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Concentrated wave beams are analysed both theoretically and numerically in a gen-
eral rotating and stratified axisymmetric medium, where both the rotation rate and the
Brunt-Väisäla frequency vary with position. The fluid is assumed to be incompressible,
weakly diffusive, and weakly viscous. The analysis is conducted within the Boussinesq
approximation and a linear framework, with a prescribed frequency. An asymptotic so-
lution is derived in the limit of weak viscosity and diffusivity, describing a harmonic
wave beam localized around a characteristic (or ray path), similar to those generated by
boundary singularities or critical points. This solution is shown to break down when the
characteristic reaches a turning point which corresponds to the transition from oscillatory
to evanescent behaviour. A local asymptotic analysis near the turning point demonstrates
that the wave beam reflects, preserving its transverse structure while acquiring a phase
shift of ±π/2. These theoretical predictions are validated through numerical simulations,
which show that the wave beam structure, both near and far from the turning point, is
accurately reproduced.

1. Introduction

Waves are ubiquitous in rotating and stratified fluids. They play a key role in the
dynamics of both the ocean (Munk & Wunsch, 1998) and the atmosphere (Fritts &
Alexander, 2003). In the ocean, such waves can be generated by tidal flows interacting
with topography (Wunsch, 1975). When the topography is supercritical, that is, when
it has a slope tangent to the direction of wave propagation, concentrated wave beams
are emitted from so-called critical (slope) points. These beams have been studied both
experimentally (Zhang et al., 2007; King et al., 2009; Echeverri & Peacock, 2010) and
theoretically (St Laurent et al., 2003; Llewellyn Smith & Young, 2003; Balmforth &
Peacock, 2009) in this context. Similar concentrated beams also occur in rotating fluids
(Greenspan, 1968). They have often been investigated in spherical geometries (Calkins
et al., 2010; Koch et al., 2013; Cébron et al., 2019; Lin & Noir, 2021; He et al., 2022,
2023) due to their relevance in planetary and stellar interiors (Le Bars et al., 2015).
Their structure has been examined theoretically in works such as Walton (1975); Kerswell
(1995); Tilgner (2000), and more recently in Le Dizès & Le Bars (2017).

The theoretical description of these beams is based on the similarity solutions obtained
by Moore & Saffman (1969) for rotating fluids and Thomas & Stevenson (1972) for
stratified fluids. These asymptotic viscous solutions have primarily been used to describe
wave fields far from a localised oscillating source (Hurley & Keady, 1997; Voisin, 2003;
Cortet et al., 2010; Machicoane et al., 2015). They are parametrised by an index m,
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which characterises the strength of the underlying inviscid singularity. Only recently
have these solutions been applied to describe concentrated beams issued from critical
points (Le Dizès & Le Bars, 2017; He et al., 2022, 2023; Le Dizès, 2024). Furthermore,
Ogilvie (2005) and He et al. (2023) have shown that these solutions can also describe the
asymptotic viscous structure of the internal shear layers associated with wave attractors.

Most of the existing studies have focused on uniformly rotating and stratified fluids.
In a non-uniform medium, the direction of wave propagation is expected to vary with
position. In such cases, a local wave analysis is typically employed, based on WKB
approximations and ray tracing techniques (Lighthill, 1978; Marks & Eckermann, 1995;
Prat et al., 2016; Broutman et al., 2004; Prat et al., 2018). This approach has helped
explain various features observed in the structure of free oscillating modes in closed
geometries (Baruteau & Rieutord, 2013; Guenel et al., 2016; Mirouh et al., 2016; Dintrans
et al., 1999; Mathis, 2009; Astoul et al., 2021).

The concentrated beams generated from critical or singular points are small-scale struc-
tures, for which this local wave approach is expected to be applicable. We will show
that the similarity solution of Moore & Saffman (1969) remains valid in a non-uniform
medium, provided the beam propagates along a characteristic. The beam’s width and
amplitude vary according to the local properties of the medium. As it propagates, the
beam may encounter a location where further propagation is no longer possible. This
corresponds to a turning point where the wave transitions from oscillatory to evanes-
cent behaviour. Mathematically, this point is also a cusp of the characteristics. We will
demonstrate that the similarity solution breaks down at the turning point. A new local
solution will be constructed to describe the beam behaviour near this point, showing that
the beam reflects while maintaining its similarity structure and acquiring a phase shift
of ±π/2. These theoretical predictions are validated using numerical simulations of the
linear governing equations.

The paper is organised as follows. Section §2 presents the general framework. We
consider a non-uniform axisymmetric medium in which the angular velocity varies with
the cylindrical radius and the Brunt-Väisälä frequency varies with the spherical radius.
The governing equations, ray equations, and local dispersion relations are provided in
this section. We also derive the form of the governing equations in the local Frenet-Serret
frame attached to a given characteristic. Section §3 uses these equations to obtain an
asymptotic solution describing viscous wave beams concentrated along a characteristic.
The classical similarity solution of Moore & Saffman (1969) is recovered as one possible
solution. Section §4 analyses the behaviour of the viscous solution near a turning point.
The appropriate scalings, the local governing equation, and its solution are derived.
Section §5 presents the numerical validation of the theory. Simulations are conducted in
a finite domain with a non-stratified configuration, using a localised forcing to generate
the concentrated beam and sponge layers to prevent boundary reflections. The structure
of the solution, both near and far from the turning point, is compared with the theoretical
predictions. Finally, in the conclusion, we summarise the results and discuss their possible
extension to finite geometries.

2. Framework

We consider an incompressible fluid undergoing differential rotation about the verti-
cal axis Oz, with an angular velocity Ω(r) that depends only on the cylindrical radial
coordinate r. The fluid is also assumed to be stably stratified in a central gravitational
field, with a Brunt-Väisälä frequency N(ρ) that depends solely on the spherical radial
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coordinate ρ. The kinematic viscosity ν and the scalar diffusivity α are both taken to be
constant.

We are interested in harmonic, axisymmetric perturbations of frequency $ ($ > 0).
These perturbations are described by the velocity u, pressure P and buoyancy B, which
are expressed in the form:

(U, P,B) = (u, p, b)e−i$t + c.c. (2.1)

where “c.c.” denotes the complex conjugate. The governing equations for the amplitudes
u, p and b are derived from the Boussinesq approximation of the Navier-Stokes equations.
After non-dimensionalizing all quantities using a characteristic length scale L and a
characteristic velocity scale V , the linearised equations take the form:

−i$u + 2Ω(êz × u) + r(u · ∇Ω)êφ = −∇p+ b êρ + E∇2u, (2.2a)

∇ · u = 0, (2.2b)

−i$b+N2u · êρ = (E/Pr)∇2b, (2.2c)

where Pr = ν/α is the Prandtl number and E = ν/(V L) the Ekman number. In
these equations, Ω and N now denote the rotation rate and the Brunt-Väisälä frequency
non-dimensionalized by V/L. In the following, we assume E � 1 and Pr ≥ O(1).
The cylindrical and spherical vector bases are denoted by (êr, êφ, êz) and (êρ, êθ, êφ),
respectively.

2.1. Characteristics and local dispersion relation of the non-dissipative problem

In the non-dissipative limit (ν = α = 0), the system (2.2) can be reduced to a single
second-order equation for the pressure p, as shown in (Mirouh et al., 2016). Retaining
only second-order derivatives, this equation takes the form:

($2 −N2 sin2 θ)
∂2p

∂r2
+ 2N2 cos θ sin θ

∂2p

∂z∂r
+ ($2 −N2 cos2 θ − ξ2)

∂2p

∂z2
= 0, (2.3)

where ξ is the epicyclic frequency, defined by

ξ2(r) = 2Ω(r)ω(r), (2.4)

and ω(r) = (1/r)∂r(r
2Ω) is the background vorticity. Equation (2.3) is a generalization

of the classical Poincaré equation, extended to account for both differential rotation and
radial stratification. In the case of solid-body rotation and uniform stratification, it
reduces to the standard form.

This equation can also be derived from the full system (2.2) in the inviscid and non-
diffusive limit (ν = α = 0) by assuming a local plane-wave solution of the form exp(ikrr+
ikzz) with kr � 1 and kz � 1. This leads to the local dispersion relation for inertia-
gravity waves:

$2 = N2 (kz cos θ − kr sin θ)2

k2
+ ξ2 k

2
z

k2
, k2 = k2

r + k2
z , (2.5)

which corresponds to (2.3) under the substitution ∂r by ikr and ∂z by ikz. We assume a
stable configuration in which both N2 and ξ2 are positive. Equation (2.5) determines the
allowable range of wave frequencies. At the equator (θ = 0), the frequency ranges from

0 to
√
N2 + ξ2, while at the poles (θ = ±π/2), it ranges from min(N, ξ) to max(N ; ξ),

depending on the relative magnitudes of N to ξ. From the dispersion relation (2.5), we
can define both the phase velocity and group velocity. The phase velocity is given by

v(ϕ) = (v(ϕ)
r , v(ϕ)

z ) =

(
$kr
k2

,
$kz
k2

)
,
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while the group velocity is

v(g) = (v(g)
r , v(g)

z ) =

(
∂$

∂kr
,
∂$

∂kz

)
(2.6)

with explicit expressions:

v(g)
r = −kz

N2kρkθ + ξ2krkz
$

, v(g)
z = kr

N2kρkθ + ξ2krkz
$

, (2.7)

where

kρ = kr cos θ + kz sin θ, kθ = −kr sin θ + kz cos θ.

The paths of characteristics associated with equation (2.3) are given by

dz

dr
=
N2 sin θ cos θ ±

√
∆

$2 −N2 sin2 θ
, (2.8a)

dr

dz
=
N2 sin θ cos θ ∓

√
∆

$2 −N2 cos2 θ − ξ2
, (2.8b)

where

∆ = $2(N2 + ξ2 −$2)−N2ξ2 sin2 θ. (2.9)

The curves defined by the vanishing of ∆ correspond to turning points, which play a
key role in the wave dynamics. These curves separate regions where equation (2.3) is
hyperbolic (∆ > 0) from those where it is elliptic (∆ < 0). Only the hyperbolic regions
(∆ ≥ 0) are relevant for wave propagation, as they admit characteristic paths. In a non-
stratified fluid (N = 0), turning points occur at cylindrical locations where $ = ξ(r).
At these points, the ray path becomes horizontal. Conversely, in a non-rotating fluid
(Ω = 0) or in a potential fluid (ω = 0), the turning points lie at the spherical locations
where $ = N(ρ). At these points, the ray path becomes radial.

Moreover, the slope of the characteristic can be related to the group velocity. From
equation (2.10), we have:

v
(g)
z

v
(g)
r

= −kr
kz

=
N2 sin θ cos θ ±

√
∆

$2 −N2 sin2 θ
, (2.10)

indicating that the group velocity points in the direction of the characteristic paths.
Using the dispersion relation (2.5), the expression (2.9) for ∆ can also be rewritten as:

∆ = (N2kρkθ + ξ2krkz)
2. (2.11)

This expression implies that the group velocity (2.7) vanishes precisely when ∆ = 0, i.e.,
at turning points.

2.2. Local Frenet-Serret frame

Consider a characteristic path C parametrized by an arclength x‖ > 0 that increases in
the direction of wave propagation. At any point along the path, the position vector is
given by

x0(x‖) = r0(x‖)êr + z0(x‖)êz.

We define a local Frenet-Serret frame (ê‖, ê⊥) in the (r, z) plane as follows:

∂x0

∂x‖
= ê‖(x‖) = r′0(x‖)êr + z′0(x‖)êz , ê⊥ = −z′0(x‖)êr + r′0(x‖)êz. (2.12)



Concentrated beams 5

The vectors ê‖ and ê⊥ are orthonormal and satisfy the standard Frenet-Serret relations:

∂ê‖
∂x‖

= κ(x‖)ê⊥(x‖) ,
∂ê⊥
∂x‖

= −κ(x‖)ê‖(x‖), (2.13)

where κ(x‖) is the curvature of the characteristic path C at the point x0(x‖). It is given
by

κ(x‖) = z′′0 (x‖)r
′
0(x‖)− r′′0 (x‖)z

′
0(x‖) . (2.14)

The characteristic path x0(x‖) satisfies the dispersion relation, which can be written
as

$2 = ξ2
0(r′0)2 +N2

0

(r0r
′
0 + z0z

′
0)2

ρ2
0

, (2.15)

where ρ0 =
√
r2
0 + z2

0 is the local spherical radius, and ξ0 = ξ(r0), N0 = N(ρ0). The
function ∆(x‖) can also be expressed along the characteristic path using equation (2.9)
as:

∆(x‖) = $2(N2
0 + ξ2

0 −$2)−N2
0 ξ

2
0z

2
0/ρ

2
0. (2.16)

Another useful expression for ∆, derived from the dispersion relation (2.15), is

∆(x‖) =

(
N2

0 (r0r
′
0 + z0z

′
0)(r0z

′
0 − z0r

′
0) + ξ2

0r
′
0z
′
0ρ

2
0

)2
ρ4

0

. (2.17)

This allows us to write

ε1
√

∆ =
N2

0 (r0r
′
0 + z0z

′
0)(r0z

′
0 − z0r

′
0)

ρ2
0

+ ξ2
0r
′
0z
′
0 (2.18)

where ε1 = sgn[N2
0 (r0r

′
0 + z0z

′
0)(r0z

′
0 − z0r

′
0) + ξ2

0r
′
0z
′
0ρ

2
0]. From this, we can derive the

following additional expressions:

z′0/r
′
0 =

N2
0 r0z0/ρ

2
0 + ε1

√
∆

$2 −N2
0 z

2
0/ρ

2
0

, (2.19a)

r′0/z
′
0 =

N2
0 r0z0/ρ

2
0 − ε1

√
∆

$2 − ξ2
0 −N2

0 r
2
0/ρ

2
0

. (2.19b)

The characteristic path C may reach a turning point xc = (rc, zc) at a specific value
x‖c of the arclength parameter x‖, where ∆ = 0. At this point, the characteristic path
terminates and reflects, as illustrated in figure 1. It exhibits a generic cusp structure,
which can be explicitly calculated under the assumption that the root of ∆ is simple,
that is,

∆(x‖c) = ∆c = 0 and ∆′(x‖c) = ∆′c 6= 0.

Let us now investigate the form of the path in the local frame (ê‖c, ê⊥c) attached to the
turning point xc (see figure 1(a)). If we express the path as x0 = xc + y‖0ê‖c + y⊥0ê⊥c,
the coordinates (y‖0, y⊥0) satisfy, for x‖ close to x‖c

y‖0 ∼ −|x‖ − x‖c| , y⊥0 ∼ ±
2

3
αc|x‖ − x‖c|3/2, (2.20)

which leads to the following relation between y⊥0 and y‖0:

y⊥0 ∼ ±
2

3
αc(−y‖0)3/2. (2.21)
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Figure 1. (a) Frames associated with the characteristic path close to a turning point xc. (b)
Scaling of the turning point region for a viscous beam.

Here, αc is given by

αc = −
ε1z
′2
c

√
−∆′c

$2 − ξ2
c −N2

c r
2
c/ρ

2
c

= −
ε1r
′2
c

√
−∆′c

$2 −N2
c z

2
c/ρ

2
c

= −
ε1
√
−∆′c

2$2 −N2
c − ξ2

c

, (2.22)

where the subscript c denotes values evaluated at the turning point x‖c. In equations
(2.20b) and (2.21), the upper sign corresponds to the incident beam (x‖ < x‖c) while
the lower sign corresponds to the reflected beam (x‖ > x‖c). If N2

c rczc 6= 0, none of the
denominators in (2.22) vanish, since

($2 − ξ2
c −N2

c r
2
c/ρ

2
c)($

2 −N2
c z

2
c/ρ

2
c) = N4

c r
2
cz

2
c/ρ

4
c > 0,

and

2$2 − ξ2
c −N2

c = ($2 − ξ2
c −N2

c r
2
c/ρ

2
c) + ($2 −N2

c z
2
c/ρ

2
c).

If N2
c rczc = 0, then either r′c = 0 and $2 − ξ2

c − N2
c r

2
c/ρ

2
c = 0, or z′c = 0 and $2 −

N2
c z

2
c/ρ

2
c = 0. In either case, the third expression of αc remains valid.

It is important to note that the vectors ê⊥ and ê‖ associated with the reflected beam
do not match ê⊥c and ê‖c as x‖ → x‖c. As a result, the functions r′0 and z′0 are not
continuous across x‖c. Throughout this analysis, all quantities evaluated at x‖c should

be understood as taken in the limit x‖ → x−‖c, i.e., for the incident beam.

Finally, it is interesting to note that the curvature κ also diverges at xc as

κ ∼ − αc

2
√
|x‖c − x‖|

. (2.23)

2.3. Governing equations in the local frame of the characteristics

As we are interested in solutions localized around the characteristic path C, it is useful
to express the governing equations in the local coordinate system associated with this
path. We define the local variables (x‖, x⊥) of a point x close to C by writing:

x = x0(x‖) + x⊥ê⊥ , with x0(x‖) = r0(x‖)êr + z0(x‖)êz, (2.24)

where x0(x‖) is the closest point to x on C. The differential vector increment can then
be expressed as

dx =
∂x0

∂x‖
dx‖ +

∂x0

∂φ
dφ+ x⊥

∂ê⊥
∂x‖

dx‖ + ê⊥dx⊥

= (1− κx⊥)dx‖ê‖ + dx⊥ê⊥ + r0dφ êφ.
(2.25)
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which ensures that (x‖, x⊥, φ) forms an orthogonal curvilinear coordinate system with
the metric components (h‖, h⊥, hφ) = (1− κ(x‖)x⊥, 1, r0(x‖)).

The governing equations (2.2) become, in this local coordinate system:

−i$u‖ − 2Ω(r)r′0uφ = − 1

h‖

∂p

∂x‖
+ b êρ · ê‖ + E(∇2u)‖, (2.26a)

−i$u⊥ + 2Ω(r)z′0uφ = − ∂p

∂x⊥
+ b êρ · ê⊥ + E(∇2u)⊥, (2.26b)

−i$uφ + ω(r)(r′0u‖ − z′0u⊥) = E(∇2u)φ, (2.26c)

∂(r0u‖)

∂x‖
+ r0

∂(h‖u⊥)

∂x⊥
= 0, (2.26d)

−i$b+N2(ρ)(u‖ êρ · ê‖ + u⊥ êρ · ê⊥) = (E/Pr)∇2b, (2.26e)

with the geometric relations:

êρ · ê‖ =
r0r
′
0 + z0z

′
0

ρ
, êρ · ê⊥ =

z0r
′
0 − r0z

′
0 + x⊥

ρ
, (2.27)

and the coordinate transformations:

r = r0 − z′0x⊥ , z = z0 + r′0x⊥ , ρ =
√
r2 + z2. (2.28)

3. Viscous solutions localized around a characteristic path

In this section, we develop an approximation for a viscous/diffusive solution that is
localized on the characteristic path C. Our goal is to extend the solutions derived by
Moore & Saffman (1969) and Thomas & Stevenson (1972), originally obtained for purely
rotating or purely stratified fluid, to the more general case of a non-uniformly rotating
and stratified fluid.

Guided by their approach, we introduce a stretched transverse coordinate:

x̄⊥ =
x⊥
E1/3

, (3.1)

and make the following ansatz:

u‖ = u
(0)
‖ (x‖, x̄⊥) + . . . , (3.2a)

u⊥ = E1/3u
(1)
⊥ (x‖, x̄⊥) + . . . , (3.2b)

uφ = u
(0)
φ (x‖, x̄⊥) + . . . , (3.2c)

b = b(0)(x‖, x̄⊥) + . . . , (3.2d)

p = E1/3p(1)(x‖, x̄⊥) + . . . . (3.2e)

From equations (2.26c,e), the leading-order relations between u
(0)
‖ , u

(0)
φ and b(0) are:

u
(0)
φ = − iω0r

′
0

$
u

(0)
‖ , (3.3a)

b(0) = − iN2
0

$

r0r
′
0 + z0z

′
0

ρ0
u

(0)
‖ , (3.3b)

with ρ0 =
√
r2
0 + z2

0 , where, we recall, N0 = N(ρ0) and ω0 = ω(r0). From the leading
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order balance of equation (2.26b), we obtain:

∂p(1)

∂x̄⊥
= −2Ω0z

′
0u

(0)
φ −

r0z
′
0 − z0r

′
0

ρ0
b(0).

Substituting expressions from (3.3a,b) yields

∂p(1)

∂x̄⊥
=

i

$

(
ξ2
0r
′
0z
′
0 +N2

0

(r0r
′
0 + z0z

′
0)(r0z

′
0 − z0r

′
0)

ρ2
0

)
u

(0)
‖ . (3.4)

Now consider the operation i$(2.26a) −2Ω0r
′
0(2.26c) - (r0r

′
0 + z0z

′
0)/ρ0(2.26e), which

gives:(
$2 − ξ2

0(r′0)2 −N2
0

(r0r
′
0 + z0z

′
0)2

ρ2
0

)
u

(0)
‖

= −E1/3

(
ξ2
0r
′
0z
′
0 +N2

0

(r0r
′
0 + z0z

′
0)(r0z

′
0 − z0r

′
0)

ρ2
0

)
u

(1)
⊥ − iE1/3$

∂p(1)

∂x‖

+E1/3

i$
∂2u

(0)
‖

∂x̄2
⊥
− 2Ω0r

′
0

∂2u
(0)
φ

∂x̄2
⊥
− 1

Pr

(r0r
′
0 + z0z

′
0)

ρ0

∂2b(0)

∂x̄2
⊥

 .

(3.5)

The left-hand side vanishes due to the dispersion relation (2.15). Taking the derivative

with respect to x̄⊥ and substituting ∂x̄⊥p
(1) from (3.4), u

(0)
φ and b(0) from (3.3a,b), and

using the expression for ∂x̄⊥u
(1)
⊥ from equation (2.26d):

∂u
(1)
⊥

∂x̄⊥
= − 1

r0

∂(r0u
(0)
‖ )

∂x‖
, (3.6)

we finally obtain a single equation for u
(0)
‖ :(

ξ2
0r
′
0z
′
0 +N2

0

(r0r
′
0 + z0z

′
0)(r0z

′
0 − z0r

′
0)

ρ2
0

)
1

r0

∂(r0u
(0)
‖ )

∂x‖
=

− ∂

∂x‖

[(
ξ2
0r
′
0z
′
0 +N2

0

(r0r
′
0 + z0z

′
0)(r0z

′
0 − z0r

′
0)

ρ2
0

)
u

(0)
‖

]
− i

$

(
2ξ2

0(r′0)2 +

(
1 +

1

Pr

)
N2

0

(r0r
′
0 + z0z

′
0)2

ρ2
0

)
∂3u

(0)
‖

∂x̄3
⊥
.

(3.7)

If we now introduce the new function ũ‖ and the new variable x̃‖ defined by

u
(0)
‖ (x̄⊥, x‖) = r

−1/2
0

∣∣∣∣ξ2
0r
′
0z
′
0 +N2

0

(r0r
′
0 + z0z

′
0)(r0z

′
0 − z0r

′
0)

ρ2
0

∣∣∣∣−1/2

ũ‖(x̄⊥, x̃‖), (3.8a)

x̃‖ =

∫ x‖

x
(0)

‖

2ξ2
0(r′0)2ρ2

0 + (1 + Pr−1)N2
0 (r0r

′
0 + z0z

′
0)2

2$(ξ2
0r
′
0z
′
0ρ

2
0 +N2

0 (r0r′0 + z0z′0)(r0z′0 − z0r′0))
+ x̃

(0)
‖ , (3.8b)

then equation (3.7) becomes the parameter-free equation

∂ũ‖
∂x̃‖

= −i
∂3ũ‖
∂x̄3
⊥
. (3.9)

In equation (3.8b), the parameter x
(0)
‖ > 0 corresponds to the arclength at which we

start considering the solution, and x̃
(0)
‖ is an arbitrary constant.
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Equation (3.9) is the same as the one obtained by Moore & Saffman (1969) and Thomas
& Stevenson (1972). It can be easily solved using a Fourier transform in x̄⊥, yielding a
general solution:

ũ‖ =

∫ ∞
−∞

a(k)e−k
3x̃‖eikx̄⊥dk. (3.10)

In the denominator of equation (3.8b), we recognize the expression (2.18) for ε1
√

∆.

For x‖ > x
(0)
‖ , the sign of x̃‖ depends on the value of ε1. The solutions propagating

along C in the direction of increasing x‖ consist of positive wavenumbers (a(k < 0) = 0)
if ε1 = 1, and negative wavenumbers (a(k > 0) = 0) if ε1 = −1. Hence, the solutions
propagating along C in the direction of increasing x‖ can be written as

ũ‖ =

∫ ∞
0

b(k)e−k
3ε1x̃‖eikε1x̄⊥dk. (3.11)

When the incident beam reaches the turning point x‖c, the viscous solution given by
(3.8a,b) and (3.11) breaks down, as the amplitude prefactor in the expression (3.8a) for

u
(0)
‖ diverges. While the denominator in x̃‖ in (3.8b) vanishes at this point, the integral

remains convergent. The behavior near the turning point can be obtained by taking
x‖ → x‖c in (3.8a,b). We obtain:

u
(0)
‖ ∼ r

−1/2
c

∣∣−∆′c(x‖c − x‖)
∣∣−1/4

ũ‖(x̄⊥, x̃‖c). (3.12)

This expression can be written in terms of the local variable (y‖, y⊥) when x‖ → x‖c
using the approximations

x‖c − x‖ ∼ −y‖0 = −y‖ , x⊥ ∼ y⊥ − y⊥0 ∼ y⊥ −
2

3
αc(−y‖)3/2. (3.13)

Since x⊥ = O(E1/3), the second relation implies that y⊥ = O(E1/3) and y‖ = O(E2/9)
in the vicinity of the turning point. We will use this scaling to analyse the behavior of
the solution near the turning point region in the next section.

Note that, in expression (3.11), if we choose

b(k) = bS(k) ≡ km−1 e
−imπ/2

(m− 1)!
, with m > 0, (3.14)

we recover the similarity solution derived by Moore & Saffman (1969) and Thomas &
Stevenson (1972):

ũ‖ = ũS‖ ≡ |x̃‖|
−m/3hm(η) , η = ε1

x̄⊥
|x̃‖|1/3

, (3.15)

where the function hm(η) is defined as

hm(η) =
e−imπ/2

(m− 1)!

∫ ∞
0

e−p
3

eipηpm−1dp. (3.16)

The normalization of the function hm ensures the following asymptotic behavior:

hm(η) ∼
η→+∞

|η|−m, (3.17a)

hm(η) ∼
η→−∞

e−imπ|η|−m. (3.17b)
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This implies that the similarity solution ũS‖ behaves as

ũS‖ ∼
ε1x̄⊥→+∞

|x̄⊥|−m, (3.18a)

ũS‖ ∼
ε1x̄⊥→−∞

e−imπ|x̄⊥|−m. (3.18b)

These behaviours demonstrate that expression (3.15) defines a viscous solution associated
with an inviscid singularity of the form |x⊥|−m along the characteristic path C. The
definition (3.15) of the similarity variable η shows that this singularity originates at
x̃‖ = 0. The width of the wave beam is given by |x̃‖|1/3, where x̃‖ evolves according to
(3.8b).

4. Solution close to the turning point and reflected beam

We have seen in the previous section that the solution described by (3.8a,b) and (3.11)
breaks down upon reaching a turning point. In this section, our objective is to derive a
new approximation that remains valid in the vicinity of a turning point. To this end, we
adopt the local frame (ê‖c, ê⊥c) and the local coordinates (y‖, y⊥).

In this frame, if we denote the velocity components along ê‖c and ê⊥c by v‖ and v⊥,
respectively, the governing equations become:

−i$v‖ − 2Ωr′cuφ = − ∂p

∂y‖
+ b êρ · ê‖c + E∇2v‖, (4.1a)

−i$v⊥ + 2Ωz′cuφ = − ∂p

∂y⊥
+ b êρ · ê⊥c + E∇2v⊥, (4.1b)

−i$uφ + ω(r′cv‖ − z′cv⊥) = E∇2uφ, (4.1c)

∂rv‖
∂y‖

+ r
∂v⊥
∂y⊥

= 0, (4.1d)

−i$b+N2(v‖ êρ · ê‖c + v⊥ êρ · ê⊥c) = (E/Pr)∇2b. (4.1e)

We now introduce the following ansatz:

v‖ = v
(0)
‖ , v⊥ = E1/9v

(1)
⊥ , uφ = u

(0)
φ , b = b(0), p = E4/9p(4), (4.2)

together with the rescaled local variables:

ȳ‖ = E−2/9y‖ , ȳ⊥ = E−1/3y⊥. (4.3)

Under this scaling, the governing equations reduce to:

−i$v
(0)
‖ − 2Ωr′cu

(0)
φ = −E2/9 ∂p

(4)

∂ȳ‖
+ b(0)(rr′c + zz′c)/ρ, (4.4a)

−i$E1/9v
(1)
⊥ + 2Ωz′cu

(0)
φ = −E1/9 ∂p

(4)

∂ȳ⊥
+ b(0)(zr′c − rz′c)/ρ, (4.4b)

−i$u
(0)
φ + ω(r′cv

(0)
‖ − z

′
cv

(1)
⊥ E1/9) = 0, (4.4c)

∂v
(0)
‖

∂ȳ‖
+
∂v

(1)
⊥

∂ȳ⊥
= 0, (4.4d)

−i$b(0) + (N2/ρ)(v
(0)
‖ (rr′c + zz′c) + E1/9v

(1)
⊥ (zr′c − rz′c)) = 0. (4.4e)
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Note that viscous terms do not appear in these equations.

From equations (4.4c,e), we express u
(0)
φ and b(0) in terms of v

(0)
‖ and v

(1)
⊥ :

u
(0)
φ =

ω

i$
(r′cv

(0)
‖ − z

′
cE

1/9v
(1)
⊥ ), (4.5a)

b(0) =
N2

i$ρ
(v

(0)
‖ (rr′c + zz′c)− E1/9v

(1)
⊥ (rz′c − zr′c)). (4.5b)

Substituting these into equations (4.4a,b) yields:

− ∆′c
i$(2$2 − ξ2

c −N2
c )
ȳ‖v

(0)
‖ = −∂p

(4)

∂ȳ‖
, (4.6a)

2$2 − ξ2
c −N2

c

i$
v

(1)
⊥ = −∂p

(4)

∂ȳ⊥
, (4.6b)

where we have used the following estimates, deduced from equations (2.15), (2.16) and
(2.17) near the turning point rc:

2Ωωr′cz
′
c +N2(rr′c + zzc)(rz

′
c − zr′c)/ρ2 = O(E2/9),

−$2 + 2Ωωz′2c +N2(rz′c − zr′c)2/ρ2 ∼ −2$2 + ξ2
c +N2

c ,

−$2 + 2Ωωr′2c +N2(rr′c + zz′c)
2/ρ2 ∼ E2/9 ∆′c

2$2 − ξ2
c −N2

c

ȳ‖.

Elimating p(4) and v
(1)
⊥ using (4.4d) finally gives a single equation for v

(0)
‖

∂2v
(0)
‖

∂ȳ2
‖
−

∆′c ȳ‖
(2$2 − ξ2

c −N2
c )2

∂2v
(0)
‖

∂ȳ2
⊥

= 0. (4.7)

This equation can be solved using a Fourier transform in the ȳ⊥ direction:

v
(0)
‖ =

∫ +∞

−∞
ṽ‖e

ikȳ⊥dk (4.8)

such that ṽ‖ satisfies the Airy equation

∂2ṽ‖
∂ỹ2
‖
− ỹ‖ṽ‖ = 0, (4.9)

with

ỹ‖ = γ|k|2/3ȳ‖, (4.10)

and

γ =

(
−∆′c

(2$2 − ξ2
c −N2

c )2

)1/3

, (4.11)

The solution that remains bounded for large |ỹ‖| is

ṽ‖ = c(k)Ai
(
ỹ‖
)
, (4.12)

where Ai is an Airy function (Abramowitz & Stegun, 1965, p. 446), and c(k) is a function
to be determined by matching.

Using the asymptotic expansion of the Airy function as ỹ‖ → −∞ (Abramowitz &
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Stegun, 1965, p. 448), we obtain:

ṽ‖ ∼
c(k)√

π(−ỹ‖)1/4
sin

(
2

3
(−ỹ‖)3/2 +

π

4

)
. (4.13)

This leads to the following asymptotic form for v
(0)
‖ :

v
(0)
‖ ∼

∫ +∞

−∞

C(k)

(−ȳ‖)1/4

{
exp

[
ik

(
ȳ⊥ +

2|k|
3k

γ3/2(−ȳ‖)3/2

)
− iπ/4

]
+ exp

[
ik

(
ȳ⊥ −

2|k|
3k

γ3/2(−ȳ‖)3/2

)
+ iπ/4

]}
dk,

(4.14)

with

C(k) =
c(k)

2
√
πγ1/4|k|1/6

. (4.15)

This expression is a sum of four wave beams, corresponding to positive and negative
wavenumbers propagating along two paths: ȳ⊥ = 2

3γ
3/2(−ȳ‖)3/2 and ȳ⊥ = − 2

3γ
3/2(−ȳ‖)3/2.

Only one of these corresponds to the incident beam. Using (3.12) and (3.13), the expres-
sion for the incident beam in terms of the local variable is

u
(0)
‖ ∼

∫ +∞

0

b(k)e−k
3ε1x̃‖ceikε1(ȳ⊥− 2

3αc(−ȳ‖)3/2)dk

r
1/2
c (−∆′c)1/4(−ȳ‖)1/4E1/18

. (4.16)

From (2.22), we can write

αc = −ε1ε2γ3/2, (4.17)

with ε2 = sgn(2$2 − ξ2
c − N2

c ). We then immediately see that the incident beam cor-
responds to the second term in (4.14) if ε2 > 0, but to the first term if ε2 < 0. The
condition of matching then imposes that the following relation between C(k) in (4.14)
and b(k) in (4.16):

C(k) =
H(ε1k)b(ε1k)

r
1/2
c (−∆′c)1/4E1/18

e−k
3x̃‖ceiε2π/4, (4.18)

where H(z) is the Heaviside function.

Expression (4.18) for C(k) implies the following expression for c(k) appearing in (4.12):

c(k) =
H(ε1k)b(ε1k)2

√
πγ1/4|k|1/6

r
1/2
c (−∆′c)1/4E1/18

e−k
3x̃‖ceiε2π/4. (4.19)

For the similarity solution obtained with b(k) given by (3.14), we obtain the following
expression for the solution in the turning point region:

v‖ = CtV
S
m(Y‖, Y⊥), (4.20)

where

V Sm(Y‖, Y⊥) ≡
∫ ∞

0

km−1+1/6Ai(k2/3Y‖)e
ikY⊥e−k

3

dk, (4.21)
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Figure 2. Contour plot of the function V Sm in the (Y‖, Y⊥) plane for m = 1. Dashed black lines

indicate the ray trajectory (Y⊥ = ±(−Y‖)3/2) as it reflects at the turning point (black circle at

the origin). (a) Real part of V Sm . (b) Imaginary part of V Sm .

and

Ct =
2
√
πγ1/4

x̃
(m+1/6)/3
‖c r

1/2
c (−∆′c)1/4E1/18

e−imπ/2

(m− 1)!
eiε2π/4 , (4.22a)

Y‖ =
γy‖

|x̃‖c|2/9E2/9
, (4.22b)

Y⊥ =
ε1y⊥

|x̃‖c|1/3E1/3
. (4.22c)

We recall that γ is defined in (4.11), ∆ in (2.9), and x̃‖ in (3.8b).

Contour plots of the real and imaginary parts of the function V S1 in the (Y‖, Y⊥) plane
are shown in figure 2. The real part <e(V Sm) is even with respect to the variable Y⊥
while the imaginary part =m(V Sm) is odd in Y⊥. Both functions are localized around the
ray trajectory defined by Y⊥ = ±(−Y‖)3/2 for Y‖ ≤ 0. For positive Y‖, both functions
become evanescent, i.e., they decay exponentially as Y‖ increases, consistent with the
known behavior of the Airy function Ai for positive arguments. This agrees with the
physical expectation that no waves propagate beyond the turning point located at the
origin.

The other term in (4.14) corresponds to the reflected beam. It has the same form
as the incident beam expression (4.16), but it is now localized along the path ȳ =
−(2/3)αc(−ȳ‖)3/2. If we express this term in the coordinates associated with the reflected
beam, which is such that ê‖ and ê⊥ are reversed compared to those of the incident beam
(see figure 1), we obtain

u
(0)
‖R ∼ −

eiε2π/2

∫ +∞

0

b(k)e−k
3ε1x̃‖ceikε1(ȳ⊥+ 2

3αc(−ȳ‖)3/2)dk

r
1/2
c (−∆′c)1/4(−ȳ‖)1/4E1/18

. (4.23)

This yields an expression for the reflected beam of the same form as (3.8) as we move
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Figure 3. (a) Schematic of the numerical domain. The blue line shows the ray path from the
forcing point (red circle) across the turning point (red square) and the ensuing reflected beam.
Slices from S1 to S4 correspond to the locations where the comparisons between asymptotics and
numerics are performed. The gray area is the damping region necessary to prevent reflections on
the boundaries. (b) Transverse velocity Uφ once the harmonic response is reached for E = 10−7.
A movie showing the time evolution of the global solution and the rescaled local solution can
be found in Supplemental materials.

away from the turning point:

u
(0)
‖R(x̄⊥, x‖) = r

−1/2
0

∣∣∣∣ξ2r′0z
′
0 +N2 (r0r

′
0 + z0z

′
0)(r0z

′
0 − z0r

′
0)

ρ2
0

∣∣∣∣−1/2

ũ‖R(x̄⊥, x̃‖), (4.24a)

x̃‖ =

∫ x‖

x‖c

2ξ2(r′0)2ρ2
0 + (1 + Pr−1)N2(r0r

′
0 + z0z

′
0)2

2$(ξ2r′0z
′
0ρ

2
0 +N2(r0r′0 + z0z′0)(r0z′0 − z0r′0))

+ x̃‖c, (4.24b)

where ũ‖R(x̄⊥, x̃‖) is given by

ũ‖R = e−iε2π/2

∫ ∞
0

b(k)e−k
3ε1x̃‖e−ikε1x̄⊥dk. (4.25)

This matches the form of the incident beam expression in (3.11), if we replace x̄⊥ by
−x̄⊥ and include a phase shift of −ε2π/2. Note that the sign of this phase shift is given
by the sign of N2 + ξ2 − 2$2 at the turning point. For a non-stratified fluid $ = ξc
and for a non-rotating or potential flow, $ = Nc. In both cases, this sign is negative
(ε2 = 1), so the phase shift is −π/2.

5. Comparison with numerical simulations

In this section, we compare the asymptotic predictions of the previous sections with
numerical simulations of the linear viscous problem. We consider a non-stratified fluid
(N = 0) that is rotating with a non-uniform angular velocity profile Ω(r). As in the
theoretical analysis, the problem is assumed to be axisymmetric about the rotation axis,
and we use cylindrical coordinates (r, z). We focus on the wave dynamics generated by
localized forcing at a point (rf , zf ) within a finite radial interval (ri, ro) distant from the
axis (i.e. ri > 0).
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Instead of solving the harmonic perturbation equations (2.2), we solve the time-
dependent linearized equations for the perturbations in the rotating frame with an ex-
ternal forcing term:

∂U

∂t
+ 2Ω(êz ×U) + r(U · ∇Ω)êφ = −∇P + E∇2U + f − χ

τ
U, (5.1a)

∇ ·U = 0, (5.1b)

where U and P are the perturbation velocity and pressure, respectively. The radius
rf and the local rotation rate Ω(rf ) are used to non-dimensionalize the variables. The
Ekman number is then defined as E = ν/(Ω(rf )r2

f ). Note that, as before, we have used
the same notation Ω for both the dimensional and dimensionless rotation rates.

The external forcing f in equation (5.1a) is prescribed as

f = sin ($t) exp(−(R/R0)2)êφ, (5.2)

with R =
√

(r − 1)2 + (z − zf )2) is the distance from the forcing point located at (1, zf ),
and R0 is the characteristic size of the forcing region. We choose R0 small enough for the
forcing to be considered nearly point-like, while still allowing the numerical resolution of
the inner viscous structure of the fluid response around that point. Typically, we choose
R0 = 10−3. Note that this forcing procedure does not give direct access to the structure
of the emitted shear layer, in particular we cannot control the singularity strength given
by the parameter m in equation (3.16). As shown below, our particular forcing procedure
leads to a shear layer which is accurately modeled as a Moore and Saffman beam with
m = 2.

Since we solve these equations in a finite square domain [ri, ro] × [zi, zo] with no-slip
boundary conditions on all sides, we add the last term in equation (5.1a) in order to
prevent reflections at the boundaries of the domain. This relaxation term ensures a fast
decay of waves before they can reach and reflect on the boundaries. The function χ is
zero in the bulk of the domain and reaches unity as soon as the distance from the walls
is 10−1 or less, as indicated in gray in figure 3. The parameter τ is chosen to ensure a
gradual absorption of the waves and minimise reflected waves, typically τ = 4 (larger
values lead to reflection from the damping layer itself while smaller values lead to waves
reflecting from the boundaries).

In the following, we use the following set of parameters. The numerical domain is
defined by ri = 0.8 and ro = 1.8 while the vertical extent is z ∈ [0, 1]. The forcing is
centered at (rf , zf ) = (1, 0.2). The rotation rate of the fluid is non-uniform and varies
linearly with the horizontal coordinate according to

Ω(r) = 1− α(r − 1). (5.3)

Note that this linear variation of the rotation rate is only valid away from the rotation
axis. The differential rotation parameter α must be carefully chosen: it must ensure that
a turning point lies within the computational domain, while also avoiding centrifugal
instability. The latter condition is satisfied by requiring ξ2(r) > 0 throughout the domain,
where ξ is the epicyclic frequency defined in equation (2.4). For the linear rotation
profile defined in equation (5.3), both constraints are satisfied over the radial domain
r ∈ [0.8, 1.8] with α = 1/2. The Ekman number is fixed to E = 10−7 and the wave
frequency is set to $ =

√
3/2, so that the initial propagation angle at the forcing point

is 45◦. Finally, the remaining parameters are R0 = 10−3, which defines the size of the
forcing region, and τ = 4, which sets the damping timescale in the outer sponge layer to
effectively suppress boundary reflections.

We solve this initial value problem using the open-source spectral element solver
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Nek5000 (Fischer, 1997; Deville et al., 2002), which allows for local mesh refinement
around the forcing region and the turning point. The domain is discretised using a num-
ber E = 10404 of hexahedral elements while the velocity is discretised within each element
using Lagrange polynomial interpolants of order 14. No dealiasing is used since the equa-
tions solved are effectively linear. Convergence has been tested by gradually increasing
the polynomial order for a fixed number of elements. We focus on the time-harmonic
solution obtained after the initial transient has decayed.

Our analysis focuses on the wave beam emitted from the source located at (rf , zf ),
propagating toward the upper-right quadrant of the domain, see figure 3(a) and (b). The
equation of the characteristic along which the beam is localized, is derived from (2.8)
and takes the form

z′(r) =
dz

dr
=

√
∆

$2
=
√

5− 5r + r2. (5.4)

Integrating this expression yields the path of the characteristic

z(r) =
3

4
+

(
−5

4
+
r

2

)√
5− 5r + r2 − 5

8
log
(

5− 2r − 2
√

5− 5r + r2
)

+ zf , (5.5)

shown in blue in figure 3(a). The turning point is located at rc = (5 −
√

5)/2. For the
present forcing, the structure of the beam is found to be well-described by a Moore-
Saffman solution with singularity index m = 2. The evolution of this solution along the
characteristic is described by equations (3.8), (3.11), (3.14), which lead to the following
expression for the parallel velocity component:

u‖ ∼ A
C0(r)

|x̃‖|2/3
h2(η) , η =

x⊥
(Ex̃‖)1/3

(5.6)

where

C0(r) =
1

$
√
rz′(r)

=

√
2

3

1√
r(5− 5r + r2)1/4

, (5.7a)

x̃‖ =

∫ x‖

x
(0)

‖

dx‖
$z′(r)

+ x̃
(0)
‖ =

√
2

3

∫ r

1

√
6− 5r + r2

5− 5r + r2
dr + x̃

(0)
‖ . (5.7b)

The azimuthal velocity uφ is related to u‖ via equation (3.3a):

uφ = −iC1(r)u‖, (5.8)

with

C1(r) =
ω(r)

$
√

1 + z′2
=

√
3

2

(2− r)√
6− 5r + r2

. (5.9)

The physical azimuthal velocity is then given by

Uφ(t) = 2|A|C0(r)C1(r)

|x̃‖|2/3
<e
(
h2(η)e−i($t−φA+π/2)

)
. (5.10)

When the beam reaches the turning point, the approximation (4.20) with m = 2 has
to be used:

u‖ ∼ ACtV2(Y‖, Y⊥). (5.11)
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Figure 4. Structure of incident and reflected beams. Plot of Uφ(tN ), N = 0, 1, 2, 3 normalized

by M = 2|A|C0C1/(x̃‖)
2/3, as a function of the rescaled transverse variable η = x⊥/(Ex̃‖)

1/3,
in section S1 for the incident beam (a), in section S2 for the reflected beam (b), as shown
in figure 3(a). Both x̃‖ and M are evaluated at r1, corresponding to the radial coordinate of
the crossing point of the critical beam with sections S1 and S2. The solid lines represent the
theoretical solutions, while the dashed lines correspond to the numerical results. The colors
indicate different times: t = t0 (blue), t = t1 (red), t = t2 (green) and t = t3 (black). In these

plots, |A| = 0.087 and x̃
(0)

‖ = 0.25.

The amplitude Ct, and local variables Y‖ and Y⊥, are defined in this case by:

Ct = − 4
√
π

51/12

√
3(5−

√
5)

eiπ/4

x̃
13/18
‖c E1/18

≈ −2.1531
eiπ/4

x̃
13/18
‖c E1/18

, (5.12a)

Y‖ =
51/6(r − rc)
|x̃‖c|2/9E2/9

, (5.12b)

Y⊥ =
(z − zc)
|x̃‖c|1/3E1/3

. (5.12c)

The physical azimuthal velocity near the turning point is then given by:

Uφ(t) = 2|A||Ct|C1(rt)<e
(
V2(Y‖, Y⊥)e−i($t−φA−3π/4)

)
. (5.13)

The reflected beam has a similar expression to the incident beam, but we have to
change x⊥ in −x⊥ and add a phase shift of −π/2. Moreover, the relation between u‖
and uφ is now uφ = iC1u‖, so we obtain

UφR(t) = 2|A|C0(r)C1(r)

|x̃‖|2/3
<e
(
h2(−η)e−i($t−φA)

)
. (5.14)

The functions C0 and C1 remain unchanged for the reflected beam. However, the coor-
dinate x̃‖ differs, and is now given by:

x̃‖ =

√
2

3

∫ rc

r

√
6− 5r + r2

5− 5r + r2
dr + x̂‖c + x̃

(0)
‖ . (5.15)

where

x̂‖c =

√
2

3

∫ rc

1

√
6− 5r + r2

5− 5r + r2
dr ≈ 0.7468. (5.16)

Once the singularity index m is known, the theoretical solution still involves three
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Figure 5. Structure of the solution in the turning point region. Plot of Uφ(tN ), N = 0, 1, 2, 3
normalized by 2|A|CtC1(rt) in the vertical section S3 (a) as a function of Y⊥ and in the horizontal
section S4 (b) as a function of Y‖, see figure 3(a). As in figure 4, the solid lines represent the
theoretical solutions and the dashed lines the numerical results. The colors correspond to the
same times as before: t = t0 (blue), t = t1 (red), t = t2 (green) and t = t3 (black). The

parameters |A| = 0.087 and x̃
(0)

‖ = 0.25 are also the same as in figure 4.

unknown parameters: the phase φA, the amplitude |A| and the initial value x̃
(0)
‖ of x̃‖.

Once these parameters are determined, the solution is fully specified for all time. For
the comparison, we select four distinct times tN = to +Nπ/(2$), N = 0, 1, 2, 3 spanning
one oscillation period. The reference time to and phase φA are chosen such that

max
r1<r<r2,z=zc

|Uφ(to)|

is the smallest together with the condition that Uφ(t1) > 0 at the turning point. The-
oretically, the first condition is satisfies if e−i($to−φA−3π/4) = ±i since V2(Y‖, 0) is real
for all Y‖. The second condition implies that the positive sign must be chosen, which
determines the phase as $to − φA = π/4. The remaining two parameters are obtained

by fitting the amplitude and width of the expression
√
u2
φ(t0) + u2

φ(t1) for the incident

beam in section S1, shown in figure 3(a).
Figure 4 compares the numerical results with the theoretical solution for both incident

and reflected beams. We observe very good agreement at all four times tN . The reflected
beams curves display the expected phase shift: the structure of the reflected beam at
time tN corresponds to the one of the incident beam at time tN−1.

The solution in the turning point region is shown in figure 5 in both a vertical section
(a) and a horizontal section (b) (sections S3 and S4 shown in figure 3(a)). Again, we
observe good agreement between the numerical solution and the theoretical prediction.
Note however, that the numerical solution in the horizontal section does not vanish for
t = t0 and t = t2, in contrast to the theoretical solution. Capturing this variation would
require incorporating higher-order corrections into the theoretical model.

6. Conclusion

In this work, we have shown that concentrated viscous wave beams can still be de-
scribed by the solution introduced by Moore & Saffman (1969), even when the fluid is
non-uniformly rotating and non-uniformly stratified. The wave beam follows the ray
path obtained from the equation of characteristics, but its properties vary with the local
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conditions of the fluid. Explicit expressions for the beam width and amplitude have been
derived by solving the governing equations in a reference frame attached to the charac-
teristic. When the characteristic reaches a turning point, the amplitude diverges. To
describe the wave beam in the neighbourhood of this point, a new asymptotic solution
has been derived, which, as expected, takes the form of Airy functions. Matching this
local solution with the incident wave beam allows us to fully describe the local behavior
and demonstrates that a reflected beam is generated with the same structure as the inci-
dent beam. However, the reflected beam has experienced a ±π/2 phase shift relative to
the incident beam. The sign of the phase shift for the u‖ component is determined by the
sign of the quantity N2 + ξ2− 2$2 evaluated at the turning point. In the cases of a non-
stratified or non-rotating fluid, this sign is always negative so the phase shift is −π/2.
These results have been validated by direct numerical simulation for a non-uniformly
rotating case.

It is important to note that the effect of reflection at a turning point on the viscous
beam is very similar to the effect of a reflection at the rotation axis. In both cases, the
viscous beam acquires a ±π/2 phase shift but undergoes no contraction or expansion.
This contrasts with reflections at inclined boundaries, where viscous beams are expected
to either contract or expand depending on the boundary inclination angle during reflec-
tion, but without gaining any phase shift. However, the sign of the phase shift on the
axis depends on another quantity: for the u‖ component, it is determined by the sign of
N2 − ξ2 (see, for instance He et al., 2022).

These findings could be useful to extend results obtained for a uniformly rotating fluid
in a bounded domain. In He et al. (2022, 2023, 2025), it was shown that an asymptotic
solution can be constructed for an uniformly rotating fluid in a spherical shell geometry
by propagating viscous wave beams generated at critical points on the inner core. Two
scenarios were considered in this bounded domain: (1) when the ray paths form a periodic
circuit, and (2) when they converge towards attractors. In the first case, it was shown
that the sum formed by the superposition of the infinitely many contributions from the
critical point beam traveling along the periodic circuit is finite, provided there is a phase
shift along the circuit. In the second case, the situation was reverse: an asymptotic
solution close to the attractor was derived, but only if no phase shift occurs along the
attractor. In a non-uniformly rotating medium, similar results may be expected. Suppose
the ray path emitted from a singularity (a critical point or a corner) generates a periodic
circuit as it reflects on boundaries, axes and turning points. The viscous beam created
by the singularity will travel on the same path indefinitely. As for the uniformly rotating
case, a finite solution arises only if the sum of all contributions converges. This requires a
net phase shift along the periodic circuit, which depends on the cumulative phase shifts
acquired at each reflection, at turning points or axes. A similar argument applies to
attractors. However, for the theory developed in He et al. (2023, 2025) to hold, the total
phase shift around the circuit must vanish. This situation can occurs, for example, when
there are four reflections at turning points along the attractor, a configuration observed
in (Mirouh et al., 2016, figure 6(c)).
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Cébron, D., Laguerre, R., Noir, J. & Schaeffer, N. 2019 Precessing spherical
shells: flows, dissipation, dynamo and the lunar core. Geophys. J. Intern. 219, S34–
S57.

Cortet, P.-P., Lamriben, C. & Moisy, F. 2010 Viscous spreading of an inertial wave
beam in a rotating fluid. Phys. Fluids 22, 086603.

Deville, M. O., Fischer, P. F. & Mund, E. H. 2002 High-Order Methods for In-
compressible Fluid Flow . Cambridge University Press.

Dintrans, B., Rieutord, M. & Valdettaro, L. 1999 Gravito-inertia waves in a
rotating stratified sphere or spherical shell. J. Fluid Mech. 398, 271–297.

Echeverri, P. & Peacock, T. 2010 Internal tide generation by arbitrary two-
dimensional topography. J. Fluid Mech. 659, 247–266.

Fischer, P. F. 1997 An overlapping Schwarz method for spectral element solution of
the incompressible NavierStokes equations. Journal of Computational Physics 133,
84–101.

Fritts, D. C. & Alexander, M. J. 2003 Gravity wave dynamics and effects in the
middle atmosphere. Reviews of Geophysics 41 (1).

Greenspan, H. P. 1968 The theory of rotating fluids. Cambridge University Press.
Guenel, M., Baruteau, C., Mathis, S. & Rieutord, M. 2016 Tidal inertial waves

in differentially rotating convective envelopes of low-mass stars. I. Free oscillation
modes. A & A 589, A22.

He, J., Favier, B. & Le Dizès, S. 2025 Internal shear layers generated by a vertically
oscillating cylinder in unbounded and bounded rotating fluids. J. Fluid Mech. 1015,
A38.

He, J., Favier, B., Rieutord, M. & Le Dizès, S. 2022 Internal shear layers in
librating spherical shells: the case of periodic characteristic paths. J. Fluid Mech. 939,
A3.

He, J., Favier, B., Rieutord, M. & Le Dizès, S. 2023 Internal shear layers in
librating spherical shells: the case of attractors. J. Fluid Mech. 974, A3.

Hurley, D. G. & Keady, G. 1997 The generation of internal waves by vibrating
elliptic cylinders. Part 2. Approximate viscous solution. J. Fluid Mech. 351, 119–138.

Kerswell, R. 1995 On the internal shear layers spawned by the critical regions in
oscillatory Ekman boundary layers. J. Fluid Mech. 298, 311–325.

King, B., Zhang, H. P. & Swinney, H. L. 2009 Tidal flows over three-dimensional
topography in a stratified fluid. Phys. Fluids 21, 116601.

Koch, S., Harlander, U., Egbers, C. & Hollerbach, R. 2013 Inertial waves in a
spherical shell induced by librations of the inner sphere: experimental and numerical
results. Fluid Dyn. Res. 45, 035504.
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