
Under consideration for publication in J. Fluid Mech. 1

Banner appropriate to article type will appear here in typeset article

Zonal flows driven by libration in rotating spherical
shells: the case of periodic characteristic paths

Xu Chang1†, Jiyang He1,2, Benjamin Favier1, and Stéphane Le Dizès1
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This work investigates the weakly nonlinear dynamics of internal shear layers and the

mean zonal flow induced by the longitudinal libration of an inner core within a spherical

shell. Building on the work of He et al. (J. Fluid Mech., vol. 939, 2022, A3), which focused

on linear dynamics, we adopt a similar setup to explore the nonlinear regime using both

asymptotic theory and numerical simulations, with Ekman numbers as low as � = 10−10.

A specific forcing frequency of l̂ =
√

2Ω̂, where Ω̂ denotes the rotation rate, is introduced

to generate a closed rectangular path of characteristics for the inertial wave beam generated

at the critical latitude. Our approach extends previous results by Le Dizès (J. Fluid Mech.,

vol. 899, 2020, A21) and reveals that nonlinear interactions are predominantly localized

around regions where the wave beam reflects on the boundary. We derive specific scaling

laws governing the width and amplitude of nonlinear interactions: the width scales as �1/3,

while the amplitude scales as �−1/6 in general. However, near the rotating axis, where the

singularity of the self-similar solution becomes more pronounced, the amplitude exhibits a

scaling of �−1/2. In addition, our study also examines the nonlinear interactions of beams

which are governed by different scaling laws. Through comparison with numerical results, we

validate the theoretical predictions of the asymptotic framework, observing good agreement

as the Ekman number decreases.

1. Introduction

Mechanical forces such as libration, precession, and tides, which arise from gravitational

interactions, are essential to generate complex fluid flows within astrophysical and geo-

physical bodies (Le Bars et al. 2015). In the subsurface oceans of celestial bodies such as

Enceladus, such forcing initiates dynamical processes that are crucial to understanding the

internal structures of these bodies (Noir et al. 2009; Thomas et al. 2016; Soderlund et al.

2024). The energy dissipation from libration-driven turbulence may provide heat sources

that maintain these subsurface oceans, while libration has been proposed as a potential

mechanism driving planetary dynamos (Le Bars et al. 2011; Wu & Roberts 2013; Reddy

et al. 2018; Wilson & Kerswell 2018). In the Earth’s ocean, the interaction of tidal flows and

supercritical topographies is an important source for creating strong concentrated internal

wave beams, which play a key role in tidal conversion (Smith & Young 2003; Balmforth &

Peacock 2009; Echeverri & Peacock 2010).
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In rotating fluids, when the external forcing frequency is less than twice the rotation

frequency, smooth inertial modes can be excited within containers where regular inertial

modes exist (Greenspan 1968). However, the dynamics becomes more complex in geometries

such as spherical shells, where regular inertial modes generally do not exist. Instead,

inertial wave beams are generated at critical latitudes due to oscillatory viscous concentrated

boundary layer singularities (Kerswell 1995; Rieutord & Valdettaro 1997). Historical studies

have shown that such wave beams can be well described by self-similar solutions (Moore

& Saffman 1969; Thomas & Stevenson 1972). These solutions have been adapted to more

complex cases, such as those involving beam reflections or limit cycles known as attractors

(Maas et al. 1997; Rieutord et al. 2001; Le Dizès & Le Bars 2017). He et al. (2022) expanded

the work of Le Dizès & Le Bars (2017) to a closed domain such as the spherical shell by

deriving the asymptotic explicit expression of the linear harmonic velocity as a sum of many

self-similar beams.

Transitioning to nonlinear phenomena, the interaction among wave beams introduces

complexities, notably when beams intersect or reflect. Such interactions can lead to the

creation of meanflow and second-harmonic corrections. For example, when beams of the

same frequency interact as a result of reflection, they generate significant mean zonal flow and

harmonic effects (Tabaei & Akylas 2003; Tabaei et al. 2005; Peacock & Tabaei 2005). These

nonlinear processes manifest themselves notably in the formation of mean zonal flows, which

have been extensively documented through experimental and numerical studies (Tilgner

2007; Sauret & Le Dizès 2013; Favier et al. 2014). Previous studies have demonstrated that,

in the absence of inertial waves, nonlinear interactions within viscous boundary layers can

drive zonal flows. The characteristics of these flows are strongly influenced by the libration

amplitude, while remaining largely independent of the Ekman number and depend on the

cylindrical variable A only (Busse 2010; Sauret & Le Dizès 2013). The dominant contribution

to the meanflow arises in the bulk, manifesting as an azimuthal flow that scales as n2, where

n denotes the small oscillation amplitude. However, when the libration frequency falls below

twice the rotation rate, allowing for the excitation of inertial waves, the resulting interactions

become more complex, influencing the structure and behavior of mean zonal flows. This

intricate interplay remains a significant challenge in fluid dynamics research within enclosed

domains, where wave reflections and interactions can alter fundamental fluid behaviours

(Cébron et al. 2021).

Of particular interest to the present study, Tilgner (2007) explored the dynamics of

meanflow within a rotating spherical shell under the influence of an oscillating tidal mode. His

research revealed that Reynolds stresses are primarily concentrated along wave beam paths,

with an intensity peak observed at reflection points and beam intersections. In a subsequent

investigation of thin viscous beams reflecting on flat boundaries in rotating and stratified

fluids, Le Dizès (2020) found that when the libration frequency l is less than the rotation

rate Ω (l < Ω), the reflection process generates both a second-harmonic correction and a

meanflow correction. The second-harmonic beam exhibits a larger amplitude compared to

the meanflow correction throughout most of the domain, except within the local interaction

region.

Le Dizès (2020) noted that the structure of the wave beam reflections, which have a

characteristic width scaling as �1/3, maintained self-similarity with a $ (�1/6) correction,

where � is the Ekman number. For scenarios involving purely stratified or rotating fluids,

a meanflow correction occurs with an amplitude of n2�−1/6, except in cases where the

boundary is either horizontal or vertical, which exhibit a localized meanflow correction with

a distinct triple-layer structure, including a significant $ (�4/9) viscous layer. More recent

studies by Lin & Noir (2021) focused on the numerical analysis of nonlinear meanflow in

a spherical shell with libration forcing at the inner core boundary. They observed that the
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Figure 1: (0) Contours of the amplitudes of the meanflow azimuthal velocity |E0q | (upper part) and the

linear harmonic solution |E1q | (lower part) for � = 10−10. The critical latitude is marked at (2 whose

cylindrical coordinates are ([
√

1 − l2/4, [l/2). The aspect ratio of the spherical shell is [ = 0.35, and the

libration frequency of the inner core is l =
√

2. The white dashed lines represent the path of characteristics
emitted from the critical latitude. (1)-(4) Zoomed-in regions of the interaction points located at %1, %3, %7,
and %4, respectively.

meanflow correction remains localized at reflection points, scaling approximately as �−1/6.

Multiple bands were also identified in the bulk flow, directly corresponding to the positions

of the reflection points. However, discrepancies were noted between theoretical predictions

and numerical results, particularly regarding slight increases in the meanflow amplitude with

the Ekman number.

In this paper, we extend the study to nonlinear meanflow within a rotating spherical shell

subjected to libration forcing at the inner core boundary. Our objective is to use the linear self-

similar solutions within the spherical shell to establish a theoretical framework for addressing

meanflow corrections. This involves generalizing the previous results of Le Dizès (2020) and

validating the scaling of the meanflow via numerical integration. For illustrative purposes, the

internal shear layers in a spherical shell, induced by the libration of the inner core, along with

the corresponding meanflow, are depicted in figure 1(a) at a low Ekman number � = 10−10.

Using direct numerical integration of the linear viscous governing equations, we first compute

the linear harmonic velocity field. From this velocity field, we subsequently calculate the

meanflow through a pseudo-spectral method. A detailed analysis of the interaction regions

reveals that meanflow corrections are significantly larger in those regions than in both the

outer region and the bulk bands, as shown in figures 1(b)-(e). These high-amplitude regions

are of particular interest, motivating the development of an asymptotic theory to characterize

the meanflow correction within these specific regions.

The structure of the paper is as follows: section 2 introduces the configuration and settings

of the problem. Section 2.1 outlines the fundamental equations. In section 2.2, we review the
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̂Figure 2: Sketch of the problem: (0) the outer radius of the concentric shell is d̂> and rotates at the angular

velocity of Ω̂, the inner radius is d̂8 and rotates at an angular velocity of Ω̂ + Ŷ cos l̂C with the amplitude Ŷ
and frequency l̂ of the libration; (1) A local coordinate system is defined in the northward direction. The
red lines represent the critical lines, while G∥ and G⊥ are the local coordinates. The southward direction is
the inverse of the northward direction.

numerical methods employed to solve the linear harmonic governing equations and extend

these approaches to address the nonlinear meanflow. Section 3 revisits the asymptotic theory,

examining self-similar solutions and scaling laws. It also summarizes the structure of the

linear harmonic solution for this configuration, providing approximations for this solution

close to points where the interactions will be the strongest. The meanflow correction is

addressed in section 4 and 5. We first compare numerical results with the predictions known

for the contribution generated from oscillating boundary layers, in §4.1. We then consider the

nonlinear interactions along the periodic beam, especially in the places where the interactions

are the strongest, on the axis, and at the reflection points on the boundary (§4.2). Asymptotic

expressions are derived and compared to numerical results. In §5, we focus on the meanflow

band structures that originate from the strong interaction points. The scaling and form of the

solution in these bands are analysed numerically using the asymptotic prescriptions that can

be derived for these structures (appendix §C). Finally, the paper concludes with section 6,

which summarizes the key findings and discusses their consequences for other configurations.

2. Framework

In this paper, we study the dynamics of an incompressible fluid with a constant kinematic

viscosity a, which fills a spherical shell and rotates around the axis eI at a uniform rate Ω̂.

The flow is further subjected to the libration of the inner core, as depicted in figure 2(a). The

inner core librates with a small amplitude Ŷ and at a frequency l̂ =
√

2Ω̂, resulting in an

angular velocity of Ŷ cos(l̂C) relative to the rotating system. Following the configuration of

He et al. (2022), the radii of the inner and outer spherical cores are d̂8 and d̂>, respectively,

with the aspect ratio [ = d̂>/d̂8 = 0.35 to generate an Earth-like ratio. Time and space

are non-dimensionalized using the rotation period 1/Ω̂ and the outer sphere radius d̂> of

the spherical shell. The non-dimensional inner core radii is then [. The non-dimensional

angular velocity of the outer and inner core are 1 and 1+ Y coslC respectively, with libration

amplitude Y = Ŷ/Ω̂ and frequency l = l̂/Ω̂.

Focus on Fluids articles must not exceed this page length
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2.1. Basic equations

In the rotating frame, the velocity V = (EA , Eq, EI), written in cylindrical coordinates, and

pressure % are governed by the following equations

mV

mC
+ (V · ∇)V + 2eI × V = −∇% + �∇2V , (2.1a)

∇ · V = 0 , (2.1b)

where � is the Ekman number, which is defined as � = a/Ω̂d̂2
>.

Contrarily to He et al. (2022), which exclusively addressed the linear aspects by omitting

the advection term in equation (2.1a), this study expands into the nonlinear regime. We

consider the following asymptotic expansion of the velocity V and pressure %:

(V, %) = Y(v1, ?1)4−ilC + Y2
[
(v0, ?0) + (v2, ?2)4−2ilC

]
+ c.c, (2.2)

where c.c denotes the complex conjugate, (v1, ?1) is the linear harmonic, (v0, ?0) is the

meanflow correction, and (v2, ?2) is the secondary harmonic velocity. In this paper, we focus

solely on the meanflow correction.

Three steps are required to compute the meanflow correction. First, similarly to He et al.

(2022), the linear response is found by solving

−ilv1 + 2eI × v1 = −∇?1 + �∇2v1 , (2.3a)

∇ · v1 = 0 , (2.3b)

Inner boundary condition: v1 = Aeq , (2.3c)

Outer boundary condition: v1 = 0 . (2.3d)

Once the linear harmonic velocity v1 is obtained, the nonlinear terms corresponding to its

self-interaction, can be calculated at leading order. The resulting Reynolds stresses comprise

two parts: the steady forcing and the second harmonic oscillating at 2l. As the present study

focuses on the meanflow, we only consider the steady Reynolds stress N0

N0 = v1 · ∇v∗1 + c.c , (2.4)

where ∗ denotes complex conjugation. The meanflow response v0 corresponds to a perturba-

tion with a zero frequency l = 0 and is governed by a linear forced system:

2eI × v0 + ∇?0 = −N0 + �∇2v0 , (2.5a)

∇ · v0 = 0 , (2.5b)

Inner and outer boundary condition: v0 = 0 . (2.5c)

where the forcing N0 arises from the nonlinear sefl-interaction of the linear harmonic E1.

2.2. Numerical approach

To solve the equations outlined in section 2.1 and validate our theoretical predictions through

asymptotic analysis, we have employed high-precision spectral methods for the numerical

integrations. These methods, previously used in Rieutord & Valdettaro (1997) and He et al.

(2022) to solve the linear governing equation (2.3), have enabled us to capture the linear

harmonic velocity profiles v1 displayed in figure 1(a). We have looked for the solution of the

linear governing equations (2.3a) expressed in vorticity form as

−il∇ × v1 + 2∇ × (eI × v1) = �∇ × (∇2v1) . (2.6)

For this three-dimensional problem, we use spherical coordinates (d, \, q) representing

radial, polar, and azimuthal directions, respectively. The velocity fields are expanded using
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spherical harmonics in the polar and azimuthal directions and Chebyshev polynomials in the

radial direction:

v1 =

+∞∑
;=0

+;∑
<=−;

D;<(d)R<
; + E;<(d)S<

; + F;
<(d)T<

; , (2.7)

where,

R<
; = .<

; (\, q)ed, S<
; = ∇.<

; , T<
; = ∇ × R<

; . (2.8)

Projecting the vorticity equation (2.6) onto this basis allows us to solve the linear system using

a block tridiagonal algorithm. In our cases, we are assuming an axisymmetric fluid response

along with the no-slip boundary conditions on the spherical shell. Detailed descriptions of

the numerical methods and the construction of the system are available in He et al. (2022)

and He et al. (2023) for readers interested in further details.

After obtaining the linear harmonic response numerically, we apply a pseudo-spectral

method to calculate the steady Reynolds stress. Subsequently, we solve the governing

equations (2.5) to determine the meanflow velocity, v0, shown in figure 1(a). The nonlinear

vorticity equation for the mean zonal flow is expressed as

2∇ × (eI × v0) = −∇ × (v1 · ∇v∗1 + c.c) + �∇ × ∇2v0 . (2.9)

Details on the pseudo-spectral numerical workflow are provided in appendix A and illustrated

in figure 24. We have also investigated potential aliasing issues in this nonlinear setup and

found no significant impact on the results, regardless of whether dealiasing was applied or

not. Consequently, all the results discussed in the present paper have not been de-aliased.

The convergence of our simulations is further demonstrated in appendix A and the numerical

resolutions for different Ekman numbers are documented in table 1 of this appendix. It is

important to note that the resolutions required for the nonlinear simulations exceed those

used in the purely linear analyses, to ensure similar convergence properties in both cases.

3. Asymptotic description of the harmonic solution

As first demonstrated by Moore & Saffman (1969), the propagation and viscous smoothing

of a localized singularity can be described, in the limit of small Ekman numbers, by a self-

similar solution. This viscous smoothing leads to the emergence of a self-similar expression

for the primary components of the wave beam velocity. Note that the concentrated beams

that originate from the critical latitude are linked to an inviscid singularity along the critical

ray, as identified by Le Dizès (2024).

In the scenario under consideration, it is postulated that concentrated beam rays emanate

from the critical latitude singularity where the boundary is locally tangent to the direction

of inertial wave propagation, denoted as (2 (A, I) = ([
√

1 − l2/4, [l/2), and propagate in

two distinct directions: clockwise, designated as the northward direction, following the path

(2 → %1 → %3 → %7 → %4 → (2, and counterclockwise, referred to as the southward

direction. As shown in figure 2(b), %1 is the point on the characteristic path crossing the

rotation axis, %3 and %7 are the reflection points on the outer boundary while %4 is on the

equator where two beams are crossing. A local coordinate system (G ∥ , G⊥) is introduced to

locally describe the asymptotic structure of the beam, where G ∥ represents the distance from

the source located at the critical latitude point (2, and G⊥ denotes the distance measured

perpendicularly to the direction of beam propagation. For simplicity, it is assumed that the

orientation of propagation does not change sign. When considering southward propagation,

the direction of the corresponding local coordinate system is reversed.
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In the following subsections, we provide expressions for the harmonic solution in the

various regions where the meanflow correction becomes significant. We first review the

results obtained by He et al. (2022) on the characteristic path, then present asymptotic

expressions near the various interaction regions.

3.1. Self-similar solution and scaling

For the harmonic solution, the localized concentrated beams travel on the beam ray with a

constant width of order �1/3. The self-similar beam solution provided by Moore & Saffman

(1969) was used by Le Dizès & Le Bars (2017) and He et al. (2022) to describe at leading

order the velocity E1∥ along the direction of the beam propagation,

E1∥ ∼
1
√
A
�0�<(G ∥ , G⊥) =

1
√
A
�0

( G ∥
2 sin \

)−</3
ℎ<(Z) . (3.1)

The special function ℎ<(Z) is,

ℎ<(Z) =
4−i<c/2

(< − 1)!

∫ +∞

0

4i?Z −?3

?<−13? , (3.2)

with the similarity variable,

Z =
G⊥
�1/3

(
2 sin \

G ∥

)1/3
. (3.3)

\ is the angle between the inertial wave propagation direction and the equatorial plane,

where \ = c/4 enables the formation of a simple closed wave circuit in our configuration

(see figure 2(b)). This angle also defines the inclination of the internal shear layers relative

to the equatorial plane, with the libration frequency l = 2 cos \. The index < of the function

ℎ<(Z) characterizes the nature of the singularity that leads to the formation of the beam

(Moore & Saffman 1969; Thomas & Stevenson 1972), while the complex amplitude �0

represents the amplitude of the singularity. A brief review of different values of the index <

for various configurations is provided by Le Dizès (2020). In particular, for any axisymmetric

convex librating object, such as the inner sphere considered in the present study, Le Dizès &

Le Bars (2017) determined the values < = 5/4 and �0 by matching the similarity solution

with the boundary layer solution around the critical latitude leading to

�#
0 = �1/12�̃#

0 = �1/12 4ic/2

8(2 sin \)3/4 , northward ray , (3.4a)

�(
0 = �1/12�̃(

0 = �1/12 4i3c/4

8(2 sin \)3/4 , southward ray . (3.4b)

Expression (3.1) describes the main velocity component. In the (A, I) plane, there also exists

a component along e⊥ which is $ (�1/3) smaller.

As shown by equations (3.4), the velocity amplitude scales as �1/12 in the asymptotic

theory. Internal shear layers within a spherical shell were observed to preserve their self-

similar structure upon reflecting on boundaries, undergoing either contraction or expansion

during this process. Particular attention was given to how these layers propagate along a

periodic rectangular path at specific frequencies of the libration forcing (He et al. 2022).

Additionally, reflections on the rotating axis were found to induce a phase shift, facilitating

the convergence of the summation describing the beam superpositions. The final expressions

for the velocity components were derived from these self-similar solutions, resulting in the
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following compact form in the (A, I) plane:

v12�
∼ �1/12

√
A

(�̃#
0 �<(G#⊥ , G#∥ , !

# )e#∥ + �̃(
0�<(G(⊥, G(∥ , !

()e(∥ ) . (3.5)

where the new function �< is given by

�<(G⊥, G ∥ , !) =
( G ∥
2 sin \

)−</3
6<(Z, !/G ∥ ) , (3.6a)

6<(Z, !/G ∥ ) =
4−i<c/2

(< − 1)!

∫ ∞

0

4i?Z −?3

?<−1

1 − i4−?3!/G∥
3? . (3.6b)

Compared to the function ℎ< in (3.2), the denominator of 6< comes from the beam

summation and the “i” factor from the phase shift induced by the reflection on the axis. Note

that e(∥ = −e#∥ .

Expression (3.5) describes the solution on the rectangular circuit %1%3%7%4. As explained

in He et al. (2022), a weaker secondary beam is also present between (2 and %6 owing

to the reflection on the inner core. The width scaling of this secondary beam is �1/6,

indicating a relatively larger transverse scale on which viscous diffusion becomes negligible.

Consequently, the parallel velocity component E1∥ of the beam remains constant throughout

its path. Furthermore, the amplitude of the beam scales as �1/4, which is significantly smaller

than the amplitude of the solution on the main beam. The velocity profile along the beam is

asymptotically described by

v12�
∼ �1/4

√
A
(�̃#

0 �̆<(Ğ
#
⊥ , _

# )e#∥ + �̃(
0 �̆<(Ğ

(
⊥, _

()e(∥ ) (3.7)

where

�̆<(Ğ⊥, _) =
Ğ⊥√

2

4−i<c/2

(< − 1)!

∫ ∞

0

4i?_( Ğ⊥ )2 4−?3!/
√

2?<−1

1 − i4−?3!/
√

2
3? , (3.8)

with _# = −
√

2/4, _( =
√

2/4 and Ğ⊥ = G⊥/�1/6.

A detailed comparison between this asymptotic solution and numerical solutions of the

linear harmonic viscous problem can be found in He et al. (2022).

The azimuthal velocity, E1q, can be readily derived from E1∥ using

E1q ∼ ±iE1∥ , (3.9)

where the positive sign (resp. negative sign) corresponds to an obtuse angle (resp. acute

angle) between e∥ and eA . This equation also implies, for \ = c/4, that

E1q ∼ −
√

2iE1A . (3.10)

The velocity field defined by (3.5) and (3.7) also satisfies, for \ = c/4, the remarkable

property

mE1A

mI
∼ −mE1I

mA
. (3.11)

The symbol ∼ in equations (3.9), (3.10) and (3.11) has to be understood as denoting equality

up to corrections of order �1/3. We shall see below the importance of these equations for

simplifying the expression of the Reynolds stress.

For detailed information about the local coordinate system relationships of northward and

southward ray propagation paths, as well as more details about the different beam amplitudes,

see table 2 and table 3 in appendix B. In the following, we shall often keep the parameter
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< unprescribed to show the dependency of the various expressions with respect to this

parameter, but one has to keep in mind that in the present analysis < and \ are actually fixed

to < = 5/4 and \ = c/4.

Figure 3 illustrates the scaling behaviour derived from the linear part of the asymptotic

analysis. In this figure, the beam width scaling are shown in red, while the amplitude scaling

are depicted in blue. In particular, the main beam is characterized by a beam width scaling

like �1/3 and an amplitude scaling like �1/12. The corresponding scaling for the nonlinear

meanflow will be discussed in the results section 5.

3.2. Harmonic solution near %3, %4 and %7

The beams reflect on the outer boundary at the interaction points %3 and %7 while two beams

intersect on the equatorial plane at the point %4, see figure 2(b). For describing the solution

near those points, it is convenient to introduce the local variables

ÃV =
A − A%V

�1/3 , ĨV =
I − I%V

�1/3 , (3.12)

and express the variables G⊥ and G ∥ of the beam in terms of these local variables. Both

northward and southward beams exhibit two parts, an incident beam, corresponding to the

beam reaching %V and a reflected beam, corresponding to the beam leaving %V . Note that the

point %4 is not on a boundary, but the symmetry of the solution with respect to the equator

makes the beam was reflecting on the horizontal plane. We shall use the compact notation

�̃#8
V

, �̃#A
V

, �̃(8
V

, �̃(A
V

to denote the four contributions present near %V . The northward incident

beam reaching %V is for instance given by

�̃#8
V (ÃV , ĨV) = �̃#8

0V �<

(
G#8
⊥V , G

#8
∥V , !

#8
V

)
, (3.13)
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where the parameters �̃#8
0V

and !#8
V

and the variables G#8
⊥V

and G#8
∥V can be obtained using

table 2 of Appendix B. For the southward beam, these quantities are given in table 3.

In each local region around %3, %4 and %7, we can write the velocity field as

v1 ∼ 1
√
A
�1/12ṽ1 , (3.14)

with

Ẽ1A = 2−1/2�̃+
3 , Ẽ1q = −i�̃+

3 , Ẽ1I = 2−1/2�̃−
3 , for %3, (3.15a)

Ẽ1A = −2−1/2�̃+
4 , Ẽ1q = i�̃+

4 , Ẽ1I = −2−1/2�̃−
4 , for %4, (3.15b)

Ẽ1A = 2−1/2�̃−
7 , Ẽ1q = −i�̃−

7 , Ẽ1I = −2−1/2�̃+
7 , for %7, (3.15c)

where

�̃+
V (ÃV , ĨV) = (�̃#8

V − �̃(A
V ) + (�̃#A

V − �̃(8
V ), (3.16a)

�̃−
V (ÃV , ĨV) = (�̃#8

V − �̃(A
V ) − (�̃#A

V − �̃(8
V ). (3.16b)

There is a relation between incident and reflected beams: they are such that the normal

velocity of the sum of these two contributions vanish on the boundary. This condition can be

written, at the three points %3, %4 and %7, as

�̃#8
3 (G̃= = 0) =  �̃#A

3 (G̃= = 0) , �̃(8
3 (G̃= = 0) = (1/ )�̃(A

3 (G̃= = 0), (3.17a)

�̃#8
4 (G̃= = 0) = �̃#A

4 (G̃= = 0) , �̃(8
4 (G̃= = 0) = �̃(A

4 (G̃= = 0), (3.17b)

�̃#8
7 (G̃= = 0) = (1/ )�̃#A

7 (G̃= = 0) , �̃(8
7 (G̃= = 0) =  �̃(A

7 (G̃= = 0), (3.17c)

where G̃= = 0 denotes the boundary, and

 =
sin(U + c/4)
sin(U − c/4) (3.18)

the contraction factor of the northward beam at %3.

However the tangential velocity does not vanish on the boundary. Consequently, in the local

region %3 and %7 where a real boundary is present, a viscous boundary layer is expected to

form. This boundary layer was studied in Le Dizès (2020). It was shown to induce a$ (�1/6)
viscous correction to the reflected beam, which is further discussed below in section 3.5.

3.3. Harmonic solution near %5 and %6

The weak beam propagating between (2 and %6 interacts with the main beam propagating

between %3 and %7 at the point %5. In this interaction region which is $ (�1/3) large and

$ (�1/6) long in the direction aligned with the main beam, the harmonic solution exhibits a

particular approximation that can be written as

v1 ∼ 1
√
A
(�1/4v̆1 + �1/12ṽ1) , (3.19)

with

Ĕ1A =
1
√

2
(�̆# − �̆(), Ĕ1q = −i(�̆# − �̆(), Ĕ1I =

1
√

2
(�̆# − �̆(), (3.20a)

Ẽ1A =
1
√

2
(�̃#

5 − �̃(
5 ), Ẽ1q = −i(�̃#

5 − �̃(
5 ), Ẽ1I = − 1

√
2
(�̃#

5 − �̃(
5 ) , (3.20b)

Rapids articles must not exceed this page length
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where the beam structures are given for example for the northward beams by

�̆#
= �̃#

0 �̆<(Ğ
#
⊥ , _

# ) , (3.21a)

�̃#
5 = �̃#

05�<(G̃#⊥5, G
#
∥5
, !#

5 ) , (3.21b)

A similar expression is obtained for %6, upon changing �̃#
5

by �̃(
6

and, �̃(
5

by �̃#
6

. However,

%6 being on the boundary, a viscous correction is expected. Because %6 is a critical point,

this viscous correction is larger than that of %3 and %7. It is expected to be of order �1/12 as

shown in Le Dizès (2024). No such correction is generated at %5.

3.4. Harmonic solution near %1

The point %1 where the critical beam reaches the axis is particular. At that point, the

approximation (3.5) exhibits a singularity, which means that another approximation must be

used in the local region near %1. In that region, the velocity and pressure should be expressed

using the Hankel transform, as discussed by Le Dizès & Le Bars (2017) (equation (A1) in

appendix) and He et al. (2022) (equation (4.1) in their paper).

In Le Dizès (2015), the solution was derived for an open-domain configuration, focusing

on the local region of beam reflection along the axis. The theory was extended to a closed

domain with periodic characteristics in He et al. (2022). Introducing the local variables

Ã1 = A/�1/3 and Ĩ1 = (I −
√

2[)/�1/3, they showed that the linear harmonic velocity in %1

region can be written as

v1 ∼ �−1/12v̂1 , (3.22)

where

Ê1A =
i
√

2

(
&#

1 +&(
1

)
, (3.23a)

Ê1q = &#
1 +&(

1 , (3.23b)

Ê1I =
1
√

2

(
−&#

0 +&(
0

)
. (3.23c)

The functions &#
;
(Ã1, Ĩ1) and &(

;
(Ã1, Ĩ1) are defined, for ; = 0, 1, by

&#
; (Ã1, Ĩ1) =

∫ ∞

0

+̂# ( :̃)�; ( :̃ Ã1)4i:̃ Ĩ1 3:̃ , (3.24a)

&(
; (Ã1, Ĩ1) =

∫ ∞

0

+̂( ( :̃)�; ( :̃ Ã1)4−i:̃ Ĩ1 3:̃ , (3.24b)

where �; are Bessel functions of the first kind. The superscripts # and ( designate northward

and southward beam respectively.

The functions +̂# and +̂( are obtained by matching the Hankel transform expression to

the solution (3.5) valid away from %1. As shown He et al. (2022), this leads to the following

expressions:

+̂#
= 2</2−3+1/8√c4−ic/4 4

−i<c/2

(< − 1)!
:̃<−1/24−2G#

∥ :̃3

1 − i4−2!:̃3
, (3.25)

+̂(
= 2</2−3+1/8√c 4

−i<c/2

(< − 1)!
:̃<−1/24−2G(∥ :̃

3

1 − i4−2!:̃3
, (3.26)

where we have used expressions (3.4) for �#
0

and �(
0

to simplify the expressions given in

He et al. (2022), eq. (4.8a,b).
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Note the scaling of the amplitude in �−1/12 and of the region size in �1/3, which has been

illustrated in figure 3. The methodology developed for the %1 region can be generalized to

any beam interaction on the rotating axis. Note in particular that the functions +̂# and +̂(

in our current analysis contain a term in 1 − i4−2!:3

in the denominator, which arises from

the summation of infinitely many beam contributions owing to the periodicity of the critical

path. For a simple beam interaction without summation, no such term in the denominator is

present (see Le Dizès 2015).

3.5. Higher-order corrections to the harmonic solution

In the previous sections, we have provided the leading-order approximation of the harmonic

response in the interaction regions. These expressions are based on the similarity solution

(3.1) obtained by Moore & Saffman (1969), which is known to be valid in an open domain

up to $ (�1/3) corrections induced by variations along the beam.

Larger viscous corrections are created when the beam reflects on the boundary. Le Dizès

(2020) showed that a viscous correction with an amplitude $ (�1/6) smaller than the main

beam is created at reflection. He further showed that it takes the form of equation (3.1) with

a larger index, < + 1. In the present closed geometry, these corrected waves propagate on the

closed circuit and, upon summation, yield an expression of the form (3.5) with an amplitude

of order �1/4 and functions �<+1 replacing �<. Corrections of this form are expected to be

created at the points %3 and %7 for both northward and southward beams.

For the reflections at %2 and %6, an even larger viscous correction is expected. Le Dizès

(2024) indeed showed that a corrected beam of amplitude$ (�1/6) (that is$ (�1/12) smaller

the main beam), was created at the critical point. This beam has also the similarity form

(3.1) but an index < + 5/4. As for the reflections at %3 and %7, this correction is expected

to accumulate as it propagates along the closed circuit, resulting in an expression of the

form (3.5) with an amplitude of order �1/6 and functions �<+5/4 instead of �<. Naturally,

these first order corrections will themselves generate higher corrections of order �1/4 as

they reflect at %2 and %6, and of order �3/12 as they reflect at %3 and %7. As a result, we

expect the higher-order corrections to the harmonic solution (3.5) to be composed, up to

$ (�5/12), of sum of functions �#
<′ and �(

<′ with different values <′. This has an important

consequence: the harmonic solution including these viscous corrections satisfies equations

(3.10) and (3.11) up to $ (�5/12).

4. Meanflow corrections

Our investigation of meanflow corrections proceeds systematically through two main aspects:

the global response driven by oscillating boundary layers, and the localized interactions

at beam crossing regions. For each interaction region, we present detailed comparisons

between numerical and asymptotic solutions, accompanied by rigorous analysis of their

scaling behaviors with respect to the Ekman number. This analysis encompasses the scaling

of beam characteristics and velocity amplitudes.

To facilitate a clear visualization of the analysis locations, we employ the color-coded

cutting system shown in figure 4. Blue markers indicate the locations where theoretical

solutions are obtained and compared to numerical solutions, red markers designate the

positions where only numerical results are analysed, and green markers highlight the cuts

along which bulk flow solutions are compared.
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Figure 4: Schematic diagram of the positions of the slices used for comparing theoretical and numerical
solutions (blue cuts). Green cuts are used to show the global bulk response. Red slices correspond to cases
where only the numerical solution is discussed.

4.1. Solution in the bulk generated from the boundary layers

In this section, we consider the meanflow correction driven by oscillating boundary layers

on the inner core. Such a correction was already examined by Sauret & Le Dizès (2013)

in the absence of critical latitudes and inertial waves. They determined that the mean zonal

flow within a spherical shell could be directly inferred from the analytical solutions derived

for a full sphere. They showed that an azimuthal velocity of order �0 was generated in the

bulk, E0q = F (d;l) in their equation (4.27). Furthermore, they extended their analysis

to cases where 0 < l < 2, a condition in which inertial waves emerge and have a weak

nonlinear effect on the fluid. Building upon this foundational work, Cébron et al. (2021)

expanded the theory to include non-homoeoidal spheroidal shells, accounting for variations

in the amplitudes of libration forcing at different boundaries. They succinctly expressed the

rotation velocity of the mean zonal flow in dimensionless form, presented as equation (5.5)

in their publication.

In our study, we use equation (5.5) from Cébron et al. (2021), illustrating the theoretical

predictions with a black dashed line in panel (a) of figure 5. Our numerical simulations at

� = 10−10 show excellent agreement with this theoretical prediction. This confirms that

nonlinear effects within the Ekman boundary layer remain one of the important sources of

mean zonal flow within the shell. Additionally, we identify two critical lines: A = [/
√

2,

which marks the critical latitude, and A = [, denoting the cylinder tangent to the inner core

boundary. Our numerical simulations confirm that equation (5.5) from Cébron et al. (2021)

remains applicable even in the presence of inertial waves.

In the band issued from (0, which is tangent to the inner core, we expect Stewartson layers

characterized by three distinct widths: �2/7 for the internal layers, �1/3 for the inner layer, and
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Figure 5: (0) Mean azimuthal velocity E0q in the bulk as predicted by numerical simulations (red solid

line, � = 10−10) and theoretical results (black dashed line, based on Sauret & Le Dizès (2013) and Cébron
et al. (2021)). The light blue background highlights the interior region inside the tangent cylinder, located at
A = 0.35. (1) Logarithm mean azimuthal velocity outside the tangent cylinder from numerical simulations
at different Ekman numbers. For the range of cuts, in the tangent inner core, cuts are taken at (1 and
I = 0.4. For the outer region, cuts are taken at I = 0.2 initially, and then on the equator. See figure 4
for the positions of the cuts. The directory containing the data and the Jupyter notebook used to compute
the asymptotic theory and generate this figure can be accessed at https://cocalc.com/share/public_
paths/bd308dadc457d695975b37acd237ba8e89f75ded/Figure5.
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Figure 6: The length and amplitude scaling at (A0 are revealed by the velocity profiles of three Ekman
numbers. The different scalings observed in the azimuthal velocity component E0q originate from the
Stewartson layer.

�1/4 for the external layers (Sauret & Le Dizès 2013). In figure 6(a), the azimuthal velocity

is plotted using the internal and external layer variables. The external scaling is perfectly

recovered for this component. For the radial and axial velocity components, the scalings in

�17/42 and �5/42, that are predicted by the theory (Sauret & Le Dizès 2013) in the inner

layer, are compatible with the numerical results, as shown in figures 6(b,c).

It is important to note that previous theoretical frameworks generally assumed that the

velocity outside the tangent cylinder remains zero when forcing is applied at the inner core

boundary only. Contrary to this assumption, our numerical results shown in figure 5(b)

reveal that this is not the case when inertial waves are present. We indeed observe a bulk

azimuthal flow of order �1/3. Also visible are distinct peaks in the velocity profiles within

the outer shell. These peaks correspond to specific regions where shear layers emitted from

the critical latitude interact, either due to reflection on boundaries or through intersection

within the volume. Although weak, these bands appear to exhibit the same scaling in �0 as

https://cocalc.com/share/public_paths/bd308dadc457d695975b37acd237ba8e89f75ded/Figure5
https://cocalc.com/share/public_paths/bd308dadc457d695975b37acd237ba8e89f75ded/Figure5
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the meanflow generated by the boundary layer on the inner core. This observation provides

important context for the subsequent research questions: What is the origin of these weak

nonlinear zonal beams? How can we determine the corresponding amplitude and beam

width? Addressing these questions constitutes one of the objectives of the present study.

In the following sections, we explain the origin of these weak nonlinear zonal beams and

demonstrate the observed Ekman scaling.

4.2. Solution generated from the interaction along the beam

The equations (2.5) governing the meanflow correction read in cylindrical coordinates

−2E0q + m?0

mA
= −N0A + �

(
Δ − 1

A2

)
E0A , (4.1a)

2E0A = −N0q + �
(
Δ − 1

A2

)
E0q, (4.1b)

m?0

mI
= −N0I + �ΔE0I , (4.1c)

1

A

m

mA
(AE0A ) +

mE0I

mI
= 0, (4.1d)

where the Reynolds stress N0 = (N0A ,N0q,N0I) is given by

N0A = E1A

mE∗
1A

mA
+ E1I

mE∗
1A

mI
−
E1qE

∗
1q

A
+ c.c , (4.2a)

N0q = E1A

mE∗
1q

mA
+ E1I

mE∗
1q

mI
+
E1AE

∗
1q

A
+ c.c , (4.2b)

N0I = E1A

mE∗
1I

mA
+ E1I

mE∗
1I

mI
+ c.c . (4.2c)

The Reynolds stress expression can be simplified along the beam using the properties

(3.10) and (3.11) that the harmonic solution satisfies. It gives using (3.10) and (3.11)

N0A ∼ m

mA

(
|E1A |2 − |E1I |2

)
− 4

|E1A |2
A

, (4.3a)

N0q ∼ 2
m

mI
Im(E1AE

∗
1I) , (4.3b)

N0I ∼ − m

mI

(
|E1A |2 − |E1I |2

)
. (4.3c)

If we neglect the viscous terms, a particular solution to equations (4.1) can be obtained as

E0A = − m

mI
Im(E1AE

∗
1I), (4.4a)

E0q =
m

mA

(
|E1A |2 − |E1I |2

)
− 2

|E1A |2
A

, (4.4b)

E0I =
1

A

m

mA
A Im(E1AE

∗
1I). (4.4c)

As the harmonic velocity v1 varies with respect to a spatial variable that scales as �1/3 for

the main beam, and as �1/6 for the secondary beam, the viscous terms associated with the

solution (4.4) remain small. This expression is therefore expected to be valid along the beam.
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However, this solution is small, of order �1/6, when evaluated using (3.1), and of order

�1/2, when evaluated using (3.7). It becomes important only when two beams interact, that

is in the local regions %V . In the next subsections, we provide the scaling and the expression

of the solution in the three typical interaction regions.

4.2.1. Solution in the local regions %3, %4 and %7

Close to those points, the particular solution reduces, at leading order, to

v0 ∼ 1

A
�−1/6ṽ0 , (4.5)

with

©­­­­«

Ẽ0A

Ẽ0q

Ẽ0I

ª®®®®¬
=

©­­­­­­­­­«

− 1
√

2

mÑ%V

mĨV

mM̃%V

mÃV

1
√

2

mÑ%V

mÃV

ª®®®®®®®®®¬

. (4.6)

where the functions M̃%V
and Ñ%V

are given by

M̃%3
= 2ReQ̃3 , M̃%4

= 2ReQ̃4 , M̃%7
= −2ReQ̃7 , (4.7a)

Ñ%3
= −2ImQ̃3 , Ñ%4

= −2ImQ̃4 , Ñ%7
= −2ImQ̃7 , (4.7b)

with

Q̃V (ÃV , ĨV) = (�̃#8
V − �̃(A

V ) (�̃#A∗
V − �̃(8∗

V ) . (4.8)

As it can be seen on these expressions, only four nonlinear contributions remain. They are all

confined to the local interaction regions. This result aligns with the outcomes of our numerical

simulations and meets our expectations. This further supports the idea that the main sources

of zonal flow are constrained to the $ (�1/3) regions where incident and reflected beams

interact.

From (4.6), one can also obtain the normal and tangential velocity associated with this

solution:

Ẽ0= = − 1
√

2

mÑ%V

mG̃C
, Ẽ0C =

1
√

2

mÑ%V

mG̃=
. (4.9)

Thanks to (3.17), one can see that expression (4.7) with (4.8) reduces at the boundary (G̃= = 0)

to Ñ%V
(G̃= = 0) = 0. This implies that the normal velocity vanishes at the boundary. The

non-penetration condition is then automatically satisfied. This has an important consequence.

It means that the particular solution (4.6) is the leading-order solution in each local region

around %V . It is this expression that will be compared to the numerical solution close to each

%V . Since the functions M̃%V
and Ñ%V

are both localized, all the velocity components are

also localized near %V at this order.

Figure 7 compares the profiles of three asymptotic velocity components with numerical

solutions for three different Ekman numbers near %7. The comparison is performed on

the vertical and horizontal slices (%7
, as depicted in figure 4. As expected, the asymptotic

theoretical results increasingly align with the numerical data as the Ekman number decreases.

However, discrepancies are observed in the radial velocity, E0A , and the axial velocity, E0I , near

the boundary. These discrepancies arise because the numerical boundary condition employs

a no-slip condition, causing the numerical solutions to approach zero at the boundary, while
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Figure 7: Three velocity components profiles of the asymptotic solution (�() and the numerical
solution for three different Ekman numbers at local region %7 with two direction cuts ((%7

in
figure 4). The directory containing the data and the Jupyter notebook used to compute the asymptotic
theory and generate this figure can be accessed at https://cocalc.com/share/public_paths/
bd308dadc457d695975b37acd237ba8e89f75ded/Figure7.

only the non-penetration condition is satisfied by the asymptotic solution. As demonstrated

in Le Dizès (2020), another approximation can be constructed in a viscous boundary layer

of $ (�1/2) width to capture this behaviour.

In addition, the azimuthal velocity along the I-axis, parallel to the rotation axis, tends to

zero in the asymptotic theory as one moves away from the local interaction point. However,

numerical results display a small amplitude zonal flow in the bulk (see the bottom left panel

of figure 7). This is also evident in figure 1, where several weak bands are visible throughout

the bulk. The scaling of these bands will be discussed in the next section, using the results

given in appendix C.

Comparisons between two similar interaction regions, %3 and %4, and the numerical results

are presented in figures 8 and 9, respectively. The observations from figure 7 regarding

differences in the boundary layer and the azimuthal velocity in the bulk are also applicable

here. Notably, near %4, located on the equatorial plane, the axial velocity E0I remains zero by

symmetry. Additionally, improvements in the comparison with decreasing Ekman numbers

are observed, consistent with the findings at other local positions.

At the three specific locations, %7, %3, and %4 the asymptotic analysis yielded consistent

scaling behaviours: the interaction region scales as �1/3, and the amplitude scales as �−1/6

for all three velocity components. Note however that the rescaled velocity remains small, of

order 10−3, at each of these points. This explains why these regions are not more visible on

the contour map shown in figure 1.

4.2.2. Solution in the local regions %5 and %6

The secondary weak beams encounter the main critical beam in the bulk at %5. This case is

interesting because the scalings of the two beams differ.

https://cocalc.com/share/public_paths/bd308dadc457d695975b37acd237ba8e89f75ded/Figure7
https://cocalc.com/share/public_paths/bd308dadc457d695975b37acd237ba8e89f75ded/Figure7
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Figure 8: Same caption as figure 7 but at local region %3 (Cuts at (%3
). The directory containing the data and

the Jupyter notebook used to compute the asymptotic theory and generate this figure can be accessed
at https://cocalc.com/share/public_paths/bd308dadc457d695975b37acd237ba8e89f75ded/
Figure8.
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Figure 9: Comparison of asymptotic solutions and numerical results of two velocity components (E0I = 0)
at local region %4. (Cuts position at (%4

). The directory containing the data and the Jupyter notebook used to
compute the asymptotic theory and generate this figure can be accessed at https://cocalc.com/share/
public_paths/bd308dadc457d695975b37acd237ba8e89f75ded/Figure9.

The meanflow correction is weaker and given by

v0 ∼ 1

A
�0v̆0 , (4.10)

https://cocalc.com/share/public_paths/bd308dadc457d695975b37acd237ba8e89f75ded/Figure8
https://cocalc.com/share/public_paths/bd308dadc457d695975b37acd237ba8e89f75ded/Figure8
https://cocalc.com/share/public_paths/bd308dadc457d695975b37acd237ba8e89f75ded/Figure9
https://cocalc.com/share/public_paths/bd308dadc457d695975b37acd237ba8e89f75ded/Figure9
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Figure 10: Comparison of the asymptotic solutions and numerical results of velocity profiles at local
region %5 (Cuts at (%5

). The directory containing the data and the Jupyter notebook used to compute the
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where

M̆%5
= 2 Re

(
(�̆# − �̆() (�̃#∗

5 − �̃(∗
5 )

)
, (4.12)

N̆%5
= −2 Im

(
(�̆# − �̆() (�̃#∗

5 − �̃(∗
5 )

)
. (4.13)

These expressions are similar to the one obtained near point %4, where the #A and (8 beams

at %4 are now the strong ( and # beams propagating between %3 and %7, while #8 and (A

beams at %4 are the weak ( and # beams propagating between %2 and %6 (see figure 2(b)).

Note that because �̆( and �̆# are functions of the slow variable Ğ⊥ = �1/6( Ĩ5 − Ã5)/
√

2, the

spatial derivatives in (4.11) should be applied to �̃(
5

and �̃#
5

only.

In figure 10, we compare the asymptotic solution from equation (4.11) with numerical

results for three different Ekman numbers. The secondary weak beam, characterized by its

larger width scaling in �1/6, is analyzed by taking profile cuts parallel to the critical beam

from %3 to %7 (see figure 4, (%5
). Due to the anti-symmetry of the weak beam, the cuts in

the perpendicular direction (that is on the I = A line), are zero.

The width of the local region scales as �1/6, while the other direction scales as �1/3. The

amplitude scaling is �0, which is significantly weaker than in other local interaction regions.

Despite the two beams having different scaling factors, the asymptotic method demonstrates

overall accuracy. The asymptotic theory matches the numerical solutions well, exhibiting

convergence as the Ekman number decreases.

However, some perturbations are observed on the right side of figure 10, specifically in

the E0q component. These perturbations arise because the cut profiles are influenced by the

weak band issued from the point %6, as shown in figure 5(b).

In the local region %6, a particular solution of the same form as (4.11) can be obtained.

However, as we will see in §5 and Appendix C, this particular solution is modified by an

additional homogeneous solution, which describes the meanflow correction associated with

https://cocalc.com/share/public_paths/bd308dadc457d695975b37acd237ba8e89f75ded/Figure10
https://cocalc.com/share/public_paths/bd308dadc457d695975b37acd237ba8e89f75ded/Figure10
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the vertical band originating from %6. Therefore, it cannot be directly compared to numerical

results.

4.2.3. Solution in the local region %1

For the point on the rotation axis, we must use the expressions (3.23) for the harmonic

solution. We obtain the following expression for the meanflow

v0 = �−1/2v̂0 , (4.14)

with

Ê0A = − 1
√

2

m

mĨ1

{
Re

[
(&#

1 +&(
1 ) (−&

#∗
0 +&(∗

0 )
]}

(4.15a)
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Ê0I =
1
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2
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m

mÃ1

+ 1

Ã1

) {
Re

[
(&#

1 +&(
1 ) (−&

#∗
0 +&(∗

0 )
]}

. (4.15c)

In figure 11, we compare the asymptotic solution from equation (4.15) with numerical

results for three different Ekman numbers. The profiles analyzed are taken at (%1
and include

one profile in the direction perpendicular to the rotation axis and another along the rotation

axis (see figure 4). Due to the axisymmetry of the system, only the axial velocity component

is considered along the rotation axis, as the two other components, E0A and E0q, are identically

zero.

The width of the local region scales with �1/3, while the amplitude scales with �−1/2.

Although the overall agreement between the asymptotic solution and the numerical results

is strong, particularly for the azimuthal component, a noticeable deviation is observed in the

smaller E0A component near the axis. This discrepancy was already observed in the linear

harmonic solution in He et al. (2022). We suspect that it could come from higher-order

corrections that could become non-negligible owing to the smallness of the solution at this

leading order.

5. Numerical scalings of the bands

In the previous section, we analysed the meanflow corrections generated in the interaction

regions and in the bulk from the oscillating boundary layer on the inner core. These represent

the dominant contributions. As illustrated in figure 1, numerical results also reveal the

presence of faint vertical beam-like bands within the bulk. These bands originate from the

local interaction regions. However, the leading-order meanflow corrections computed in these

regions were shown to be localized. The observed bands must therefore be associated with

higher-order effects. Finding an approximation for the velocity field in the bands is thus also

more complex, as it requires higher-order expansions of the harmonic solution. Nevertheless,

some general insight into the scaling and structure of the velocity field in each band can be

obtained through asymptotic reasoning. These results are summarized in Appendix C and

will be used to interpret the numerical results that are now presented.

Figure 12 displays the scaling of the vertical band aligned with the rotating axis, analysed

along the cut (A1 shown in figure 4. Near A = 0, the width of the band scales as �1/3. As

explained in the appendix, the amplitude of the axial and azimuthal velocity components in

the band should be �1/3 smaller than in the local region around %1. This leads to expected

scalings of �−1/6 for E0q and E0I , and $ (�1/6) for E0A . These scaling are confirmed by the

numerical results shown in figure 12. The variation of the meanflow correction within this
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Figure 11: Comparison of the asymptotic solutions and numerical results of velocity profiles at local region
%1. (Cuts position at (%1

). The directory containing the data and the Jupyter notebook used to compute
the asymptotic theory and generate this figure can be accessed at https://cocalc.com/share/public_
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band along the axial coordinate is also complex, as illustrated in figure 13(a).

Figure 14 illustrates the scaling behaviours in two distinct regions: the critical latitude

region (analysed at cut (%2
) and the resulting zonal band in the bulk (analysed at cut (A2).

The horizontal width of the critical latitude region scales as �2/5, while the width of the

associated band is $ (�1/5). As explained in Appendix C, the scaling of the azimuthal

velocity in the band depends on the Ekman pumping generated in the local region %2, which

is challenging to evaluate analytically. However, the scalings of the different components are

interrelated. In figure 14(a), we propose a scaling in �−1/10 for E0q, �1/2 for E0A and �1/5 for

E0I which is consistent with the expected structure of the meanflow correction in the band

issued from %2. Figure 14(b) present scaling behavior in the local region %2 that may be

compatible with the observed scalings in the band. In particular, a scaling of E0A and E0I in

�−1/5 is expected to yield an Ekman pumping of order �1/5, which matches the amplitude of

https://cocalc.com/share/public_paths/bd308dadc457d695975b37acd237ba8e89f75ded/Figure11
https://cocalc.com/share/public_paths/bd308dadc457d695975b37acd237ba8e89f75ded/Figure11
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Figure 14: Velocity scalings in the local region %2 (cut (%2
in (b)) and in the band originating from %2 (cut

(A2 in (a)).

the axial velocity observed in the band. In figure 13(b,c), we observe that the axial velocity

within the band from %2 is uniform along the axial direction at leading order �1/5, but linear

at the next order �3/10, as predicted by the theory.

Figures 15 and 16 present the velocity profiles along cuts (A3 and (A7, respectively. We

have applied the scalings predicted by the asymptotic analysis, namely, an amplitude of order

�0 for the azimuthal and axial velocity components, and �1/3 for the radial velocity (see

appendix C). These scalings are consistent with the numerical results. However, for the

azimuthal velocity in the band issued from %7, an alternative scaling appears to better match

the numerical data (see figure 17). At present, we have no theoretical justification for this

alternate scaling.

As discussed in Appendix C, no significant band is expected to form from %4, which
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Figure 15: Same caption as figure 12 but for the band originating from %3 (cut (A3).
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Figure 16: Same caption as figure 12 but for the band originating from %7 (cut (A7).
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Figure 17: Alternate scaling for the azimuthal velocity in the band originating from %7 (cut (A7).

was already evident in figure 1(e). In figure 18, we confirm that the numerical results align

with the theoretically predicted scaling of �1/6 for both the azimuthal and axial velocity

components.

A faint band originating from the critical point on the outer core is visible in figure 1(a).

This band is not associated with the local region %5, which is not expected to generate any

visible band, but rather with %6. As explained in Appendix C, the structure of the velocity

field in this band is particular. Its width scales as �1/6, matching with the width of the local

region %6. However, unlike the bands originating from %3 and %7, the axial velocity here is

significantly weaker than the azimuthal velocity and varies linearly in I. The scaling used in

figure 19(a,b) - �0 for E0q, �1/2 for E0I - are those predicted by the theoretical analysis. The

radial velocity, which is expected to be $ (�2/3) is too weak to be correctly resolved, and

has not been plotted. In figure 19(c), we demonstrate that the azimuthal velocity is uniform

along the vertical direction, as expected from the theory.
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at I = 0.4, I = 0.5 and I = 0.1, respectively.

6. Conclusion

In this study, we have used both numerical and asymptotic approaches to analyse the meanflow

corrections generated by the nonlinear self-interaction of a harmonic solution in a rotating,

librating spherical shell. We have focused on the case where the inner core librates at a

frequency l̂ =
√

2Ω̂, for which the harmonic solution exhibits a simple structure, primarily

composed of critical point beams propagating along a closed rectangular periodic path.

Using the asymptotic structure of the harmonic solution obtained in He et al. (2022), we

have obtained expressions for the dominant meanflow corrections in the limit of small Ekman

numbers. These theoretical predictions have been compared with numerical results obtained

for Ekman numbers ranging from 10−8 to 10−10, providing strong validation for both the

numerical and asymptotic methods. In addition, scaling laws for weaker meanflow bands

have been derived and compared against numerical data. This analysis has allowed us to

obtain a comprehensive picture of the meanflow correction structure, summarized for the

three velocity components in figures 20, 21 and 22.

The main findings are as follows. We have shown that the largest meanflow corrections

are localized in the regions where two beams propagating in different directions intersect.

In these localized overlap regions, the three velocity components share the same scaling.

The largest correction, of order �−1/2, occurs in the local region %1 where the critical beam

reaches the rotation axis. Significant corrections of order �−1/6 have also been found in

regions %3 and %7, where the critical beam reflects on the outer boundary, and in region %4,

where it intersects its symmetric counterpart on the equator. Weaker contributions, scaling

as �0 have been observed in regions %5 and %6 where the main critical beam interacts with
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Figure 21: Same caption as in figure 20, but shown for the velocity component E0I .



26

r

z

E
1/3

E
1/5

E
1/3

E
1/5

E
1/3

E
1/3

E
1/3

E
1/6

E
1/3

E
1/3

E
1/6

E
1/3

E
−1/2

E
1/6

E
1/3

E
2/3

E
1/3

E
−1/6

E
−1/6

E
4/3

E
1

E
1/2

E
−1/6

E
1/6

E
0 E

1/3

E
2/5

E
−1/5

E
1/2

E
0

E
1/6

E
1/6

E
1/3

E
1/3

E
17/42

E
3/2

E
4/3

E
1/3

E
1/3

E0A amplitudes

lengthscales

Figure 22: Same caption as in figure 20, but shown for the velocity component E0A .

the wider and weaker secondary beam propagating between the critical points on the inner

and outer core.

We have further demonstrated that these strong localized interactions could serve as sources

of weaker meanflow bands aligned with the rotation axis. From regions %3 and %7 on the

outer boundary, we have shown that meanflow bands are generated, characterized by axial

and azimuthal velocities of order �0 and a radial velocity of order �1/3, thus confirming

the viscous generation mechanism proposed by Le Dizès (2020). When the local interaction

occurs away from the boundary, as in regions %1 and %4, the resulting meanflow bands

are relatively weaker. In all of these bands, of width �1/3, the velocity and pressure fields

have a complex axial structure and do not conform to classical Taylor-Proudman columns.

In contrast, broader meanflow bands are generated from the critical point region %2 and

%6 located on the inner and outer cores. These bands behave as Taylor-Proudman columns,

characterised by a dominant azimuthal velocity component that is independent of the axial

coordinate, accompanied by much weaker axial and radial velocity components.

In this study, we have focused on the meanflow correction. However, double-harmonic

corrections, scaling as the square of the harmonic solution, are also expected. For the

frequency considered, 2l lies outside the frequency range of inertial waves. As a result,

double-harmonic corrections are not expected to propagate. Nevertheless, as explained in

Le Dizès (2020), such corrections are still generated within the interaction regions. We expect

them to exhibit the same scaling as the meanflow corrections in the local regions %V , but

without the emission of beams from these regions.

In the present study, we have considered a viscous libration forcing of the inner core,

which gives rise to an harmonic response of order �1/12. For a larger harmonic response,

such as that obtained with inviscid forcing, larger meanflow corrections are expected. He

et al. (2025) considered the same geometry but with a different forcing, corresponding to an

inner core vertical oscillation. When the same frequency is used, they showed that a similar

harmonic solution is obtained, concentrated along the same rectangular critical ray pattern,
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but characterized by a different similarity index, < = 1/2, and a larger amplitude scaling

as �−1/6. A similar analysis can be applied to this solution, which has an amplitude �−1/4

larger than the present harmonic solution. We expect analogous results for the meanflow

corrections generated by the interaction of the critical beam with itself, specifically within

the local interaction regions %V , as well as in the bands originating from these points.

However, since the meanflow corrections scale with the square of the harmonic solution

amplitude, all such corrections would be amplified by a factor of �−1/2 in that case. In

particular, this leads to amplitude scalings of �−3/2 in %1, �−2/3 in %3, %4 and %7, and �−1/2

in the bands originating from %3, %6 and %7.

Our results give some theoretical grounds to previously observed results in the literature.

For example, the fact that differential rotation is preferentially driven at locations where wave

beams reflect on the boundaires has been observed in the tidally-driven zonal flows of Favier

et al. (2014), albeit at much higher Ekman number that those discussed here and for different

forcing frequencies. Additionnally, temptative scaling for the volume-averaged energy of the

differential rotation were reported in Tilgner (2007) and Favier et al. (2014), with exponents

ranging from �−1/2 to �−3/2 (see also the scaling of �−3/10 for the azimuthal velocity

observed experimentally by Morize et al. (2010) but for a full sphere, less relevant to our

particular spherical shell). Since these authors considered tidally-dirven flows, their scaling

are to be compared with our prediction for an inviscid forcing. From our local analysis, we

expect scaling for the volume-averaged energy of the differential rotation of �−2 for the local

region around %1 and �−2/3 for the local regions around %3, %4 and %7. The volume-averaged

energy associated with the bands emanating from %3, %6 and %7 are predicted to scale as

�−2/3. Our predictions are compatible with existing scaling, in particular with the fact that

we expect intense zonal flows in the limit of vanishing Ekman number. Note however that

our approach remains valid only in the weakly non-linear limit but clearly disentangles the

different zonal flow contributions which was not the case of the volume-averaged approach

used in Tilgner (2007) and Favier et al. (2014). Note finally that the strongest response on

the rotation axis around %1 might be connected to the focusing effect discussed by Shmakova

et al. (2021) and Liu et al. (2022) in the case of an oscillating torus.

These scalings, for both inviscid and a viscous forcing, define the limits of validity for

the weakly nonlinear approach employed in this study. The requirement that the meanflow

corrections remain small implies that the forcing amplitude n must be much smaller than

�1/4 in the viscous case, and much smaller than �3/4 in the inviscid case. An even more

stringent condition arises from requiring that the meanflow correction remains smaller than

the harmonic solution. This leads to the constraint n ≪ �5/12 for the viscous case, and

n ≪ �7/6 in the inviscid case.

It is worth emphasizing that the results presented here are for a harmonic solution with

a relatively simple structure, in which the number of beam crossings is limited. For other

forcing frequencies, the harmonic response can be significantly more complex, involving

multiple reflections of the critical point beams and the possible formation of wave attractors

(He et al. 2023).

An illustration of such a harmonic response is shown in figure 23(a) for a libration frequency

l̂ = 0.8317Ω̂. In figure 23(b), we present the azimuthal velocity contours of the meanflow

correction obtained numerically from this harmonic response. Despite the added complexity,

many features of the meanflow corrections remain similar. The dominant contribution arising

from the boundary layer oscillation of the inner core is still present. Localized contributions

at beam intersection points in the bulk are also clearly visible, as are bands originating from

locations where beams reflect on the boundaries. For both the localized contributions and

the emitted bands, a similar asymptotic analysis is expected to hold. In fact, the structure
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Figure 23: (a) Contours of amplitudes of harmonic linear azimuthal velocity |E1q |. The blue lines are a

critical line from the source point (2 . (b) Meanflow azimuthal velocity |E0q | at � = 10−9 and the libration
frequency of the inner core is l = 0.8317.

of the solution may be simpler in this case, as the main beam is now a single critical point

beam (with the same similarity index < = 5/4 and amplitude scaling as �1/12), propagating

in only one direction - unlike in our previous case, which involved an infinite sum of beams

propagating in both directions. As long as the analysis is restricted to regions away from

the attractor, we therefore expect similar localized contributions of order �−1/6 at beam

intersections, and bands of width $ (�1/3), with velocity scaling as �0, originating from

reflection points on the outer boundary.
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Appendix A. Numerical convergence details

The pseudo-spectral method workflow is shown in figure 24. Based on the linear velocity

in spectral space Ě1 of the harmonic solution, this paper calculates the steady Reynolds

stress through the pseudo-spectral method and then obtains the meanflow. For the angular

https://cocalc.com/share/public_paths/bd308dadc457d695975b37acd237ba8e89f75ded/Figure_num_scaling
https://cocalc.com/share/public_paths/bd308dadc457d695975b37acd237ba8e89f75ded/Figure_num_scaling
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∗
× v̌1) + c.cv̌0

Figure 24: Schematic of the pseudo-spectral method workflow.

Ekman number Chebyshev grid resolution # Spherical harmonic grid resolution !

� = 10−6 300 600

� = 10−7 300 900

� = 10−8 900 3000

� = 10−9 900 3500

� = 10−10 2500 8000

Table 1: Resolutions of different Ekman numbers

components, we employ the SHTns package to efficiently transform spherical harmonic

coefficients to physical space (Schaeffer 2013).

We tested two dealiasing approaches: traditional 2/3 truncation for the spherical har-

monic coefficients and the SHTns package’s anti-aliasing capability for angular dimensions

(Schaeffer 2013). No dealiasing was needed in the radial direction as we used Chebyshev

differentiation matrices in physical space. Since both methods yielded identical results to

simulations without dealiasing at our resolution, we present all results without applying

dealiasing operations.

The convergence of the spectral codes with various resolutions is tested by the spectra

of the Chebyshev coefficients and the spherical harmonic components, as in Rieutord &

Valdettaro (1997). Figure 25 shows the spectra at the smallest Ekman number � = 10−10.

We have verified that for all Ekman numbers, the resolutions shown in table 1 ensure that

the tolerance Esmin/Esmax of the energy spectrum is less than 10−8.

Appendix B. Parameters for the harmonic solution

The parameters defining the harmonic solution along the main rectangular circuit are given in

tables 2 and 3 for the northward and southward beam, respectively. They use the following

quantities

! = ;1 + ;2 + ;3 −3 + ;4 + ;5 (B 1)

with

;1 = [, ;2 =

√
1 − [2 − [, ;2 = 2[, ;4 = ;2, ;5 = ;1, (B 2)

and

 =
sin(U + c/4)
sin(U − c/4) . (B 3)
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Figure 25: Spectra compare of (0) linear Chebyshev coefficients, (1) linear spherical harmonic components,

(2) nonlinear Chebyshev coefficients, and (3) nonlinear spherical harmonic components at � = 10−10 with
three different resolutions '4B1 = (2500, 8000), '4B2 = (2500, 7000), and '4B3 = (2000, 8000), red, green
and blue lines respectively. The toroidal component (F solid line) and the radial component (dD dashed line)
have been separated. For each ; and =, the maximum value over the other spectral component is chosen.

Critical line G#∥ G#⊥ �̃#
0

!#

(2 → %1
−A + I
√

2

A + I −
√

2[
√

2
�̃#

0
!

%1 → %3 ;1 + A + I −
√

2[
√

2

−A + I −
√

2[
√

2
i�̃#

0
!

%3 → %7 (;1 + ;2) 3 + A − I +
√

2[
√

2

−A − I +
√

2 − 2[2

√
2

i −1/4�̃#
0

 3!

%7 → %4 ;1 + ;2 + ;3 −3 + −A − I +
√

2 − 2[2

√
2

A − I −
√

2[
√

2
i�̃#

0
!

%4 → (2 ;1 + ;2 + ;3 −3 + ;4 + −A + I +
√

2[
√

2

A + I −
√

2[
√

2
i�̃#

0
!

Table 2: Northward path coordinates, amplitudes and propagation distances within one
cycle.

Appendix C. Meanflow bands

In this section, we analyse the structure of the meanflow bands that are created within the

bulk from the local interaction regions %V . These bands have the particularity to be present

in fluid regions where the Reynolds stress is very small. The corresponding velocity field is

therefore expected to satisfy homogeneous equations.
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Critical line G(∥ G(⊥ �̃(
0

!(

(2 → %4
−A − I +

√
2[

√
2

−A − I +
√

2[
√

2
�̃(

0
!

%4 → %7 ;5 + A + I −
√

2[
√

2

−A + I +
√

2[
√

2
�̃(

0
!

%7 → %3 (;5 + ;4) 3 + −A + I +
√

2[
√

2

A + I −
√

2 − 2[2

√
2

 −1/4�̃(
0
 3!

%3 → %1 ;5 + ;4 + ;3 −3 + −A − I +
√

2 − 2[2

√
2

A − I +
√

2[
√

2
�̃(

0
!

%1 → (2 ;5 + ;4 + ;3 −3 + ;2 + A − I +
√

2[
√

2

−A − I +
√

2[
√

2
i�̃(

0
!

Table 3: Southward path coordinates, amplitudes and propagation distances within one
cycle.

C.1. Bands issued from %3, %4 and %7

We first consider bands generated from the local regions %3, %4 and %7. These regions have

a width of order �1/3 and we can expect the bands to have a same width. It is thus natural to

introduce the local radial variable Ã = �−1/3(A − A%V
) and to use the following ansatz for the

velocity field:

v0 = (�1/3E0A , E0q, E0I , �
1/3?0) (Ã , I). (C 1)

The velocity field then satisfies the following set of equations

− 2E0q + m?0

mÃ
= 0, (C 2a)

2E0A −
m2E0q

mÃ2
= 0, (C 2b)

m?0

mI
− m2E0I

mÃ2
= 0, (C 2c)

mE0A

mÃ
+ mE0I

mI
= 0. (C 2d)

For %3 and %7, the solution should be valid from −I%V
to I%V

with a condition of anti-

symmetry on the axial velocity component with respect to the equatorial plane. This implies

that the general solution for the bands issued from %3 and %7 takes the form

E0A = − i

4

∫ +∞

−∞
�(:):3 cosh(:3I/2)4i:Ã3:, (C 3a)

E0q = − i

2

∫ +∞

−∞
�(:): cosh(:3I/2)4i:Ã3:, (C 3b)

E0I = −1

2

∫ +∞

−∞
�(:): sinh(:3I/2)4i:Ã3:, (C 3c)

?0 =

∫ +∞

−∞
�(:) cosh(:3I/2)4i:Ã3:. (C 3d)
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where �(:) is a function determined by the boundary condition at I = I%V
. In particular,

�(:) is set by the Ekman pumping generated at the boundary close to %V . We have seen

that, at the order �−1/6, the Ekman pumping vanishes. This explains why the order of the

band is smaller than �−1/6. As shown in Le Dizès (2020), the Ekman pumping first appears

at the order �0. If we denote by F∞(Ã) = Ẽ0I (Ã , Ĩ = −∞) the Ekman puming at this order,

the function �(:) is just obtained by the condition E0I (Ã , I%V
) = F∞(Ã), which leads to

�(:) = − 2F̂∞
: sinh(:3I%V

/2)
, (C 4)

where F̂∞ is the Fourier transform of F∞.

For the band issued from the point %4 on the equatorial plane, the solution must satisfy

non-penetration conditions at the ends of the band, corresponding to I = ±I5 = ±
√

1 − 2[2.

This leads to the following form for I > 0:

E0A = − i

4

∫ +∞

−∞
�(:):3 cosh(:3(I − I5)/2)4i:Ã3:, (C 5a)

E0q = − i

2

∫ +∞

−∞
�(:): cosh(:3(I − I5)/2)4i:Ã3:, (C 5b)

E0I = −1

2

∫ +∞

−∞
�(:): sinh(:3(I − I5)/2)4i:Ã3:, (C 5c)

?0 =

∫ +∞

−∞
�(:) cosh(:3(I − I5)/2)4i:Ã3:. (C 5d)

The amplitude �(:) is now prescribed by the axial flux generated from the Reynolds stress

close to I = 0 around %4. We have seen that it is zero at the order �−1/6. We further claim that

it also vanishes at the orders �−1/12 and �0, due to the similar form of the Reynolds stress

at these orders. Indeed, as shown in section 3.5, up to $ (�1/3), the viscous corrections to

the leading-order harmonic solution share the structure as the main beam. They also satisfy

the two key properties -(3.10) and (3.11)- that were used to derive the meanflow correction

expression (4.4), which notably exhibits no axial flux.

The first correction that generates a non-zero axial flux from %4 is therefore expected to

appear at a magnitude �1/3 smaller than the dominant term - that is, at the order �1/6. If

this flux is denoted as �1/6F∞(Ã), the function �(:) is obtained by enforcing the condition

E0I (Ã , I = 0) = �1/6F∞(Ã), leading to

�(:) = �1/6 2F̂∞
: sinh(:3I&5

/2)
. (C 6)

We therefore expect the band generated from %4 to be of order �1/6 smaller than those

originating from %3 and %7.

It is worth emphasizing that the velocity field in the bands issued from the three points %3,

%4 and %7 depends on the axial coordinate I. These bands are therefore not Taylor-Proudman

columns, in which axial and azimuthal velocity components are invariant along the rotation

axis. Here, due the smallness of the radial scale, the viscous effects responsible for axial

variations become observable over the O(1) axial extent of the column.

C.2. Band issued from %1

For the band originating from the point %1, the analysis differs slightly due to the presence

of the cylindrical singularity. We still introduce the local variable Ã = �−1/3A , and adopt the
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same ansatz (C 1) for the meanflow corrections. The governing equations become:

− 2E0q + m?0

mÃ
= 0, (C 7a)

2E0A −
(
m2

mÃ2
+ 1

Ã

m

mÃ
− 1

Ã2

)
E0q = 0, (C 7b)

m?0

mI
−
(
m2

mÃ2
+ 1

Ã

m

mÃ

)
E0I = 0, (C 7c)

mE0A

mÃ
+ E0A

Ã
+ mE0I

mI
= 0. (C 7d)

On either side of %1, we obtain solutions that satisfy the non-penetration condition at I =

I+
1
= 1 and at I = I−

1
= [, respectively. These solutions take the following form:

E±0A =
1

4

∫ +∞

−∞
�±(:):3 cosh(:3(I − I±1 )/2)�1(:Ã)3:, (C 8a)

E±0q = −1

2

∫ +∞

−∞
�±(:): cosh(:3(I − I±1 )/2)�1(:Ã)3:, (C 8b)

E±0I = −1

2

∫ +∞

−∞
�±(:): sinh(:3(I − I±1 )/2)�0(:Ã)3:, (C 8c)

?±0 =

∫ +∞

−∞
�±(:) cosh(:3(I − I±1 )/2)�0(:Ã)3:, (C 8d)

where the superscript + refers to the region I%1
< I ⩽ 1, and the superscript − refers to

[ ⩽ I < I%1
. The two functions �±(:) are obtained by the conditions of matching with

the local solution close to %1. As previously shown, at the order �−1/2, the local solution

is confined to the vicinity of %1, and thus does not generate any meanflow bands. For the

same reasons as in the case of %4, the corrections at the orders �−5/12 and �−1/3 are also

localized and do not induce any non-local band structure. The first non-localized contribution

is expected to arise at the order �−1/6. The functions �± can be related to the jumps �−1/6XÊ
and �−1/6XF̂ of the azimuthal and axial velocity across the local region around %1 by the

following relations

E+0q (Ã , I = I%1
) − E−0q (Ã , I = I%1

) = �−1/6XÊ(Ã), (C 9a)

E+0I (Ã , I = I%1
) − E−0I (Ã , I = I%1

) = �−1/6XF̂(Ã). (C 9b)

As with the bands originating from %3, %4 and %7, the band emanating from %1 also exhibit

axial dependence.

C.3. Bands issued from %2 and %6

The bands issued from the local regions %2 and %6 differ from those previously discussed, as

their radial width is larger than �1/3. As a consequence, the azimuthal velocity can no longer

depend on the axial coordinate I. These bands are then Taylor-Proudman columns.

For %6, the appropriate radial variable and velocity ansatz are Ă = (A − A%6
)/�1/6 and

v0 = (�2/3E0A , E0q, �
1/2E0I , �

1/6?0) (Ă , I). (C 10)
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This leads to the following governing equations:

− 2E0q + m?0

mĂ
= 0, (C 11a)

2E0A −
m2E0q

mĂ2
= 0, (C 11b)

m?0

mI
= 0, (C 11c)

mE0A

mĂ
+ mE0I

mI
= 0. (C 11d)

This ansatz and these equations above show that an azimuthal velocity of order 1 in the bulk

can only be compatible with an axial velocity of order �1/2. In particular, (C 11b,d) imply

that the axial velocity, which has to be antisymmetric with respect to the equatorial plane,

must satisfy

E0I = −I mE0A

mĂ
= − I

2

m3E0q

mĂ3
, (C 12)

for a given azimuthal velocity profile E0q (Ă). However, the $ (1) particular solution that we

computed in §4.2.2 is expected to induce Ekman pumping of order �1/3. Similarly, an $ (1)
azimuthal velocity in the bulk also generates Ekman pumping of the same order. These two

contributions must cancel each other to ensure compatibility with the axial flow in the bulk.

This matching condition prescribes the function E0q (Ă), from which the full velocity and

pressure field in the band is entierely determined.

The case of %2 is more complex, as both �1/5 and �1/6 radial scales are, a priori, possible.

Assuming the �1/5 scale dominates, we introduce Ā = (A − A%2
)/�1/5 and the ansatz

v0 = (�3/5E0A , E0q, �
2/5E0I , �

1/5?0) (Ā , I). (C 13)

The resulting equations are analogous to those in (C 11) with Ă replaced by Ā . As in the case

of %6, the leading-order azimuthal velocity component must be independent of I. However,

the axial velocity may now either be linear in I with the scaling prescribed by the ansatz

(C 13), or independent of I and larger in magnitude. It is important to note that the bulk

solution with an $ (1) azimuthal velocity is expected to generate $ (�3/10) Ekman pumping

at both the inner and outer cores. These Ekman pumpings differ on each boundary and are

larger than the possible linear axial flow in the bulk. Therefore, the azimuthal velocity in

bulk must be chosen such that the Ekman pumping generated in %2, by the solution forced

by the Reynolds stress, exactly cancels the Ekman pumping produced by the bulk solution

at the outer boundary. This cancellation allows for a I-independent axial flow in the bulk at

leading order. Although evaluating the Ekman pumping precisely is challenging, the above

reasoning enables us to deduce the relative orders of the velocity components. For instance,

if the Ekman pumping in %2 is $ (�1/5), then, in the bulk, we expect: E0q = $ (�−1/10),
E0I = $ (�1/5), and E0A = $ (�1/2). A weak axial dependence of the axial velocity is also

expected at the order �3/10 and given by the analogue of equation (C 12) for this band.

To conclude this section, we briefly comment on the band originating from %5. As in the

case of %1, such a band is generated by the jumps of E0q and E0I across the local region %5.

Due to the different scales of the two interacting beams, these jumps are expected to be of

order �2/3. The jump of E0I must be compensated by an Ekman pumping of the same order

at the outer boundary. This requires an azimuthal velocity in the band of order �1/3. This

velocity amplitude is comparable to the background azimuthal velocity in the bulk, which

explains why no distinct band originating from %5 is visible in figures 1 and 5(b).
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