩽ 𝜃 ⩽ 2𝜋, with162
𝐿𝑟 = 1000. For spatial discretization, we use a sixth-order accurate compact scheme (Lele163
1992) in 𝑟 and a Fourier spectral method in 𝜃, with periodic boundary conditions. Time-164
marching is achieved through a fourth-order accurate Runge-Kutta method. To avoid the165
singularity at 𝑟 = 0, we expand the 𝑟 axis to −𝐿𝑟 ⩽ 𝑟 ⩽ 𝐿𝑟 and omit a grid point at166
𝑟 = 0. The Poisson equation for the pressure is decomposed into a set of ordinary differential167
equations for individual Fourier modes, which are also solved with the sixth-order compact168
scheme. For temporal discretization, we apply the Crank-Nicolson scheme to the viscous169
terms and the second-order Adams-Bashforth method to the other terms. Further details are170
provided in appendix A of Hattori et al. (2019).171

The base flow is obtained once the vortices have equilibrated in the field of the other172
vortices. This rapid relaxation process has been described in the literature for two vortices173
(Sipp et al. 2000b; Le Dizès & Verga 2002). After equilibrium is reached, the 2-D solution174
evolves on a slow viscous time scale. This evolution will not be considered further, as we175
assume a frozen base flow and linearize the Navier-Stokes equations around it. The same176
numerical methods and discretization used for obtaining the base flow are applied to integrate177
the frozen linearized Navier-Stokes equations.178

2.3. Initial conditions and simulation parameters179

The vortices are initially positioned as shown in figure 1. The hub vortex is located at the180
center of the frame, and the three satellite vortices are placed at a distance of 𝑅 from the181
hub vortex center, with an angular separation of 2𝜋/3. Initially, all vortices are assumed to182
have a Gaussian vorticity profile with a core radius 𝑎𝑖 . After the relaxation process, the core183
size of the vortices has slightly increased to a larger value 𝑎. This new core size will be used184
to non-dimensionalize all spatial variables in the theory. The vortex circulation, however, is185
conserved. Thus, the Reynolds number Re defined by186

Re =
Γ

2𝜋𝜈
, (2.4)187

where 𝜈 is the kinematic viscosity, does not change. We start the simulation with a core size188
of 𝑎𝑖 = 0.8 for both hub and satellite vortices and stop it when the core size of the hub vortex189
reaches 𝑎 = 1, which occurs well after the establishment of a quasi-steady state. The distance190
between the hub and the satellite vortices, denoted by 𝑅, is set to 𝑅 = 5. Unlike the growing191
core size, this distance remains nearly constant as the base flow reaches a quasi-steady state.192
Thus, at the quasi-steady state, we have 𝑎 = 1 and 𝑅 = 5. The initial circulation Γ of the193
hub vortex is set to 2𝜋 (−Γ for the satellite vortices). We tracked the circulation, first-order,194
and second-order moments of the vorticity field of the hub vortex throughout the simulation,195
which allowed us to compute its core radius and keep track of how it changes with time. The196
details of these calculations are provided in appendix A.197

In the simulations, we select Re = 103 to obtain the base flow but choose a larger value198
Re = 104 for the perturbation analysis. This large value of the Reynolds number for the199
perturbation analysis will guarantee the existence of unstable modes. The choice of a smaller200
value of the Reynolds number for the base flow is just to reach the quasi-steady state of core201
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size 𝑎 = 1 from 𝑎𝑖 = 0.8 more rapidly. This is justified because the quasi-steadystate is not202
expected to depend on the Reynolds number (Le Dizès & Verga (2002)). The most unstable203
mode for a given axial wavenumber 𝑘 , if it exists, is obtained by DNS from a random vorticity204
initial condition. The irrelevant modes decay and the unstable modes grow exponentially,205
from which the growth rate can be obtained. A non-uniform grid is used where the number206
of grid points in 𝑟 is taken to be 695 and the number of fourier modes in 𝜃 to be 512. Radial207
grid spacing of 0.0475 is used in the region of hub vortex and satellite vortices.208

3. Base flow: theory and results209

In this section, we present the theoretical analysis used to derive the analytical expressions210
for the base flow, which are then applied in the linear stability analysis. While the numerical211
simulations consider the full system composed of the hub vortex and the three satellite212
vortices, the theory focuses on the hub vortex. The objective is to obtain an approximation213
for the velocity field of the hub vortex in the presence of satellite vortices. Such an analysis214
has already been performed for a vortex pair (Le Dizès & Verga 2002).215

The idea is to obtain an asymptotic solution in the limit of small 𝑎/𝑅.For this purpose, we216
introduce a small parameter 𝜖 = (𝑎/𝑅)3, giving us 𝜖 = 0.008, for the values of 𝑎 and 𝑅 at217
the quasi-steady state. The field induced by the satellite vortices on the hub vortex can then218
be modelled using a point vortex approximation for the satellite vortices. In the center of219
the hub vortex, this gives an expression for the induced velocity field that reads, in cartesian220
coordinates, at leading order, as221

𝑈𝑥 = −3𝜖 (𝑥2 − 𝑦2), 𝑈𝑦 = 6𝜖𝑥𝑦, (3.1)222

and upon transformation into 2-D polar coordinates, we get the components in 𝑟 and 𝜃 as223

𝑈𝑟 = −3𝜖𝑟2 cos 3𝜃, 𝑈𝜃 = 3𝜖𝑟2 sin 3𝜃. (3.2)224

Thus, (𝑈𝑟 ,𝑈𝜃 ) does correspond to a triangular straining field.225
In Moffatt et al. (1994), Jiménez et al. (1996) and Le Dizès (2000), it was theoretically226

derived and shown how a Lamb-Oseen vortex interacts with aquadripolar straining field.227
The interaction with a triangular straining field is similar.We begin by taking a perturbation228
expansion of the streamfunction 𝜓(𝑟, 𝜃) up to 𝑂 (𝜖). For the 𝑂 (𝜖) term, we assume a normal229
modes form corresponding to a triangular azimuthal wavenumber (see Section 2. in Le Dizès230
(2000) for a detailed and a more general derivation). The resulting expression for 𝜓 is231
substituted in the 2-D inviscid steady-state vorticity equation given by232

𝜕𝜁

𝜕𝑟

𝜕𝜓

𝜕𝜃
− 𝜕𝜓

𝜕𝑟

𝜕𝜁

𝜕𝜃
= 0, (3.3)233

where the vorticity field 𝜁 (𝑟, 𝜃) is given by234

𝜁 = −∇2𝜓. (3.4)235

The approximation of the 2-D velocity field (𝑈,𝑉) for the triangular-strained Lamb-Oseen236
vortex can then be obtained from the streamfunction as237

𝑈 = 𝜖
3 𝑓 (𝑟)
𝑟

cos 3𝜃 +𝑂 (𝜖2), (3.5)238

𝑉 = 𝑟Ω0(𝑟) − 𝜖 𝑓 ′ (𝑟) sin 3𝜃 +𝑂 (𝜖2), (3.6)239

where240

Ω0(𝑟) =
(1 − 𝑒−𝑟

2)
𝑟2 (3.7)241
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Figure 2: Plot of 𝑓 (𝑟)/𝑟3 as a function of the radial coordinate 𝑟. The value at zero is
𝑠0 ≈ 1.7724.

is the angular velocity of the Lamb-Oseen vortex, and 𝑓 (𝑟) a function governed by the242
following second-order linear ordinary differential equation243

𝑓 ′′ + 𝑟−1 𝑓 ′ −
(
9𝑟−2 + 4𝑟2(

1 − 𝑒𝑟
2 ) ) 𝑓 = 0, (3.8)244

with the boundary conditions,245

𝑓 (𝑟) ∼ 𝑠0𝑟
3, 𝑎𝑡 𝑟 → 0, (3.9)246

247
𝑓 (𝑟) ∼ 𝑟3, 𝑎𝑡 𝑟 → ∞. (3.10)248

The constant 𝑠0 ≈ 1.7724 appearing in these equations is a numerical constant derived from249
the integration of equation (3.8). It corresponds to the amplitude of the straining field in the250
vortex center, normalized by the amplitude of the straining field at the same point in the251
absence of the vortex. This ratio corresponds to the value at the origin of the function plotted252
in figure 2.253

The vorticity field of the hub vortex can be written as 𝜁 = 𝜁0 + 𝜖𝜁1 +𝑂 (𝜖2) with254

𝜁0 = 2𝑒−𝑟
2
, 𝜁1 = 𝑔(𝑟) sin 3𝜃, (3.11)255

with256

𝑔(𝑟) = 4𝑟2 𝑓 (𝑟)
1 − 𝑒𝑟

2 . (3.12)257

We compare the DNS-obtained base flow to that derived theoretically to ensure consistency258
before conducting a linear stability analysis of small disturbances on the base flow. This259
process involves two steps. First, we verify that a quasi-steady state is reached in DNS by260
plottingthe vorticity field 𝜁 (𝑟, 𝜃) and streamfunction𝜓(𝑟, 𝜃) scatter points, where the vorticity261
and the streamfunction are related via the Poisson’s equation 𝜁 = −∇2𝜓. The absence of262
dispersed regions confirms a quasi-steady state. Such a verification is shown in figure 3. We263

also calculate the Euler-residue 𝑁 given by 𝑁 =
[〈
(u · ∇𝜔)2〉 /〈𝜔2〉]1/2 · 2𝜋𝑅2/Γ, which264

compares the inviscid evolution time scale of the vorticity distribution with the advection265
time (Sipp et al. 2000a). Figure 4 shows the Euler-residue, indicating that the quasi-steady266
state is reached well before 𝑎 = 1 (marked by the red diamond).267

Second, we compare the leading-order and correction terms of the vorticity field, ac-268
counting for triangular straining. In figure 5, we show such a comparison for 𝜖 = 0.008 and269
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𝜁

𝜓

(a)	𝑡 = 2.5 (b)	𝑡 = 87.35

Figure 3: Scatter plot of 𝜁 (𝑟, 𝜃) and Ψ(𝑟, 𝜃) for Re = 1000 and 𝜖 = 0.008; (a) during the
relaxation process at 𝑡 = 2.5 and (b) when the core size reaches 𝑎 = 1 at 𝑡 = 87.35 which
is well after the establishment of a quasi-steady state. The absence of dispersed regions in
(b) indicates that a quasi-steady state has been reached. Zoomed-in regions are included to

highlight the differences clearly.

𝑡	𝜈/2𝜋𝑎!

𝑁

Figure 4: Log-scale plot of Euler-residue 𝑁 versus 𝑡, scaled by viscous time. The red
diamond indicates the time when 𝑎 = 1.

Re = 1000. A good agreement is observed that validates the description of the base flow close270
to the hub vortex by equations (3.5)-(3.6). Figure 6(a) displays the streamlines of the base271
flow, illustrating the triangular straining effect caused by the three satellite vortices. However,272
the distortion near the vortex core remains subtle due to the weak strain (𝜖 = 0.008). The273
streamfunction, expanded up to first order in 𝜖 , is given by274

𝜓 = 𝜓0 + 𝜖 𝑓 (𝑟) sin(3𝜃) +𝑂 (𝜖2). (3.13)275

The streamlines, to order 𝜖 , are expressed as276

𝑟 = 𝑟0 + 𝜖𝑟𝜓 (𝜃), (3.14)277
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Figure 5: Comparison of the base flow vorticity field obtained with DNS (solid black line)
and theory (red dashed line) for Re = 1000 and 𝜖 = 0.008. (a) Leading order term; (b)

Correction term due to triangular straining.

𝑋

𝑌

𝑋

𝑌

(a) (b)

Figure 6: Two-dimensional visualization of the base flow. (a) Streamlines depicted by
solid black lines where the streamfunction 𝜓 = constant; plotted from 𝑟0 = 1 (innermost

contour) to 𝑟0 = 2.75 in the intervals of 0.25. The values of 𝜓 starting from 𝑟 = 1 are
2.05, 1.90, 1.74, 1.59, 1.47, 1.35, 1.24, 1.15. The corresponding unstrained streamlines are

depicted by dashed lines. (b) Contours of 𝜖𝜁1.

where substituting this into the perturbation expansion for the streamfunction yields278

𝑟𝜓 (𝜃) =
𝑓 (𝑟0)

𝑟0Ω0(𝑟0)
sin(3𝜃). (3.15)279

Here, 𝑟0 represents the streamlines of the unstrained vortex, while 𝜖𝑟𝜓 (𝜃) quantifies the280
distortion induced by triangular straining. Figure 6(b) shows the 2D representation of the281
vorticity field of the base flow, considering only the contribution from the correction term.282

4. Linear stability analysis - theory and results283

4.1. Perturbation equations of linear disturbances284

If one uses expressions (3.5)-(3.6) for the base flow, the linearized Navier-Stokes equations285
for the velocity-pressure field u = (𝑢, 𝑣, 𝑤, 𝑝) of the perturbations can be written in the form286 (

L 𝜕

𝜕𝑡
+ P 𝜕

𝜕𝑧
+M − V

𝑅𝑒

)
u = 𝜖

(
𝑒3i𝜃N + 𝑒−3i𝜃N

)
u, (4.1)287

where the matrices L, P, M, V, N are given in appendix B.288
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4.2. Triangular instability resonance mechanism289

The mechanism for the growth of perturbations in a triangular-strained vortex is the same290
as that for the elliptic instability in the quadripolar-strained vortex (Moore & Saffman 1975;291
Tsai & Widnall 1976). The only difference is that the triangular strain field corresponds to292
anazimuthal wavenumber 𝑚 = 3 perturbation of the vortex, while the elliptic strain field293
corresponds to an 𝑚 = 2 perturbation.294

As for the elliptic instability, the instability is associated with a phenomenon of resonance295
of two quasi-neutral waves of the underlying vortex with the strain field. These waves, also296
called Kelvin modes, have an expression of the form297

u = ũ(𝑟)𝑒i(𝑚𝜃+𝑘𝑧−𝜔𝑡 ) , (4.2)298

where 𝑚 is the azimuthal wavenumber, 𝑘 the axial wavenumber, 𝜔 the frequency, and ũ(𝑟)299
the eigenfunction field of the Kelvin mode. They satisfy the perturbation equations for the300
unstrained vortex301 (

𝜔L − 𝑘P + iM(𝑚) − i
𝑅𝑒

V(𝑚, 𝑘)
)

ũ = 0, (4.3)302

where M(𝑚) and V(𝑚, 𝑘) are obtained by replacing 𝜕/𝜕𝜃 with i𝑚 and 𝜕/𝜕𝑧 with i𝑘 , in the303
matrix operators M and V, given in appendix B.304

To get the possible coupling of two Kelvin modes with the strain field, one should find two305
neutral Kelvin modes (𝜔𝐴, 𝑘𝐴, 𝑚𝐴) and (𝜔𝐵, 𝑘𝐵, 𝑚𝐵) satisfying306

𝜔𝐴 = 𝜔𝐵, 𝑘𝐴 = 𝑘𝐵, |𝑚𝐴 − 𝑚𝐵 | = 3. (4.4)307

Kelvin modes of the Lamb-Oseen vortex have been analysed by Fabre et al. (2006). In a308
viscous fluid, Kelvin modes are always damped (Im(𝜔) < 0). Some of the Kelvin modes309
become neutral as the Reynolds number goes to infinity. But other continues to exhibit a large310
damping, which is associated with the presence of a critical layer (Sipp & Jacquin 2003).311
This feature makes the Lamb-Oseen vortex very different from the Rankine vortex for which312
there is no critical layer damping.313

4.2.1. Large-𝑘 asymptotic prediction of the Kelvin modes314

Le Dizès & Lacaze (2005) have developed an asymptotic theory using WKB analysis to315
describe the various types of Kelvin modes that can be obtained in the infinite Reynolds316
number and large axial wavenumber limit. For the Lamb-Oseen vortex, they found two types317
of neutral modes: regular neutral core modes where no critical point is present, and singular318
neutral core modes for which a critical point is presenton the real-axis but the critical layer319
damping is asymptotically small. They showed that the frequency range of each mode can320
be obtained by analyzing the three functions 𝜔±(𝑟) and 𝜔𝑐 (𝑟) defined by321

𝜔±(𝑟) = 𝑚Ω0(𝑟) ±
√︁

2Ω0(𝑟)𝜁0(𝑟), (4.5)322
323

𝜔𝑐 (𝑟) = 𝑚Ω0(𝑟). (4.6)324

The functions 𝜔±(𝑟) are known as the epicyclic frequencies. They define the upper and lower325
bounds of the frequency range within which regular neutral core modes (blue regions in326
figure 7) can exist at a given radial location 𝑟. Within this frequency range, the modes exhibit327
oscillatory behavior for radial positions less than 𝑟 and decay exponentially beyond that point.328
The function 𝜔𝑐 (𝑟), referred to as the critical frequency curve, gives the frequency at which329
a critical point occurs at 𝑟 . Regular modes cannot exist at these critical frequencies. However,330
the damping caused by the critical layer can become asymptotically small if the critical point331
for a given mode lies at a very large value of 𝑟 , far from the region where the mode behaves332

Rapids articles must not exceed this page length
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(a) (b)
𝜔
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#	

𝑟

Figure 7: Plot of the epicyclic frequencies 𝜔+, 𝜔− (solid) and the critical frequency 𝜔𝑐

(dashed) as a function of the radial coordinate 𝑟; (a) 𝑚 = 1 (b) 𝑚 = −2; in each figure, the
blue regions (resp. red regions) indicate the frequency intervals of regular neutral core
modes (resp. singular neutral core modes); the hatched region indicates the frequency

interval where resonance between 𝑚 = 1 and 𝑚 = −2 modes is possible.

neutrally. Such modes are called singular neutral core modes (red regions in figure 7). For333
each azimuthal wavenumber 𝑚, one can determine the corresponding frequency intervals334
in which these behaviors occur. For a more detailed explanation, readers are referred to335
Le Dizès & Lacaze (2005). The condition of resonance can therefore be analyzed by looking336
at the possible overlap of these frequency intervals for a couple of azimuthal wavenumbers337
𝑚 and 𝑚 + 3. This analysis leads to a unique possibility: only the couple (𝑚𝐴, 𝑚𝐵) = (1,−2)338
(and (𝑚𝐴, 𝑚𝐵) = (−1, 2) by symmetry) exhibits a frequency overlap. It corresponds to the339
frequency interval −0.387 < 𝜔 < 0, where 𝑚𝐴 = −2 singular core modes and 𝑚𝐵 = 1340
regular core modes both exist, as shown in figure 7.341

4.2.2. Numerical determination of the Kelvin modes342

The Kelvin modes can also be obtained by numerically solving the eigenvalue problem343
(4.3), and we use these numerically computed modes for the remainder of the analysis. Our344
numerical solver employs a Chebyshev spectral collocation method, following the approach345
of Fabre & Jacquin (2004).The eigenvalue problem defined in the domain 0 < 𝑟 < ∞ is346
extended to −∞ < 𝑟 < ∞ and mapped onto a contour in the complex-𝑟 plane. It is then solved347
in the Chebyshev domain (−1, 1) using 2(𝑁 +1) collocation points. A resolution of 𝑁 = 200348
is found to be sufficient. For the inviscid limit, we adopt a complex mapping function, similar349
to the one used by Fabre & Jacquin (2004), defined as350

𝑟 =
𝐻𝜉

1 − 𝜉2 + i
𝐴𝜉√︁

1 − 𝜉2
, (4.7)351

where the parameter 𝐻 controls the radial spreading of the collocation points, and the352
parameter 𝐴 determines the inclination of the contour in the complex plane. We also take353
advantage of the parity properties of the eigenfunctions. For odd values of 𝑚, we express354
�̃� and 𝑝 using odd polynomials, and �̃� and �̃� using even polynomials. Conversely, for even355
values of 𝑚, �̃� and 𝑝 are represented using even polynomials, while �̃� and �̃� are expressed356
using odd polynomials.357

The above procedure has been done for the two azimuthal wavenumbers 𝑚𝐴 = 1 and358
𝑚𝐵 = −2 and a wavenumber 𝑘 varying between 0 and 10at 𝑅𝑒 = 104. The result gives359
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Figure 8: Dispersion curves of the Kelvin modes, obtained by solving the eigenvalue
problem in (4.3) on the real axis for (a) 𝑚𝐴 = 1 and (b) 𝑚𝐵 = −2 at Re = 104. The real
part of the frequency, 𝜔𝑟 , is plotted against 𝑘 , while the damping is represented by the
greyscale intensity of −𝜔𝑖 , the imaginary part of the frequency. (c) Resonant Kelvin

modes of the unstrained Lamb-Oseen vortex at Re = 104, identified at the crossing points
of the dispersion curves. Modes with positive growth rates at Re = 104 are circled in red,

with their corresponding branch indices indicated in brackets.

the complex frequency curves which have been plotted in figure 8(a,b). One clearly sees in360
these plots the frequency interval where regular and singular core modes were expected from361
figure 7.362

Figure 8(c) displays the crossing points of 𝑚𝐴 = 1 and 𝑚𝐵 = −2 branches. As the363
damping rate of the modes shown in this figure is small, each crossing point corresponds to a364
(quasi) resonant configuration. The resonant configurations marked with red circles exhibited365
positive growth rates, while the other resonant modes showed no growth or negligible growth366
rates due to critical layer damping and volumic viscous damping. A detailed analysis is367
provided in the subsequent sections. We label the branches of the dispersion curves as368
(𝑙𝐴, 𝑙𝐵) where 𝑙𝐴 and 𝑙𝐵 are the branch labels of 𝑚𝐴 = 1 and 𝑚𝐵 = −2 modes respectively.369

An interesting observation is that the branches of the dispersion curves for 𝑚 = −2370
involved in the resonance correspond to the ’L branches’ described in Fabre et al. (2006) (see371
Figures 19 and 20 in that reference). In particular, the first branch in Figure 8(c) for 𝑚 = −2372
matches the ’F branch’, also known as the flattening wave. Modes on this branch with axial373
wavenumber 𝑘 < 3.45 are reported to experience significant critical layer damping, while374
modes with larger 𝑘 behave as regular, weakly damped waves. This trend is also evident375
here: the first mode labeled (1, 1) shows stronger critical layer damping compared to the376
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modes labeled (2, 1) and (3, 1), which are only weakly damped. The ’F branch’ also has an377
analogue in the Rankine vortex, where it is referred to as the ’isolated branch’ by Eloy &378
Le Dizès (2001) and Fukumoto (2003). The branches below the first one are referred to as379
’L2 branches’. In our results, the modes labeled (3, 2) and (4, 2) lie in the weakly damped380
regions of these L2 branches. Hence, among the resonant modes considered, only (1, 1)381
exhibits strong critical layer damping (also see table 1).382

4.3. Theoretical expression for the triangular instability growth rate383

The method for computing the growth rate associated with the resonant coupling of two384
Kelvin modes with the triangular straining field is the same as that used for the elliptic385
instability. It is based on an asymptotic analysis in the limit of small 𝜖 . For more details, we386
refer the reader to Moore & Saffman (1975).387

The idea is to consider the perturbation as a combination of two normal modes of azimuthal388
wavenumbers𝑚𝐴 and𝑚𝐵 (related by (4.4)) that corresponds at leading order in 𝜖 to a resonant389
configuration of Kelvin modes. We then write390

u ∼
(
𝐴ũ𝐴(𝑟)𝑒i(𝑚𝐴𝜃 ) + 𝐵ũ𝐵 (𝑟)𝑒i(𝑚𝐵 𝜃 )

)
𝑒i(𝑘𝑧−𝜔𝑡 ) , (4.8)391

where the (real) axial wavenumber 𝑘 and the (complex) frequency 𝜔 of the two modes392
are assumed to be close to a resonant point defined by an axial wavenumber 𝑘𝑐 and a real393
frequency 𝜔𝑐 (corresponding to one of the crossing points shown in figure 8(c)).394

Substituting (4.8) in (4.1), we get two equations for the components proportional to 𝑒i𝑚𝐴𝜃395
and 𝑒i𝑚𝐵 𝜃 respectively as396

𝐴

(
𝜔L − 𝑘P + iM(𝑚𝐴) −

i
𝑅𝑒

V(𝑚𝐴, 𝑘)
)

ũ𝐴 = i𝐵𝜖N(𝑚𝐵)ũ𝐵, (4.9)397

𝐵

(
𝜔L − 𝑘P + iM(𝑚𝐵) −

i
𝑅𝑒

V(𝑚𝐵, 𝑘)
)

ũ𝐵 = i𝐴𝜖N(𝑚𝐴)ũ𝐴, (4.10)398

where N(𝑚𝐵) and N(𝑚𝐴) are obtained by replacing 𝜕/𝜕𝜃 with i𝑚𝐵 and i𝑚𝐴, respectively,399

in the N and N operators given in appendix B. These equations show how the two modes400
are coupled by the straining field which is responsible for the terms on the right-hand side of401
these equations.402

The equation giving the complex frequency 𝜔 is obtained from an orthogonality condition403
with the adjoint resonant Kelvin modes. The eigenfunctions ũ†

𝐴
and ũ†

𝐵
of these two adjoint404

modes are the solutions of the adjoint equation of (4.3) for (𝑚, 𝑘) = (𝑚𝐴, 𝑘𝑐) and (𝑚, 𝑘) =405
(𝑚𝐵, 𝑘𝑐), respectively. These adjoint equations are obtained using the scalar product406

⟨u1, u2⟩ =
∫ ∞

0
u∗

1(𝑟)u2(𝑟)𝑟𝑑𝑟, (4.11)407

where ‘∗’ denotes the complex conjugate. We have two options for applying the orthogonality408

condition: either we consider the inviscid expressions (ũ(∞)
𝐴

, ũ(∞)
𝐵

) and (ũ†(∞)
𝐴

, ũ†(∞)
𝐵

) of the409
Kelvin and adjoint modes or we choose their expression for a given (large) Reynolds number.410

In the first case, upon performing the scalar product of equation (4.9) with ũ†(∞)
𝐴

and of411
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equation (4.10) with ũ†(∞)
𝐵

, we obtain412 (
𝜔 − 𝜔

(∞)
𝐴

−𝑄
(∞)
𝐴

(𝑘 − 𝑘
(∞)
𝑐 ) − i

𝑉
(∞)
𝐴

𝑅𝑒

)
𝐴 = i𝜖𝐶 (∞)

𝐴𝐵
𝐵, (4.12)413 (

𝜔 − 𝜔
(∞)
𝐵

−𝑄
(∞)
𝐵

(𝑘 − 𝑘
(∞)
𝑐 ) − i

𝑉
(∞)
𝐵

𝑅𝑒

)
𝐵 = i𝜖𝐶 (∞)

𝐵𝐴
𝐴, (4.13)414

where the coefficients 𝑄 (∞)
𝐴

, 𝑄 (∞)
𝐵

, 𝑉 (∞)
𝐴

, 𝑉 (∞)
𝐵

, 𝐶 (∞)
𝐴𝐵

, 𝐶 (∞)
𝐵𝐴

are given by415

𝑄
(∞)
𝐴

=

〈
ũ†(∞)
𝐴

,Pũ(∞)
𝐴

〉〈
ũ†(∞)
𝐴

Lũ(∞)
𝐴

〉 , 𝑄
(∞)
𝐵

=

〈
ũ†(∞)
𝐵

,Pũ(∞)
𝐵

〉〈
ũ†(∞)
𝐵

,Lũ(∞)
𝐵

〉 , (4.14)416

𝑉
(∞)
𝐴

=

〈
ũ†(∞)
𝐴

,Vũ(∞)
𝐴

〉〈
ũ†(∞)
𝐴

,Lũ(∞)
𝐴

〉 , 𝑉
(∞)
𝐵

=

〈
ũ†(∞)
𝐵

,Vũ(∞)
𝐵

〉〈
ũ†(∞)
𝐵

,Lũ(∞)
𝐵

〉 , (4.15)417

𝐶
(∞)
𝐴𝐵

=

〈
ũ†
𝐴
,N(𝑚𝐵)ũ(∞)

𝐵

〉〈
ũ†(∞)
𝐴

,Lũ(∞)
𝐴

〉 , 𝐶
(∞)
𝐵𝐴

=

〈
ũ†(∞)
𝐵

,N(𝑚𝐴)ũ(∞)
𝐴

〉〈
ũ†(∞)
𝐵

,Lũ(∞)
𝐵

〉 . (4.16)418

The frequency 𝜔
(∞)
𝐴

and 𝜔
(∞)
𝐵

are the inviscid estimates of the frequencies of the resonant419

Kelvin modes at 𝑘 = 𝑘
(∞)
𝑐 . They can be expressed as420

𝜔
(∞)
𝐴

= 𝜔
(∞)
𝑐 + iIm(𝜔 (∞)

𝐴
) , 𝜔

(∞)
𝐵

= 𝜔
(∞)
𝑐 + iIm(𝜔 (∞)

𝐵
), (4.17)421

where Im(𝜔 (∞)
𝐴

) and Im(𝜔 (∞)
𝐵

) are the critical layer damping rates of both modes.422
For the azimuthal wavenumber couple (𝑚𝐴, 𝑚𝐵) = (1,−2), only the Kelvin mode with423

azimuthal wavenumber 𝑚𝐵 = −2 is expected to experience critical layer damping at424

resonance. In particular, we have Im(𝜔 (∞)
𝐴

) = 0 for 𝑚𝐴 = 1 at resonance.425
Equations (4.12)-(4.13) with (4.17) give an equation for the complex frequency 𝜔 :426 (
𝜔 − 𝜔

(∞)
𝑐 −𝑄

(∞)
𝐴

(𝑘 − 𝑘
(∞)
𝑐 ) − i

𝑉
(∞)
𝐴

𝑅𝑒

) (
𝜔 − 𝜔

(∞)
𝑐 − iIm(𝜔 (∞)

𝐵
) −𝑄

(∞)
𝐵

(𝑘 − 𝑘
(∞)
𝑐 ) − i

𝑉
(∞)
𝐵

𝑅𝑒

)
427

= −𝜖2(𝑁 (∞) )2, (4.18)428

where429

𝑁 (∞) =
√︃
𝐶

(∞)
𝐴𝐵

𝐶
(∞)
𝐵𝐴

. (4.19)430

The growth rate 𝜎 is defined as Im(𝜔) and is computed using the equation above. Both431
modes oscillate with a common resonant frequency given by Re(𝜔). On the left-hand side432
of equation (4.18), we recognize the dispersion relation for the two resonant modes, A433
and B, close to the resonant point. More precisely, the left-hand side can be written as434
(𝜔−𝜔𝐴(𝑘,Re)) (𝜔−𝜔𝐵 (𝑘,Re)) where𝜔𝐴(𝑘,Re) and𝜔𝐵 (𝑘,Re) are the complex frequencies435
of the two Kelvin modes for a wavenumber 𝑘 close to 𝑘𝑐 and a large Reynolds number. The436
right-hand side corresponds to the coupling term that is responsible for the instability.437

The integrals in the inner products that appear in the coefficients of (4.14), (4.15), and438
(4.16) are evaluated along a complex path that avoids the critical point associated with439
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(𝑙𝐴, 𝑙𝐵) (1, 1) (2, 1) (3, 1) (3, 2) (4, 2)

𝑘
(∞)
𝑐 1.76 5.18 7.58 9.64 12.22

𝜔
(∞)
𝑐 −0.407 −0.312 −0.252 −0.35 −0.307

Im(𝜔𝐵) −0.044 −2.01 × 10−5 −6.59 × 10−7 −2.20 × 10−5 −1.75 × 10−6

𝑄
(∞)
𝐴

−0.164 −0.077 −0.054 −0.042 −0.033
𝑄

(∞)
𝐵

× 102 2.96 + 1.09i 2.93 − 0.73i 2.14 − 0.33i 1.76 − 0.24i 1.53 − 0.16i
𝑉
(∞)
𝐴

−5.22 −44.60 −101.37 −148.23 −248.91
𝑉
(∞)
𝐵

−3.16 − 3.27i −31.38 − 0.03i −65.96 + 0.00i −108.92 − 0.11i −175.36 + 0.00i
𝐶
(∞)
𝐴𝐵

10.94 − 6.56i 6.76 + 3.43i −4.38 − 0.81i −0.76 − 11.37i −7.45 + 3.46i
𝐶
(∞)
𝐵𝐴

0.95 + 0.91i 2.27 − 2.07i −0.93 + 0.44i 0.34 + 1.77i −1.47 − 0.27i
𝑁 (∞) 4.07 + 0.46i 4.78 − 0.65i 2.13 − 0.27i 4.50 − 0.58i 3.48 − 0.44i

Table 1: Values of the parameters of the growth rate equation (4.18) for the resonance of
two Kelvin modes of azimuthal wavenumbers 𝑚𝐴 = 1 and 𝑚𝐵 = −2 at the different
resonant points. Integration is done in the complex plane as explained in the text.

𝜎

𝑘

(1,1)

(2,1)

(3,1)

(3,2)

(4,2)

Figure 9: Growth rates 𝜎 are plotted against the axial wavenumber 𝑘 for the resonant
modes, based on theoretical predictions. Solid black lines represent results from equation
(4.18), while solid red lines correspond to equation (4.20), both computed for Re = 104.
Dashed black lines show results from equation (4.18) in the inviscid limit (Re = ∞). The

corresponding branch indices are also indicated.

the mode 𝑚 = −2 from below, since it moves in the lower part of the complex plane, as440
explained in Le Dizès (2004). To achieve this, we use the complex mapping given in (4.7)441
with parameters 𝐻 = 4 and 𝐴 = −0.5. These values of 𝐻 and 𝐴 result in the contour passing442
slightly below the critical points for all the resonant points corresponding to 𝑚 = −2. The443
integrals corresponding to 𝑚 = 1 are also computed along this same contour. Since the 𝑚 = 1444
modes do not have a critical point, the values of the integrals remain unchanged. In table445
1, we provide the values of the parameters appearing in equation (4.18) for all the resonant446
points that have been identified in figure 8 for the two azimuthal wavenumbers 𝑚𝐴 = 1 and447
𝑚𝐵 = −2.448

An equation for the growth rate can also be obtained using the viscous expression of the449
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𝜎

𝑘

(1,1)

(2,1)

(3,1)

(3,2)

Figure 10: Comparison of growth rates 𝜎 against the axial wavenumber 𝑘 for the first four
resonant modes computed using equation (4.20): solid black lines and DNS: circles.

Values of the corresponding branch indices are reported.

resonant Kelvin modes. In that case, instead of (4.18), we get the following equation450

(𝜔 − 𝜔𝑐 (Re) − iIm(𝜔𝐴(Re)) −𝑄𝐴(Re) (𝑘 − 𝑘𝑐 (Re)))
× (𝜔 − 𝜔𝑐 (Re) − iIm(𝜔𝐵 (Re)) −𝑄𝐵 (Re) (𝑘 − 𝑘𝑐 (Re))) = −𝜖2(𝑁 (Re))2,

(4.20)451

where the coefficients now depend on the Reynolds number. Note that the volumic viscous452

damping terms i𝑉 (∞)
𝐴

/𝑅𝑒 and i𝑉 (∞)
𝐵

/𝑅𝑒 in equation (4.18) are now included in the terms453
iIm(𝜔𝐴(Re)) and iIm(𝜔𝐵 (Re)). This second approach has also been used. For the Reynolds454
number Re = 104 that we have considered, the results are similar, as can be seen in figure455
9. This figure shows the five resonant modes for which a positive viscous growth rate was456
obtained. In this figure, we have also plotted the growth rate curves obtained from (4.18)457
for Re = ∞. We clearly see that the viscous damping of the modes significantly affects the458
resonant configurations with the largest wavenumbers.459

4.4. Numerical results460

In this section, we first describe how growth rates and frequencies are obtained numerically461
and then compare the results predicted by equation (4.18) or (4.20) with those obtained from462
DNS. The numerical results are obtained for Re = 104. Starting from a random initial energy463
distribution, modes associated with different azimuthal wavenumbers grow exponentially in464
time if they are unstable. The growth rate is determined as the slope (divided by two) of the465
logarithm of the energy of the unstable modes. The frequency of the modes is computed by466
tracking their phase and measuring their rotation rate about the 𝑧-axis. The comparison of467
growth rates is shown in figure 10 for 𝜖 = 0.008 and 𝑘 ranging from0.7 to 10. We observe468
that the first four unstable modes predicted by the theory within this wavenumber range are469
also captured in the DNS. The agreement in the growth rates is almost perfect. The values470
for the frequency and growth rate, obtained by both theory and DNS, for the four unstable471
modes at their resonant wavenumbers are given in table 2.472

In figure 11, we analyse the effect of 𝜖 on the growth rate curve of the most unstable mode473
corresponding to (𝑙𝐴, 𝑙𝐵) = (2, 1). As expected, the growth rate decreases when 𝜖 is halved,474
and the agreement between the growth rate curves is excellent, as illustrated in the figure.475

The structures and the energy ratio of the contributions from various azimuthal wavenum-476
bers of the unstable modes are displayed in figures 12, 13, 14 and 15. In each figure, the477
left panel shows the two-dimensional contours of the perturbation axial vorticity field in the478
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𝑘 (𝑙𝐴, 𝑙𝐵) 𝜔𝑑𝑛𝑠 𝜔𝑡ℎ 𝜎𝑑𝑛𝑠 𝜎𝑡ℎ 𝜎
(∞)
𝑡ℎ

1.76 (1, 1) -0.419 -0.406 0.0183 0.0187 0.0174
5.18 (2, 1) -0.312 -0.312 0.0352 0.0345 0.0383
7.58 (3, 1) -0.262 -0.252 0.0100 0.0088 0.0170
9.64 (3, 2) -0.343 -0.350 0.0230 0.0233 0.0360

Table 2: Growth rate 𝜎 and real part of the frequency 𝜔 of the most unstable mode for
different axial wavenumbers 𝑘 , obtained by DNS and theory (4.20), for Re = 104 and

𝜖 = 0.008. The maximum growth rates predicted by (4.18) in the inviscid limit, denoted
by 𝜎

(∞)
𝑡ℎ

, are given in the last column. The chosen axial wavenumbers correspond to the
resonant values for the Kelvin modes of azimuthal wavenumbers (𝑚𝐴 = 1, 𝑚𝐵 = −2) and

branch labels (𝑙𝐴, 𝑙𝐵).

𝜎

𝑘

Figure 11: Growth rate 𝜎 vs 𝑘 for the resonant mode with (𝑙𝐴, 𝑙𝐵) = (2, 1) at Re = 104.
Circles: DNS, solid black lines: theory. Black: 𝜖 = 0.008; blue: 𝜖 = 0.004

hub vortex, obtained by DNS. The values are divided by 𝑒𝜎𝑡𝑠 , where 𝜎 is the corresponding479
growth rate and 𝑡𝑠 is the simulation time of the snapshot used. In the center panel, we analyze480
the azimuthal composition of the unstable mode, by computing the energy percentage of each481
azimuthal component. This decomposition is compared to the theoretical prediction obtained482
for each resonant configuration.The theoretical energy ratio for mode A, for instance, can be483
calculated by484

𝐸𝐴

𝐸𝐴 + 𝐸𝐵

=

∫
|ũ𝐴|2𝑟𝑑𝑟∫

|ũ𝐴|2𝑟𝑑𝑟 + (𝐵2/𝐴2)
∫
|ũ𝐵 |2𝑟𝑑𝑟

, (4.21)485

where |ũ𝐴|2 = �̃�𝐴(𝑟)2+ �̃�𝐴(𝑟)2+�̃�𝐴(𝑟)2, and (𝐵2/𝐴2) can be calculated from equation (4.12)486
or (4.13). We can see that the unstable modes obtained from DNS are primarily composed of487
the azimuthal wavenumber pairs 𝑚𝐴 = 1, 𝑚𝐵 = −2 and 𝑚𝐴 = −1, 𝑚𝐵 = 2, with negligible488
contributions from other azimuthal wavenumbers, as resonance is expected only between489
these wavenumbers. The energy ratio of the resonant azimuthal wavenumbers aligns well490
with theoretical predictions, except for the mode corresponding to the branch labels (1, 1),491
which shows a slight discrepancy. It might be useful to note that the numerically-obtained492
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(a) (b) (c)

Figure 12: Structure of the resonant combination with 𝑘 = 1.76 for Re = 104 and
𝜖 = 0.008; Mode label: (1,1). (a) Contours of the axial vorticity using DNS. (b) Energy

ratio; red circles: DNS; blue crosses: theory. (c) Radial structure of the amplitude |𝑢(𝑟) | of
radial velocity; colored lines: DNS, black lines: theory.

energy percentages of 𝑚𝐴 = 1 and 𝑚𝐵 = −2 are respectively the same as those of 𝑚𝐴 = −1493
and 𝑚𝐵 = 2. This is due to a certain symmetry that we enforce in the initial random vorticity494
distribution. Without this symmetry condition, these percentages might differ; however, the495
mutual energy ratio between the resonant pairs would still be the same. To further validate that496
the unstable resonant modes obtained from DNS share the same structure as those predicted497
by theory, the radial distributions of the absolute value of the radial disturbance velocity498
for both azimuthal wavenumbers are plotted in the right panel, comparing DNS results499
with theoretical predictions.The radial structures from DNS are extracted by performing a500
Fourier decomposition of the disturbance fields into components corresponding to different501
azimuthal wavenumbers. This comparison is conducted by normalizing the amplitude of the502
𝑚𝐴 = 1 azimuthal component to one at the origin in both DNS and theory.A good agreement503
is also observed here, except for a significant discrepancy in the amplitude of the mode (1, 1)504
corresponding to 𝑚 = −2. We do not have a definitive explanation for these discrepancies505
in both the energy ratios and the eigenfunction radial structures for 𝑚 = −2. However, we506
suspect that they arise from an imperfect representation of the critical layer, particularly507
strong for (1, 1). Figure 12(c) shows additional oscillations in the theoretical predictions just508
beyond 𝑟 = 2. These oscillations result from the regularization of the critical layer by viscous509
effects, which are absent in the numerical results. Therefore, we believe that the observed510
discrepancy is due to the inaccurate representation of the critical layer. From the left and right511
panels, it is also evident that modes associated with higher branches exhibit more zeroes in512
the radial distributions of the disturbance fields.513

4.5. Variation of maximum growth rate with Re and 𝜖514

The theory allows us to easily analyze the effect of 𝜖 and Re on the instability. Using (4.18),515
one can compute, for each resonant configuration, the maximum growth rate for any value of516
𝜖 and Re. Figure 16 shows the contours of the maximum growth rate in the (𝜖,Re) parameter517
plane. For a large range of 𝜖 (0 < 𝜖 < 0.01) and Re (100 < Re < 105), we find that the518
most unstable mode is always the resonant configuration associated with the branch labels519
(𝑙𝐴, 𝑙𝐵) = (2, 1). In particular, the resonant configuration (1, 1) that has the smallest axial520
wavenumber does not become more unstable than (2, 1) due to the strong critical layer521
damping of this mode. The contour 𝜎 = 0 represents the marginal stability curve 𝜖𝑠 (Re),522
above which the resonant configuration (2, 1) is unstable, indicating the presence of the523
triangular instability. Using (4.18) and the fact that the critical layer damping is negligible524
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(a) (b) (c)

Figure 13: Structure of the resonant combination with 𝑘 = 5.18 for Re = 104 and
𝜖 = 0.008; Mode label: (2,1). (a) Contours of the axial vorticity using DNS. (b) Energy

ratio; red circles: DNS; blue crosses: theory. (c) Radial structure of the amplitude |𝑢(𝑟) | of
radial velocity; colored lines: DNS, black lines: theory.

(a) (b) (c)

Figure 14: Structure of the resonant combination with 𝑘 = 7.58 for Re = 104 and
𝜖 = 0.008; Mode label: (3,1). (a) Contours of the axial vorticity using DNS. (b) Energy

ratio; red circles: DNS; blue crosses: theory. (c) Radial structure of the amplitude |𝑢(𝑟) | of
radial velocity; colored lines: DNS, black lines: theory.

(a) (b) (c)

Figure 15: Structure of the resonant combination with 𝑘 = 9.64 for Re = 104 and
𝜖 = 0.008; Mode label: (3,2). (a) Contours of the axial vorticity using DNS. (b) Energy

ratio; red circles: DNS; blue crosses: theory. (c) Radial structure of the amplitude |𝑢(𝑟) | of
radial velocity; colored lines: DNS, black lines: theory.

for the resonant configuration (2, 1), this curve can be expressed as525

𝜖𝑠 (Re) ≈

√︃
𝑉

(∞)
𝐴

𝑉
(∞)
𝐵

𝑁 (∞)Re
, (4.22)526
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𝑅𝑒

𝜖

𝜎

Figure 16: Contours of the maximum growth rate in the (𝜖,Re) parameter space, obtained
from theory using equation (4.18). Solid brown lines represent growth rate levels ranging

from 0 to 0.045 in increments of 0.005. The marginal stability curve, computed using
equation (4.23), is shown as a dashed brown line and corresponds to the zero growth rate

level (first brown contour line). Red stars mark the growth rates used in the main test
cases: 𝜎 = 0.0153 for 𝜖 = 0.004 and 𝜎 = 0.0345 for 𝜖 = 0.008 at Re = 104.

which gives527

𝜖𝑠 (Re) ≈ 7.86
Re

(4.23)528

using the values provided in table 1 for the resonant configuration (2, 1). Furthermore, the529
figure illustrates that for practically plausible values of 𝜖 (towards the right side of the figure),530
triangular instability can occur at Reynolds numbers as low as Re ∼ 1000. Similarly, even in531
cases of very weak straining (𝜖 < 0.001), a moderate Reynolds number of Re ∼ 10, 000 can532
still lead to triangular instability, albeit with small growth rates.533

4.6. Comparison with triangular instability in the Rankine vortex534

In this section, we briefly compare the characteristics of the triangular instability observed in535
the Lamb-Oseen vortex with those reported for the Rankine vortex. The latter has been studied536
theoretically by Eloy & Le Dizès (2001) and their results are used here for comparison.537

The most notable difference lies in the absence of a critical layer in the Rankine vortex.538
This allows resonances for any pair of azimuthal wavenumbers 𝑚 and 𝑚 + 3, even for539
asymptotically large 𝑚. In contrast, for the Lamb-Oseen vortex, resonance is limited only540
between 𝑚 = 1 and 𝑚 = −2 (or 𝑚 = −1 and 𝑚 = 2), as critical layer damping suppresses541
other combinations.542

For the Rankine vortex, the maximum growth rate is achieved in the large-𝑚, large-𝑘 limit,543

with 𝜎
(𝑅)
max = 49/32𝜖 = 1.53𝜖 where 𝜖 is related to our external strain rate parameter 𝜖 by544

𝜖 = 9/2𝜖 . This gives 𝜎 (𝑅)
max = 6.89𝜖 . For the Lamb-Oseen vortex, the highest inviscid growth545

rate is 𝜎 (𝐿)
max = 4.78𝜖 for the mode (2, 1) (see Table 1). Alternatively, if one uses the strain rate546

parameter at the vortex center, which is 𝜖0 = (3/2)𝜖 for the Rankine vortex, but 𝜖0 = 𝑠0𝜖 for547

the Lamb-Oseen vortex, we get 𝜎 (𝑅)
max = 4.59𝜖0 and 𝜎

(𝐿)
max = 2.70𝜖0. In both cases, the values548

remain below the maximum growth rate reported for the Rankine vortex. However, focusing549
only on modes from the 𝑚 = 1 and 𝑚 = −2 resonance, Eloy & Le Dizès (2001) reported550
𝜎 (𝑅) = 0.95𝜖 = 4.27𝜖 = 2.85𝜖0 for the first principal mode (see Figure 4(b)). This value is551
comparable to the maximum growth rate found for the Lamb-Oseen vortex, which occurred552



21

for the non-principal mode (2, 1). As shown in this study, the first principal mode is subject553
to significant critical layer damping and does not become the most unstable mode.554

5. Concluding remarks555

We have studied the linear instability of a Lamb-Oseen vortex subjected to triangular straining556
and, for the first time, demonstrated the occurrence of triangular instability in such a vortex,557
both numerically and theoretically. In our numerical analysis, we modelled the triangular558
strain field acting on the Lamb-Oseen vortex as being generated by three surrounding satellite559
vortices with opposite circulation. A 2-D quasi-steady solution was first numerically obtained560
and then used as the base flow for a 3-D linear stability analysis. The theoretical analysis561
involved deriving an asymptotic solution for the base flow in the limit of small strain rates,562
which was shown to accurately describe the numerical solution in the core of the strained563
vortex. In this framework, the strain rate parameter 𝜖 was defined as the ratio (𝑎/𝑅)3 where564
𝑎 is the vortex core size, and 𝑅 is the distance of satellite vortices from the vortex center. By565
interpreting the triangular instability as a resonance phenomenon similar to that occurring in566
elliptic instability, we showed that only Kelvin modes with azimuthal wavenumbers 𝑚 = 1567
and 𝑚 = −2 (or 𝑚 = −1 and 𝑚 = 2) can resonate with the triangular strain field and drive the568
instability. This mode selection has been attributed to critical layer damping affecting many569
of the Kelvin modes in the Lamb-Oseen vortex.In particular, the resonant modes belonging570
to 𝑚 = −2 exhibit critical layer damping, whereas the 𝑚 = 1 modes are regular and do571
not undergo any critical layer damping. We derived an explicit expression for the growth572
rate of the first few resonant modes – corresponding to the intersections of the branches of573
the two modes with the smallest labels – and compared it with the growth rates obtained574
numerically. For Re = 104 and 𝜖 = 0.008, very good agreement was observed. The structures575
of the unstable modes obtained from DNS and those predicted by the theory were compared576
and found to be in excellent agreement in all cases, except for the mode with the smallest577
axial wavenumber, where the agreement for structures corresponding to 𝑚 = −2 was not578
perfect due to the imperfect representation of the strong critical layer effect in the theoretical579
analysis. Using the theory, a complete stability diagram in the (𝜖,Re) parameter plane was580
also constructed. In addition, we showed that the most unstable mode always corresponds581
to the resonant configuration formed by the two Kelvin modes with azimuthal wavenumbers582
𝑚𝐴 = 1 and 𝑚𝐵 = −2, and branch labels 𝑙𝐴 = 2 and 𝑙𝐵 = 1, respectively. This mode has583
an axial wavenumber 𝑘 ≈ 5.18/𝑎 and a frequency 𝜔 ≈ −0.312Ω, where Ω is the angular584
velocity at the vortex center.585

In this work, we focused on the strained Lamb-Oseen vortex. In applications where the586
vortices are created by lifting surfaces, vortices also possess an axial flow component. In such587
cases, a more adequate model would be the Batchelor vortex. As explained in Le Dizès &588
Lacaze (2005), the characteristics of the Kelvin modes are strongly impacted by the addition589
of axial flow. Therefore, in a Batchelor vortex, the conditions of resonance are expected590
to be modified, and other modes with different azimuthal wavenumbers may be excited, as591
observed in the case of the elliptic instability (Lacaze et al. 2007).592

By choosing satellite vortices of opposite circulation, we exactly canceled the rotation of593
the satellite vortices around the central vortex. If the circulation of the satellite vortices were594
different, the satellite vortices would rotate, causing the induced triangular strain field to595
rotate as well. This effect is known to impact the base flow. Specifically, if the rotation is596
in the same direction as the vortex’s angular rotation, a critical layer is expected to appear,597
significantly modifying the strain field structure (Le Dizès 2000). The conditions of resonance598
would also be modified, potentially suppressing some resonances and creating new ones.599

It is also worth emphasizing that our base flow model is 2-D. In wind turbine applications,600



22

if the rotor has 3 blades, the tip vortices generate a strain field on the hub vortex with 𝑚 = 3601
azimuthal symmetry. However, tip vortices are helical, meaning induced strain also has602
helical symmetry and exhibit an axial dependence related to the pitch of the helical structure.603
It would be interesting to study the impact of this effect on the triangular instability.604

Furthermore, it is important to note that the hub vortex is not always a straight vortex on605
the rotor axis. It may also exhibit a helical structure, depending on the rotor blade design606
(Durán Venegas & Le Dizès 2019), which makes it sensitive to other short-wavelength607
instabilities such as elliptic and curvature instabilities (Blanco-Rodrı́guez & Le Dizès 2016,608
2017). The instability of the hub vortex is also expected to compete with the short-wavelength609
instabilities that develop in the core of the helical satellite vortices, as well as with the long-610
wavelength instabilities affecting the entire system composed of hub and satellite vortices611
(Quaranta et al. 2015; Durán Venegas & Le Dizès 2019).612

Finally, our analysis considered only the linear dynamics associated with the triangular613
instability. Whether this instability can lead to the destruction of the vortex structure remains614
an open question, requiring further investigation in the nonlinear regime.615

Appendix A. Computation of the base flow parameters from numerical616
simulations617

The circulation (Γ), first-order moments (𝑀𝑥 , 𝑀𝑦), and second-order moments of vorticity618
(𝑀𝑥𝑥 , 𝑀𝑦𝑦) for the hub vortex are tracked over time as the simulation progresses, and are619
computed from the vorticity field 𝜁 as620

Γ =

∫
𝐷

𝜁 𝑑𝑥𝑑𝑦, (A 1)621

622

𝑀𝑥 =

∫
𝐷

𝑥𝜁 𝑑𝑥𝑑𝑦, 𝑀𝑦 =

∫
𝐷

𝑦𝜁 𝑑𝑥𝑑𝑦, (A 2)623

624

𝑀𝑥𝑥 =

∫
𝐷

𝑥2𝜁 𝑑𝑥𝑑𝑦, 𝑀𝑦𝑦 =

∫
𝐷

𝑦2𝜁 𝑑𝑥𝑑𝑦, (A 3)625

where these integrals are evaluated over the disk 𝐷 of radius 0.5𝑅 around the point where626
the vorticity reaches its maximum. The core radius of the hub vortex is then computed as627

𝑎2 =
𝑀𝑥𝑥 + 𝑀𝑦𝑦

Γ
. (A 4)628

Alternatively, the core radius can be determined by fitting a Gaussian profile to the629
axisymmetric component of the vorticity distribution. We have verified that the difference630
between the core radius obtained through these two methods is negligible.631

Appendix B. Linear stability analysis - operators and coefficients632

The operators appearing in (4.1) are633

L =

©­­­«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

ª®®®¬ , (B 1)634
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635

P =

©­­­«
0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

ª®®®¬ , (B 2)636

637

M =

©­­­«
Ω 𝜕

𝜕𝜃
−2Ω 0 𝜕

𝜕𝑟

2Ω + 𝑟 𝑑Ω
𝑑𝑟

Ω 𝜕
𝜕𝜃

0 1
𝑟

𝜕
𝜕𝜃

0 0 Ω 𝜕
𝜕𝜃

0
𝜕
𝜕𝑟

+ 1
𝑟

1
𝑟

𝜕
𝜕𝜃

0 0

ª®®®¬ , (B 3)638

639

V =

©­­­«
Δ − 1

𝑟2 − 2
𝑟2

𝜕
𝜕𝜃

0 0
2
𝑟2

𝜕
𝜕𝜃

Δ − 1
𝑟2 0 0

0 0 Δ 0
0 0 0 0

ª®®®¬ , (B 4)640

where641

Δ =
1
𝑟

𝜕

𝜕𝑟
+ 𝜕2

𝜕𝑟2 + 1
𝑟2

𝜕2

𝜕𝜃2 + 𝜕2

𝜕𝑧2 . (B 5)642
643

N =
1
2

©­­­­«
3 𝑓

𝑟2 − 3 𝑓 ′

𝑟
− 3 𝑓

𝑟
𝜕
𝜕𝑟

− i 𝑓 ′
𝑟

𝜕
𝜕𝜃

− 9i 𝑓
𝑟2 + 2i 𝑓 ′

𝑟
0 0

− i 𝑓 ′
𝑟

− i 𝑓 ′′ − 3 𝑓

𝑟2 + 3 𝑓 ′

𝑟
− 3 𝑓

𝑟
𝜕
𝜕𝑟

− i 𝑓 ′
𝑟

𝜕
𝜕𝜃

0 0
0 0 − 3 𝑓

𝑟
𝜕
𝜕𝑟

− i 𝑓 ′
𝑟

𝜕
𝜕𝜃

0
0 0 0 0

ª®®®®¬
,

(B 6)644
with N being the complex conjugate of N .645
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