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This work investigates the weakly nonlinear dynamics of internal shear layers and the
mean zonal flow induced by the longitudinal libration of an inner core within a spherical
shell. Building on the work of He et al. (2022 J. Fluid Mech., vol. 939, p. A3), which
focused on linear dynamics, we adopt a similar set-up to explore the nonlinear regime
using both asymptotic theory and numerical computations, with Ekman numbers as low
as E = 10−10. A specific forcing frequency of ω̂ = √

2Ω̂ , where Ω̂ denotes the rotation
rate, is introduced to generate a closed rectangular path of characteristics for the inertial
wave beam generated at the critical latitude. Our approach extends previous results by Le
Dizès (2020 J. Fluid Mech., vol. 899, p. A21) and reveals that nonlinear interactions are
predominantly localised around regions where the wave beam reflects on the boundary.
We derive specific scaling laws governing the nonlinear interactions: the width of the
interaction region scales as E1/3 and the amplitude of the resulting mean zonal flow scales
as E1/6 in general. However, near the rotation axis, where the singularity of the self-
similar solution becomes more pronounced, the amplitude exhibits a scaling of E−1/2. In
addition, our study also examines the nonlinear interactions of beams that are governed
by different scaling laws. Through comparison with numerical results, we validate the
theoretical predictions of the asymptotic framework, observing good agreement as the
Ekman number decreases.

Key words: waves in rotating fluids, rotating flows

1. Introduction
Mechanical forces such as libration, precession and tides, which arise from gravitational
interactions, are essential to generate complex fluid flows within astrophysical and
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geophysical bodies (Le Bars, Cébron & Le Gal 2015). In the subsurface oceans of celestial
bodies such as Enceladus, such forcing initiates dynamical processes that are crucial to
understanding the internal structures of these bodies (Noir et al. 2009; Thomas et al.
2016; Soderlund et al. 2024). The energy dissipation from libration-driven turbulence
may provide heat sources that maintain these subsurface oceans, while libration has been
proposed as a potential mechanism driving planetary dynamos (Le Bars et al. 2011;
Wu & Roberts 2013; Reddy, Favier & Le Bars 2018; Wilson & Kerswell 2018). In the
Earth’s ocean, the interaction of tidal flows and supercritical topographies is an important
source for creating strong concentrated internal wave beams, which play a key role in
tidal conversion (Smith & Young 2003; Balmforth & Peacock 2009; Echeverri & Peacock
2010).

In rotating fluids, when the external forcing frequency is less than twice the rotation
frequency, smooth inertial modes can be excited within containers where regular inertial
modes exist (Greenspan 1968). However, the dynamics becomes more complex in
geometries such as spherical shells, where regular inertial modes generally do not exist.
Instead, inertial wave beams are generated at critical latitudes due to oscillatory viscous
concentrated boundary layer singularities (Kerswell 1995; Rieutord & Valdettaro 1997).
Historical studies have shown that such wave beams can be well described by self-similar
solutions (Moore & Saffman 1969; Thomas & Stevenson 1972). These solutions have been
adapted to more complex cases, such as those involving beam reflections or limit cycles
known as attractors (Maas et al. 1997; Rieutord, Georgeot & Valdettaro 2001; Le Dizès &
Le Bars 2017). He et al. (2022) expanded the work of Le Dizès & Le Bars (2017) to a
closed domain such as the spherical shell by deriving the asymptotic explicit expression
of the linear harmonic velocity as a sum of many self-similar beams.

Transitioning to nonlinear phenomena, the interaction among wave beams introduces
complexities, notably when beams intersect or reflect. Such interactions can lead to the
creation of mean flow and second-harmonic corrections. For example, when beams of the
same frequency interact as a result of reflection, they generate significant mean zonal flow
and harmonic effects (Tabaei & Akylas 2003; Tabaei, Akylas & Lamb 2005; Peacock &
Tabaei 2005). These nonlinear processes manifest themselves notably in the formation of
mean zonal flows, which have been extensively documented through experimental and
numerical studies (Tilgner 2007; Sauret & Le Dizès 2013; Favier et al. 2014). Previous
studies have demonstrated that, in the absence of inertial waves, nonlinear interactions
within viscous boundary layers can drive zonal flows. The characteristics of these flows
are strongly influenced by the libration amplitude, while remaining largely independent of
the Ekman number and depend on the cylindrical variable r only (Busse 2010; Sauret & Le
Dizès 2013). The dominant contribution to the mean flow arises in the bulk, manifesting
as an azimuthal flow that scales as ε2, where ε denotes the small oscillation amplitude.
However, when the libration frequency falls below twice the rotation rate, allowing for the
excitation of inertial waves, the resulting interactions become more complex, influencing
the structure and behaviour of mean zonal flows. This intricate interplay remains a
significant challenge in fluid dynamics research within enclosed domains, where wave
reflections and interactions can alter fundamental fluid behaviours (Cébron et al. 2021).

Of particular interest to the present study, Tilgner (2007) explored the dynamics of mean
flow within a rotating spherical shell under the influence of an oscillating tidal mode.
His research revealed that Reynolds stresses are primarily concentrated along wave beam
paths, with an intensity peak observed at reflection points and beam intersections. In a
subsequent investigation of thin viscous beams reflecting on flat boundaries in rotating
and stratified fluids, Le Dizès (2020) found that when the libration frequency ω is less
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than the rotation rate Ω (ω < Ω), the reflection process generates both a second-harmonic
correction and a mean flow correction. The second-harmonic beam exhibits a larger
amplitude compared to the mean flow correction throughout most of the domain, except
within the local interaction region.

Le Dizès (2020) noted that the structure of the wave beam reflections, which have a
characteristic width scaling as E1/3, maintained self-similarity with a O(E1/6) correction,
where E is the Ekman number. For scenarios involving purely stratified or rotating fluids,
a mean flow correction occurs with an amplitude of ε2 E−1/6, except in cases where the
boundary is either horizontal or vertical, which exhibit a localised mean flow correction
with a distinct triple-layer structure, including a significant O(E4/9) viscous layer. More
recent studies by Lin & Noir (2021) focused on the numerical analysis of nonlinear mean
flow in a spherical shell with libration forcing at the inner core boundary. They observed
that the mean flow correction remains localised at reflection points, scaling approximately
as E−1/6. Multiple bands were also identified in the bulk flow, directly corresponding
to the positions of the reflection points. However, discrepancies were noted between
theoretical predictions and numerical results, particularly regarding slight increases in the
mean flow amplitude with the Ekman number.

In this paper we extend the study to nonlinear mean flow within a rotating spherical
shell subjected to libration forcing at the inner core boundary. Our objective is to use the
linear self-similar solutions within the spherical shell to establish a theoretical framework
for addressing mean flow corrections. This involves generalising the previous results of Le
Dizès (2020) and validating the scaling of the mean flow via numerical integration. For
illustrative purposes, the internal shear layers in a spherical shell, induced by the libration
of the inner core, along with the corresponding mean flow, are depicted in figure 1(a)
at a low Ekman number E = 10−10. Using direct numerical integration of the linear
viscous governing equations, we first compute the linear harmonic velocity field. From
this velocity field, we subsequently calculate the mean flow through a pseudo-spectral
method. A detailed analysis of the interaction regions reveals that mean flow corrections
are significantly larger in those regions than in both the outer region and the bulk bands, as
shown in figure 1(b–e). These high-amplitude regions are of particular interest, motivating
the development of an asymptotic theory to characterise the mean flow correction within
these specific regions.

The structure of the paper is as follows. In § 2 we introduce the configuration and settings
of the problem. Section 2.1 outlines the fundamental equations. In § 2.2 we review the
numerical methods employed to solve the linear harmonic governing equations and extend
these approaches to address the nonlinear mean flow. Section 3 revisits the asymptotic
theory, examining self-similar solutions and scaling laws. It also summarises the structure
of the linear harmonic solution for this configuration, providing approximations for this
solution close to points where the interactions will be the strongest. The mean flow
correction is addressed in §§ 4 and 5. We first compare numerical results with the
predictions known for the contribution generated from oscillating boundary layers in § 4.1.
We then consider the nonlinear interactions along the periodic beam, especially in the
places where the interactions are the strongest, on the axis, and at the reflection points
on the boundary (§ 4.2). Asymptotic expressions are derived and compared to numerical
results. In § 5 we focus on the mean flow band structures that originate from the strong
interaction points. The scaling and form of the solution in these bands are analysed
numerically using the asymptotic prescriptions that can be derived for these structures
(Appendix C). Finally, the paper concludes with § 6, which summarises the key findings
and discusses their consequences for other configurations.
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Figure 1. (a) Contours of the amplitudes of the mean flow azimuthal velocity |v0φ | (upper part) and the linear
harmonic solution |v1φ | (lower part) for E = 10−10. The harmonic solution and the mean flow correction have
been normalised by ε and ε2, respectively, where ε is the libration amplitude (see (2.2)). The critical latitude
is marked at Sc whose cylindrical coordinates are (η

√
1 − ω2/4, ηω/2). The aspect ratio of the spherical shell

is η = 0.35 and the libration frequency of the inner core is ω = √
2. The white dashed lines represent the path

of characteristics emitted from the critical latitude. (b–e) Zoomed-in regions of the interaction points located
at P1, P3, P7 and P4, respectively.

2. Framework
In this paper we study the dynamics of an incompressible fluid with a constant kinematic
viscosity ν, which fills a spherical shell and rotates around the axis ez at a uniform
rate Ω̂ . The flow is further subjected to the libration of the inner core, as depicted in
figure 2(a). The inner core librates with a small amplitude ε̂ and at a frequency ω̂ = √

2Ω̂ ,
resulting in an angular velocity of ε̂ cos(ω̂t) relative to the rotating system. Following the
configuration of He et al. (2022), the radii of the inner and outer spherical cores are ρ̂i and
ρ̂o, respectively, with the aspect ratio η = ρ̂o/ρ̂i = 0.35 to generate an Earth-like ratio.
Time and space are non-dimensionalised using the inverse rotation rate 1/Ω̂ and the outer
sphere radius ρ̂o of the spherical shell. The non-dimensional inner core radii is then η.
The non-dimensional angular velocity of the outer and inner core are 1 and 1 + ε cos ωt ,
respectively, with libration amplitude ε = ε̂/Ω̂ and frequency ω = ω̂/Ω̂ .

2.1. Basic equations
In the rotating frame the velocity V = (vr , vφ, vz), written in cylindrical coordinates, and
pressure P are governed by the equations
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Figure 2. Sketch of the problem: (a) the outer radius of the concentric shell is ρ̂o and rotates at the angular
velocity of Ω̂ , the inner radius is ρ̂i and rotates at an angular velocity of Ω̂ + ε̂ cos ω̂t with the amplitude ε̂ and
frequency ω̂ of the libration; (b) a local coordinate system is defined in the northward direction. The red lines
represent the critical lines, while x‖ and x⊥ are the local coordinates. The southward direction is the inverse of
the northward direction.

∂V
∂t

+ (V · ∇)V + 2ez × V = −∇P + E∇2V , (2.1a)

∇ · V = 0, (2.1b)

where E is the Ekman number, which is defined as E = ν/Ω̂ρ̂2
o .

Contrarily to He et al. (2022), which exclusively addressed the linear aspects by omitting
the advection term in (2.1a), this study expands into the nonlinear regime. We consider the
following asymptotic expansion of the velocity V and pressure P:

(V , P) = ε(v1, p1)e−iωt + ε2
[
(v0, p0) + (v2, p2)e−2iωt

]
+ c.c. (2.2)

Here c.c denotes the complex conjugate, (v1, p1) is the linear harmonic, (v0, p0) is the
mean flow correction and (v2, p2) is the secondary harmonic velocity. In this paper we
focus solely on the mean flow correction.

Three steps are required to compute the mean flow correction. First, similarly to He et al.
(2022), the linear response is found by solving

−iωv1 + 2ez × v1 = −∇ p1 + E∇2v1, (2.3a)
∇ · v1 = 0, (2.3b)

v1 = r eφ (inner boundary condition), (2.3c)
v1 = 0 (outer boundary condition). (2.3d)

Once the linear harmonic velocity v1 is obtained, the nonlinear terms corresponding
to its self-interaction can be calculated at leading order. The resulting Reynolds stresses
comprise two parts: the steady forcing and the second harmonic oscillating at 2ω.
Throughout this paper, we refer to the divergence of the Reynolds stress tensor (which
provides the mean flow forcing) simply as the ‘Reynolds stress’. As the present study
focuses on the mean flow, we only consider the steady Reynolds stress N0,

N 0 = v1 · ∇v∗
1 + c.c, (2.4)
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where ∗ denotes complex conjugation. The mean flow response v0 corresponds to a
perturbation with a zero frequency ω = 0 and is governed by the linear forced system

2ez × v0 + ∇ p0 = −N 0 + E∇2v0, (2.5a)
∇ · v0 = 0, (2.5b)

v0 = 0 (inner and outer boundary condition), (2.5c)

where the forcing N 0 arises from the nonlinear self-interaction of the linear harmonic v1.

2.2. Numerical approach
To solve the equations outlined in § 2.1 and validate our theoretical predictions through
asymptotic analysis, we have employed high-precision spectral methods for the numerical
integrations. These methods, previously used in Rieutord & Valdettaro (1997) and He et al.
(2022) to solve the linear governing equations (2.3), have enabled us to capture the linear
harmonic velocity profiles v1 displayed in figure 1(a). We have looked for the solution of
the linear governing equation (2.3a) expressed in vorticity form as

− iω∇ × v1 + 2∇ × (ez × v1) = E∇ × (∇2v1). (2.6)

For this three-dimensional problem, we use spherical coordinates (ρ, θ, φ) representing
radial, polar and azimuthal directions, respectively. The velocity fields are expanded using
spherical harmonics in the polar and azimuthal directions and Chebyshev polynomials in
the radial direction, i.e.

v1 =
+∞∑
l=0

+l∑
m=−l

ul
m(ρ)Rm

l + vl
m(ρ)Sm

l + wl
m(ρ)T m

l , (2.7)

where

Rm
l = Y m

l (θ, φ)eρ, Sm
l = ∇Y m

l , T m
l = ∇ × Rm

l . (2.8)

Projecting the vorticity (2.6) onto this basis allows us to solve the linear system using a
block tridiagonal algorithm. In our cases, we are assuming an axisymmetric fluid response
along with the no-slip boundary conditions on the spherical shell. Detailed descriptions of
the numerical methods and the construction of the system are available in He et al. (2022)
and He et al. (2023) for readers interested in further details.

After obtaining the linear harmonic response numerically, we apply a pseudo-spectral
method to calculate the steady Reynolds stress. Subsequently, we solve the governing
equations (2.5) to determine the mean flow velocity, v0, shown in figure 1(a). The
nonlinear vorticity equation for the mean zonal flow is expressed as

2∇ × (ez × v0) = −∇ × (v1 · ∇v∗
1 + c.c) + E∇ × ∇2v0. (2.9)

Details on the pseudo-spectral numerical workflow are provided in Appendix A and
illustrated in figure 24. We have also investigated potential aliasing issues in this nonlinear
set-up and found no significant impact on the results, regardless of whether dealiasing was
applied or not. Consequently, all the results discussed in the present paper have not been
dealiased. The convergence of our simulations is further demonstrated in Appendix A and
the numerical resolutions for different Ekman numbers are documented in table 1 of this
appendix. It is important to note that the resolutions required for the nonlinear simulations
exceed those used in the purely linear analyses, to ensure similar convergence properties
in both cases.
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3. Asymptotic description of the harmonic solution
As first demonstrated by Moore & Saffman (1969), the propagation and viscous smoothing
of a localised singularity can be described, in the limit of small Ekman numbers,
by a self-similar solution. This viscous smoothing leads to the emergence of a self-
similar expression for the primary components of the wave beam velocity. Note that
the concentrated beams that originate from the critical latitude are linked to an inviscid
singularity along the critical ray, as identified by Le Dizès (2024).

In the scenario under consideration, it is postulated that concentrated beam rays
emanate from the critical latitude singularity where the boundary is locally tangent to the
direction of inertial wave propagation, denoted as Sc(r, z) = (η

√
1 − ω2/4, ηω/2), and

propagate in two distinct directions: clockwise, designated as the northward direction,
following the path Sc → P1 → P3 → P7 → P4 → Sc, and counterclockwise, referred to
as the southward direction. As shown in figure 2(b), P1 is the point on the characteristic
path crossing the rotation axis, P3 and P7 are the reflection points on the outer boundary
while P4 is on the equator where two beams are crossing. A local coordinate system
(x‖, x⊥) is introduced to locally describe the asymptotic structure of the beam, where
x‖ represents the distance from the source located at the critical latitude point Sc, and x⊥
denotes the distance measured perpendicularly to the direction of beam propagation. For
simplicity, it is assumed that the orientation of propagation does not change sign. When
considering southward propagation, the direction of the corresponding local coordinate
system is reversed.

In the following subsections we provide expressions for the harmonic solution in the
various regions where the mean flow correction becomes significant. We first review the
results obtained by He et al. (2022) on the characteristic path, then present asymptotic
expressions near the various interaction regions.

3.1. Self-similar solution and scaling
For the harmonic solution, the localised concentrated beams travel on the beam ray with
a constant width of order E1/3. The self-similar beam solution provided by Moore &
Saffman (1969) was used by Le Dizès & Le Bars (2017) and He et al. (2022) to describe
at leading order the velocity v1‖ along the direction of the beam propagation,

v1‖ ∼ 1√
r

C0 Hm(x‖, x⊥) = 1√
r

C0

( x‖
2 sin θ

)−m/3
hm(ζ ). (3.1)

The special function hm(ζ ) is

hm(ζ ) = e−imπ/2

(m − 1)!
∫ +∞

0
eipζ−p3

pm−1dp, (3.2)

with the similarity variable,

ζ = x⊥
E1/3

(
2 sin θ

x‖

)1/3

. (3.3)

Here θ is the angle between the inertial wave propagation direction and the equatorial
plane, where θ = π/4 enables the formation of a simple closed wave circuit in our
configuration (see figure 2b). This angle also defines the inclination of the internal shear
layers relative to the equatorial plane, with the libration frequency ω = 2 cos θ . The index
m of the function hm(ζ ) characterises the nature of the singularity that leads to the
formation of the beam (Moore & Saffman 1969; Thomas & Stevenson 1972), while
the complex amplitude C0 represents the amplitude of the singularity. A brief review
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of different values of the index m for various configurations is provided by Le Dizès
(2020). In particular, for any axisymmetric convex librating object, such as the inner sphere
considered in the present study, Le Dizès & Le Bars (2017) determined the values m = 5/4
and C0 by matching the similarity solution with the boundary layer solution around the
critical latitude leading to

C N
0 = E1/12C̃ N

0 = E1/12 eiπ/2

8(2 sin θ)3/4 (northward ray), (3.4a)

C S
0 = E1/12C̃ S

0 = E1/12 ei3π/4

8(2 sin θ)3/4 (southward ray). (3.4b)

Expression (3.1) describes the main velocity component. In the (r, z) plane, there also
exists a component along e⊥ that is O(E1/3) smaller.

As shown by (3.4), the velocity amplitude scales as E1/12 in the asymptotic theory.
Internal shear layers within a spherical shell were observed to preserve their self-similar
structure upon reflecting on boundaries, undergoing either contraction or expansion
during this process. Particular attention was given to how these layers propagate along
a periodic rectangular path at specific frequencies of the libration forcing (He et al.
2022). Additionally, reflections on the rotation axis were found to induce a phase
shift, facilitating the convergence of the summation describing the beam superpositions.
The final expressions for the velocity components were derived from these self-similar
solutions, resulting in the following compact form in the (r, z) plane:

v12D ∼ E1/12
√

r
(C̃ N

0 Gm(x N⊥ , x N‖ , L N )eN‖ + C̃ S
0 Gm(x S⊥, x S‖ , L S)eS‖ ). (3.5)

Here the new function Gm is given by

Gm(x⊥, x‖, L) =
( x‖

2 sin θ

)−m/3
gm(ζ, L/x‖), (3.6a)

gm(ζ, L/x‖) = e−imπ/2

(m − 1)!
∫ ∞

0

eipζ−p3
pm−1

1 − ie−p3 L/x‖
dp, (3.6b)

where L is the cumulative propagation distance along the rectangular characteristic path
for one cycle (explicit form in Appendix B, (B1)).

Compared to the function hm in (3.2), the denominator of gm comes from the beam
summation and the ‘i’ factor from the phase shift induced by the reflection on the axis.
Note that eS‖ = −eN‖ .

Expression (3.5) describes the solution on the rectangular circuit P1 P3 P7 P4. As
explained in He et al. (2022), a weaker secondary beam is also present between Sc
and P6 owing to the reflection on the inner core. The width scaling of this secondary
beam is E1/6, indicating a relatively larger transverse scale on which viscous diffusion
becomes negligible. Consequently, the parallel velocity component v1‖ of the beam
remains constant throughout its path. Furthermore, the amplitude of the beam scales as
E1/4, which is significantly smaller than the amplitude of the solution on the main beam.
The velocity profile along the beam is asymptotically described by

v12D ∼ E1/4
√

r
(C̃ N

0 F̆m(x̆ N⊥ , λN )eN‖ + C̃ S
0 F̆m(x̆ S⊥, λS)eS‖ ), (3.7)
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where

F̆m(x̆⊥, λ) = x̆⊥√
2

e−imπ/2

(m − 1)!
∫ ∞

0
eipλ(x̆⊥)2 e−p3 L/

√
2 pm−1

1 − ie−p3 L/
√

2
dp, (3.8)

with λN = −√
2/4, λS = √

2/4 and x̆⊥ = x⊥/E1/6.
A detailed comparison between this asymptotic solution (AS) and numerical solutions

(NS) of the linear harmonic viscous problem can be found in He et al. (2022).
The azimuthal velocity, v1φ , can be readily derived from v1‖ using

v1φ ∼ ±iv1‖, (3.9)

where the positive sign (respectively negative sign) corresponds to an obtuse angle
(respectively acute angle) between e‖ and er . This equation also implies that, for θ = π/4,

v1φ ∼ −√
2iv1r . (3.10)

The velocity field defined by (3.5) and (3.7) also satisfies, for θ = π/4, the remarkable
property

∂v1r

∂z
∼ −∂v1z

∂r
. (3.11)

The symbol ‘∼’ in (3.9), (3.10) and (3.11) has to be understood as denoting equality up
to corrections of order E1/3. We shall see below the importance of these equations for
simplifying the expression of the Reynolds stress.

For detailed information about the local coordinate system relationships of northward
and southward ray propagation paths, as well as more details about the different beam
amplitudes, see tables 2 and 3 in Appendix B. In the following, we shall often keep the
parameter m unprescribed to show the dependency of the various expressions with respect
to this parameter, but one has to keep in mind that in the present analysis m and θ are
actually fixed to m = 5/4 and θ = π/4.

Figure 3 illustrates the scaling behaviour derived from the linear part of the asymptotic
analysis. In this figure the beam width scalings are shown in red, while the amplitude
scalings are depicted in blue. In particular, the main beam is characterised by a beam
width scaling like E1/3 and an amplitude scaling like E1/12. The corresponding scaling
for the nonlinear mean flow will be discussed in § 5.

3.2. Harmonic solution near P3, P4 and P7

As shown in figure 2(b), the beams reflect on the outer boundary at the interaction points
P3 and P7 while two beams intersect on the equatorial plane at the point P4. For describing
the solution near those points, it is convenient to introduce the local variables

r̃β = r − rPβ

E1/3 , z̃β = z − zPβ

E1/3 , (3.12)

and express the variables x⊥ and x‖ of the beam in terms of these local variables. Both
northward and southward beams exhibit two parts, an incident beam, corresponding to
the beam reaching Pβ and a reflected beam, corresponding to the beam leaving Pβ . Note
that the point P4 is not on a boundary, but the symmetry of the solution with respect to
the equator has the effect of reflecting the beam on the horizontal plane. We shall use the
compact notation B̃Ni

β , B̃Nr
β , B̃Si

β , B̃Sr
β to denote the four contributions present near Pβ . The

northward incident beam reaching Pβ is, for instance, given by

B̃Ni
β (r̃β, z̃β) = C̃Ni

0βGm

(
xNi⊥β, xNi‖β, LNi

β

)
, (3.13)
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S0

z

r

E1/3

E1/3

E1/6

E1/6

E1/3

E1/3

E1/4

E1/4

E1/2

E–1/12

E2/5

E1/5

E1/3

E1/3

E1/3

E1/12

P1

P2(Sc)
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P7

E1/3
E1/6

P5

P6

Amplitudes

Length scales

v1φ

E1/2

E1/2

E1/2E1/12

Figure 3. Ekman scalings of the azimuthal velocity v1φ of the linear harmonic solution, reproduced from
figure 4 in He et al. (2022), while the amplitudes and the length scales are shown in blue and red, respectively.

where the parameters C̃Ni
0β and LNi

β and the variables xNi⊥β and xNi‖β can be obtained using
table 2 of Appendix B. For the southward beam, these quantities are given in table 3.

In each local region around P3, P4 and P7, we can write the velocity field as

v1 ∼ 1√
r

E1/12ṽ1, (3.14)

with

ṽ1r = 2−1/2 B̃+
3 , ṽ1φ = −iB̃+

3 , ṽ1z = 2−1/2 B̃−
3 for P3, (3.15a)

ṽ1r = −2−1/2 B̃+
4 , ṽ1φ = iB̃+

4 , ṽ1z = −2−1/2 B̃−
4 for P4, (3.15b)

ṽ1r = 2−1/2 B̃−
7 , ṽ1φ = −iB̃−

7 , ṽ1z = −2−1/2 B̃+
7 for P7, (3.15c)

where

B̃+
β (r̃β, z̃β) =

(
B̃Ni

β − B̃Sr
β

)
+

(
B̃Nr

β − B̃Si
β

)
, (3.16a)

B̃−
β (r̃β, z̃β) =

(
B̃Ni

β − B̃Sr
β

)
−

(
B̃Nr

β − B̃Si
β

)
. (3.16b)

There is a relation between incident and reflected beams: they are such that the normal
velocity of the sum of these two contributions vanish on the boundary. This condition can
be written, at the three points P3, P4 and P7, as

B̃Ni
3 (x̃n = 0) = K B̃Nr

3 (x̃n = 0), B̃Si
3 (x̃n = 0) = (1/K )B̃Sr

3 (x̃n = 0), (3.17a)

B̃Ni
4 (x̃n = 0) = B̃Nr

4 (x̃n = 0), B̃Si
4 (x̃n = 0) = B̃Sr

4 (x̃n = 0), (3.17b)

B̃Ni
7 (x̃n = 0) = (1/K )B̃Nr

7 (x̃n = 0), B̃Si
7 (x̃n = 0) = K B̃Sr

7 (x̃n = 0), (3.17c)
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where x̃n = 0 denotes the boundary and

K = sin(α + π/4)

sin(α − π/4)
(3.18)

the contraction factor of the northward beam at P3.
However, the tangential velocity does not vanish on the boundary. Consequently, in the

local region P3 and P7 where a real boundary is present, a viscous boundary layer is
expected to form. This boundary layer was studied in Le Dizès (2020). It was shown to
induce a O(E1/6) viscous correction to the reflected beam, which is further discussed in
§ 3.5.

3.3. Harmonic solution near P5 and P6

The weak beam propagating between Sc and P6 interacts with the main beam propagating
between P3 and P7 at the point P5. In this interaction region, which is O(E1/3) large and
O(E1/6) long in the direction aligned with the main beam, the harmonic solution exhibits
a particular approximation that can be written as

v1 ∼ 1√
r

(
E1/4v̆1 + E1/12ṽ1

)
, (3.19)

with

v̆1r = 1√
2

(
B̆ N − B̆S

)
, v̆1φ = −i

(
B̆ N − B̆S

)
, v̆1z = 1√

2

(
B̆ N − B̆S

)
, (3.20a)

ṽ1r = 1√
2

(
B̃ N

5 − B̃S
5

)
, ṽ1φ = −i

(
B̃ N

5 − B̃S
5

)
, ṽ1z = − 1√

2

(
B̃ N

5 − B̃S
5

)
, (3.20b)

where the beam structures are given, for example, for the northward beams by

B̆ N = C̃ N
0 F̆m

(
x̆ N⊥ , λN

)
, (3.21a)

B̃ N
5 = C̃ N

05Gm

(
x̃ N
⊥5, x N

‖5, L N
5

)
. (3.21b)

A similar expression is obtained for P6, upon changing B̃ N
5 by B̃S

6 and B̃S
5 by B̃ N

6 .
However, P6 being on the boundary, a viscous correction is expected. Because P6 is a
critical point, this viscous correction is larger than that of P3 and P7. It is expected to be
of order E1/12 as shown in Le Dizès (2024). No such correction is generated at P5.

3.4. Harmonic solution near P1

The point P1 where the critical beam reaches the axis is peculiar. At that point, the
approximation (3.5) exhibits a singularity, which means that another approximation must
be used in the local region near P1. In that region, the velocity and pressure should be
expressed using the Hankel transform, as discussed by Le Dizès & Le Bars (2017, (A1))
and He et al. ((2022), (4.1)).

In Le Dizès (2015) the solution was derived for an open-domain configuration, focusing
on the local region of beam reflection along the axis. The theory was extended to a closed
domain with periodic characteristics in He et al. (2022). Introducing the local variables
r̃1 = r/E1/3 and z̃1 = (z − √

2η)/E1/3, they showed that the linear harmonic velocity in
P1 region can be written as

v1 ∼ E−1/12v̂1, (3.22)
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where

v̂1r = i√
2

(
QN

1 + QS
1

)
, (3.23a)

v̂1φ = QN
1 + QS

1 , (3.23b)

v̂1z = 1√
2

(
−QN

0 + QS
0

)
. (3.23c)

The functions QN
l (r̃1, z̃1) and QS

l (r̃1, z̃1) are defined, for l = 0, 1, by

QN
l (r̃1, z̃1) =

∫ ∞

0
V̂ N (k̃)Jl(k̃r̃1)eik̃ z̃1 dk̃, (3.24a)

QS
l (r̃1, z̃1) =

∫ ∞

0
V̂ S(k̃)Jl(k̃r̃1)e−ik̃ z̃1 dk̃, (3.24b)

where Jl are Bessel functions of the first kind. The superscripts N and S designate the
northward and southward beam, respectively.

The functions V̂ N and V̂ S are obtained by matching the Hankel transform expression
to the solution (3.5) valid away from P1. As shown by He et al. (2022), this leads to the
expressions

V̂ N = 2m/2−3+1/8√πe−iπ/4 e−imπ/2

(m − 1)!
k̃m−1/2e−2x N‖ k̃3

1 − ie−2Lk̃3
, (3.25)

V̂ S = 2m/2−3+1/8√π
e−imπ/2

(m − 1)!
k̃m−1/2e−2x S‖ k̃3

1 − ie−2Lk̃3
, (3.26)

where we have used expressions (3.4) for C N
0 and C S

0 to simplify the expressions given in
He et al. (2022, (4.8a,b)).

Note the scaling of the amplitude in E−1/12 and of the region size in E1/3, which
has been illustrated in figure 3. The methodology developed for the P1 region can be
generalised to any beam interaction on the rotation axis. Note in particular that the
functions V̂ N and V̂ S in our current analysis contain a term in 1 − ie−2Lk3

in the
denominator, which arises from the summation of infinitely many beam contributions
owing to the periodicity of the critical path. For a simple beam interaction without
summation, no such term in the denominator is present (see Le Dizès 2015).

3.5. Higher-order corrections to the harmonic solution
In the previous sections we provided the leading-order approximation of the harmonic
response in the interaction regions. These expressions are based on the similarity solution
(3.1) obtained by Moore & Saffman (1969), which is known to be valid in an open domain
up to O(E1/3) corrections induced by variations along the beam.

Larger viscous corrections are created when the beam reflects on the boundary. Le Dizès
(2020) showed that a viscous correction with an amplitude O(E1/6) smaller than the main
beam is created at reflection. Le Dizès further showed that it takes the form of (3.1) with
a larger index, m + 1. In the present closed geometry, these corrected waves propagate
on the closed circuit and, upon summation, yield an expression of the form (3.5) with an
amplitude of order E1/4 and functions Gm+1 replacing Gm . Corrections of this form are
expected to be created at the points P3 and P7 for both northward and southward beams.
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Figure 4. Schematic diagram of the positions of the slices used for comparing theoretical and NS (blue cuts).
Green cuts are used to show the global bulk response. Red slices correspond to cases where only the NS is
discussed.

For the reflections at P2 and P6, an even larger viscous correction is expected. Le Dizès
(2024) indeed showed that a corrected beam of amplitude O(E1/6) (that is O(E1/12)
smaller than the main beam) was created at the critical point. This beam has also the
similarity form (3.1) but an index m + 5/4. As for the corrections generated at P3 and
P7, this correction is expected to accumulate as it propagates along the closed circuit,
resulting in an expression of the form (3.5) with an amplitude of order E1/6 and functions
Gm+5/4 instead of Gm . Naturally, these first-order corrections will themselves generate
higher corrections of order E1/4 as they reflect at P2 and P6, and of order E1/3 as they
reflect at P3 and P7. As a result, we expect the higher-order corrections to the harmonic
solution (3.5) to be composed, up to O(E5/12), of the sum of functions G N

m′ and GS
m′

with different values of m′. This has an important consequence: the harmonic solution
including these viscous corrections satisfies (3.10) and (3.11) up to O(E5/12).

4. Mean flow corrections
Our investigation of mean flow corrections proceeds systematically through two main
aspects: the global response driven by oscillating boundary layers, and the localised
interactions at beam crossing regions. For each interaction region, we present detailed
comparisons between numerical and AS, accompanied by rigorous analysis of their scaling
behaviours with respect to the Ekman number. This analysis encompasses the scaling of
beam characteristics and velocity amplitudes.

To facilitate a clear visualisation of the analysis locations, we employ the colour-coded
cutting system shown in figure 4. Blue markers indicate the locations where theoretical
solutions are obtained and compared to NS, red markers designate the positions where
only numerical results are analysed, and green markers highlight the cuts along which
bulk flow solutions are compared.
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0
φ

Figure 5. (a) Mean azimuthal velocity v0φ in the bulk as predicted by numerical computations (red solid line,
E = 10−10) and theoretical results (black dashed line, based on Sauret & Le Dizès 2013 and Cébron et al.
2021). The light blue background highlights the interior region inside the tangent cylinder, located at r = 0.35.
(b) Logarithm mean azimuthal velocity outside the tangent cylinder from numerical computations at different
Ekman numbers. Inside the tangent cylinder, cuts are taken at Sb and z = 0.4. For the outer region, cuts are taken
at z = 0.2 initially and then on the equator once the cut reaches the outer boundary; see figure 4. The directory
containing the data and the Jupyter notebook used to compute the asymptotic theory and generate this figure can
be accessed at https://www.cambridge.org/S0022112025109841/JFM-Notebooks/files/Figure5/Figure5.ipynb.

4.1. Solution in the bulk generated from the boundary layers
In this section we consider the mean flow correction driven by oscillating boundary layers
on the inner core. Such a correction was already examined by Sauret & Le Dizès (2013) in
the absence of critical latitudes and inertial waves. They determined that the mean zonal
flow within a spherical shell could be directly inferred from the analytical solutions derived
for a full sphere. They showed that an azimuthal velocity of order E0 was generated in the
bulk, v0φ =F(ρ; ω) in their (4.27). Furthermore, they extended their analysis to cases
where 0 < ω < 2, a condition in which inertial waves emerge and have a weak nonlinear
effect on the fluid. Building upon this foundational work, Cébron et al. (2021) expanded
the theory to include non-homoeoidal spheroidal shells, accounting for variations in the
amplitudes of libration forcing at different boundaries. They succinctly expressed the
rotation velocity of the mean zonal flow in dimensionless form, presented as (5.5) in their
publication.

In our study, we use (5.5) from Cébron et al. (2021), illustrating the theoretical
predictions with a black dashed line in figure 5(a). Our numerical computations at
E = 10−10 show excellent agreement with this theoretical prediction. This confirms that
nonlinear effects within the Ekman boundary layer remain one of the important sources of
mean zonal flow within the shell. Additionally, we identify two critical lines: r = η/

√
2,

which marks the critical latitude, and r = η, denoting the cylinder tangent to the inner
core boundary. Our numerical computations confirm that (5.5) from Cébron et al. (2021)
remains applicable even in the presence of inertial waves.

In the band issued from S0, which is tangent to the inner core, we expect Stewartson
layers characterised by three distinct widths: E2/7 for the internal layers, E1/3 for the
inner layer and E1/4 for the external layers (Stewartson 1966; Dormy & Soward 2007;
Sauret & Le Dizès 2013). In figure 6(a) the azimuthal velocity is plotted using the internal
and external layer variables. The external scaling is perfectly recovered for this component.
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Figure 6. The length and amplitude scaling at Sr0 are revealed from the NS by the velocity profiles of three
Ekman numbers. The different scalings observed in the azimuthal velocity component v0φ originate from
the Stewartson layer.

For the radial and axial velocity components, the scalings in E17/42 and E5/42, which are
predicted by the theory (Sauret & Le Dizès 2013) in the inner layer, are compatible with
the numerical results, as shown in figure 6(b,c).

It is important to note that previous theoretical frameworks generally assumed that the
velocity outside the tangent cylinder remains zero when forcing is applied at the inner core
boundary only. Contrary to this assumption, our numerical results shown in figure 5(b)
reveal that this is not the case when inertial waves are present. We indeed observe a bulk
azimuthal flow of order E1/3. Also visible are distinct peaks in the velocity profiles within
the outer shell. These peaks correspond to specific regions where shear layers emitted from
the critical latitude interact, either due to reflection on boundaries or through intersection
within the volume. Although weak, these bands appear to exhibit the same scaling in E0 as
the mean flow generated by the boundary layer on the inner core. This observation provides
important context for the subsequent research questions: What is the origin of these weak
nonlinear zonal beams? How can we determine the corresponding amplitude and beam
width? Addressing these questions constitutes one of the objectives of the present study.
In the following sections we explain the origin of these weak nonlinear zonal beams and
demonstrate the observed Ekman scaling.

4.2. Solution generated from the interaction along the beam
Equations (2.5) governing the mean flow correction read in cylindrical coordinates as

−2v0φ + ∂p0

∂r
= −N0r + E

(
� − 1

r2

)
v0r , (4.1a)

2v0r = −N0φ + E

(
� − 1

r2

)
v0φ, (4.1b)

∂p0

∂z
= −N0z + E�v0z, (4.1c)

1
r

∂

∂r
(rv0r ) + ∂v0z

∂z
= 0, (4.1d)

where the Reynolds stress N0 = (N0r ,N0φ,N0z) is given by

N0r = v1r
∂v∗

1r

∂r
+ v1z

∂v∗
1r

∂z
− v1φv∗

1φ

r
+ c.c, (4.2a)
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N0φ = v1r
∂v∗

1φ

∂r
+ v1z

∂v∗
1φ

∂z
+ v1rv

∗
1φ

r
+ c.c, (4.2b)

N0z = v1r
∂v∗

1z

∂r
+ v1z

∂v∗
1z

∂z
+ c.c. (4.2c)

The Reynolds stress expression can be simplified along the beam using the properties
(3.10) and (3.11) that the harmonic solution satisfies. It gives, using (3.10) and (3.11),

N0r ∼ ∂

∂r

(
|v1r |2 − |v1z|2

)
− 4

|v1r |2
r

, (4.3a)

N0φ ∼ 2
∂

∂z
Im(v1rv

∗
1z), (4.3b)

N0z ∼ − ∂

∂z

(
|v1r |2 − |v1z|2

)
. (4.3c)

If we neglect the viscous terms, a particular solution to (4.1) can be obtained as

v0r = − ∂

∂z
Im(v1rv

∗
1z), (4.4a)

v0φ = ∂

∂r

(
|v1r |2 − |v1z|2

)
− 2

|v1r |2
r

, (4.4b)

v0z = 1
r

∂

∂r
r Im(v1rv

∗
1z). (4.4c)

As the harmonic velocity v1 varies with respect to a spatial variable that scales as E1/3

for the main beam and as E1/6 for the secondary beam, the viscous terms associated with
the solution (4.4) remain small. This expression is therefore expected to be valid along the
beam.

However, this solution is small, of order E1/6, when evaluated using (3.5), and of order
E1/2, when evaluated using (3.7). It becomes large only when two beams intersect, that is,
in the local regions Pβ . In the next subsections we provide the scaling and the expression
of the solution in the three typical interaction regions.

4.2.1. Solution in the local regions P3, P4 and P7
Close to those points, the particular solution reduces, at leading order, to

v0 ∼ 1
r

E−1/6ṽ0, (4.5)

with

⎛
⎜⎜⎝

ṽ0r

ṽ0φ

ṽ0z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− 1√
2

∂ÑPβ

∂ z̃β

∂M̃Pβ

∂ r̃β

1√
2

∂ÑPβ

∂ r̃β

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.6)

where the functions M̃Pβ and ÑPβ are given by

M̃P3 = 2ReQ̃3, M̃P4 = 2ReQ̃4, M̃P7 = −2ReQ̃7, (4.7a)

ÑP3 = −2ImQ̃3, ÑP4 = −2ImQ̃4, ÑP7 = −2ImQ̃7, (4.7b)

1026 A15-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
98

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10984


Journal of Fluid Mechanics

with

Q̃β(r̃β, z̃β) =
(

B̃Ni
β − B̃Sr

β

) (
B̃ Nr∗

β − B̃Si∗
β

)
. (4.8)

As it can be seen on these expressions, only four nonlinear contributions remain. They are
all confined to the local interaction regions. This result aligns with the outcomes of our
numerical computations and meets our expectations. This further supports the idea that
the main sources of zonal flow are constrained to the O(E1/3) regions where incident and
reflected beams interact.

From (4.6), one can also obtain the normal and tangential velocity associated with this
solution:

ṽ0n = − 1√
2

∂ÑPβ

∂ x̃t
, ṽ0t = 1√

2

∂ÑPβ

∂ x̃n
. (4.9)

Thanks to (3.17), one can see that expression (4.7) with (4.8) reduces at the boundary (x̃n =
0) to ÑPβ (x̃n = 0) = 0. This implies that the normal velocity vanishes at the boundary.
The non-penetration condition is then automatically satisfied. This has an important
consequence. It means that the particular solution (4.6) is the leading-order solution in
each local region around Pβ . It is this expression that will be compared to the NS close to
each Pβ . Since the functions M̃Pβ and ÑPβ are both localised, all the velocity components
are also localised near Pβ at this order.

Figure 7 compares the profiles of three asymptotic velocity components with NS for
three different Ekman numbers near P7. The comparison is performed on the vertical
and horizontal slices SP7 , as depicted in figure 4. As expected, the asymptotic theoretical
results increasingly align with the numerical data as the Ekman number decreases.
However, discrepancies are observed in the radial velocity, v0r , and the axial velocity, v0z ,
near the boundary. These discrepancies arise because the numerical boundary condition
employs a no-slip condition, causing the NS to approach zero at the boundary, while only
the non-penetration condition is satisfied by the AS. As demonstrated in Le Dizès (2020),
another approximation can be constructed in a viscous boundary layer of O(E1/2) width
to capture this behaviour.

In addition, the azimuthal velocity along the z axis, parallel to the rotation axis, tends to
zero in the asymptotic theory as one moves away from the local interaction point. However,
numerical results display a small amplitude zonal flow in the bulk (see the bottom left
panel of figure 7). This is also evident in figure 1, where several weak bands are visible
throughout the bulk. The scaling of these bands will be discussed in the next section, using
the results given in Appendix C.

Comparisons between two similar interaction regions, P3 and P4, and the numerical
results are presented in figures 8 and 9, respectively. The observations from figure 7
regarding differences in the boundary layer and the azimuthal velocity in the bulk are also
applicable here. Notably, near P4, located on the equatorial plane, the axial velocity v0z
remains zero by symmetry. Additionally, improvements in the comparison with decreasing
Ekman numbers are observed, consistent with the findings at other local positions.

At the three specific locations P7, P3 and P4 the asymptotic analysis yielded consistent
scaling behaviours: the interaction region scales as E1/3 and the amplitude scales as E−1/6

for all three velocity components. Note however that the rescaled velocity remains small,
of order 10−3, at each of these points. This explains why these regions are not more visible
on the contour map shown in figure 1.
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Figure 7. Three velocity component profiles of the AS and the NS for three different Ekman numbers
at local region P7 with two direction cuts (SP7 in figure 4). The directory containing the data and the
Jupyter notebook used to compute the asymptotic theory and generate this figure can be accessed at
https://www.cambridge.org/S0022112025109841/JFM-Notebooks/files/Figure7/Figure7.ipynb.

4.2.2. Solution in the local regions P5 and P6
The secondary weak beams encounter the main critical beam in the bulk at P5. This case
is interesting because the scalings of the two beams differ.

The mean flow correction is weaker and given by

v0 ∼ 1
r

E0v̆0, (4.10)

with

⎛
⎜⎜⎝

v̆0r

v̆0φ

v̆0z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− 1√
2

∂N̆P5

∂ z̃5

∂M̆P5

∂ r̃5

1√
2

∂N̆P5

∂ r̃5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.11)

where

M̆P5 = 2 Re
((

B̆ N − B̆S
) (

B̃ N∗
5 − B̃S∗

5

))
, (4.12)

N̆P5 = −2 Im
((

B̆ N − B̆S
) (

B̃ N∗
5 − B̃S∗

5

))
. (4.13)
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Figure 8. Same caption as figure 7 but at local region P3 (cuts at SP3 ). The directory containing the data
and the Jupyter notebook used to compute the asymptotic theory and generate this figure can be accessed at
https://www.cambridge.org/S0022112025109841/JFM-Notebooks/files/Figure8/Figure8.ipynb.
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Figure 9. Comparison of AS and NS of two velocity components (v0z = 0) at local region P4 (cuts position
at SP4 ). The directory containing the data and the Jupyter notebook used to compute the asymptotic theory
and generate this figure can be accessed at https://www.cambridge.org/S0022112025109841/JFM-Notebooks/
files/Figure9/Figure9.ipynb.

These expressions are similar to that obtained near point P4, where the Nr and Si beams
at P4 are now the strong S and N beams propagating between P3 and P7, while Ni and Sr
beams at P4 are the weak S and N beams propagating between P2 and P6 (see figure 2b).
Note that because B̆S and B̆ N are functions of the slow variable x̆⊥ = E1/6(z̃5 − r̃5)/

√
2,

the spatial derivatives in (4.11) should be applied to B̃S
5 and B̃ N

5 only.
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Figure 10. Comparison of the AS and NS of velocity profiles at local region P5 (cuts at SP5 ). The
directory containing the data and the Jupyter notebook used to compute the asymptotic theory and generate
this figure can be accessed at https://www.cambridge.org/S0022112025109841/JFM-Notebooks/files/Figure10/
Figure10.ipynb.

In figure 10 we compare the AS from (4.11) with numerical results for three different
Ekman numbers. The secondary weak beam, characterised by its larger width scaling in
E1/6, is analysed by taking profile cuts parallel to the critical beam from P3 to P7 (see
figure 4, SP5). Due to the anti-symmetry of the weak beam, the cuts in the perpendicular
direction (that is on the z = r line) are zero.

The width of the local region scales as E1/6, while the other direction scales as E1/3.
The amplitude scaling is E0, which is significantly weaker than in other local interaction
regions. Despite the two beams having different scaling factors, the asymptotic method
demonstrates overall accuracy. The asymptotic theory matches the NS well, exhibiting
convergence as the Ekman number decreases.

However, some perturbations are observed on the right-hand side of figure 10,
specifically in the v0φ component. These perturbations arise because the cut profiles are
influenced by the weak band issued from the point P6, as shown in figure 5(b).

In the local region P6, a particular solution of the same form as (4.11) can be obtained.
However, as we will see in § 5 and Appendix C, this particular solution is modified by
an additional homogeneous solution, which describes the mean flow correction associated
with the vertical band originating from P6. Therefore, it cannot be directly compared to
numerical results.

4.2.3. Solution in the local region P1
For the point on the rotation axis, we must use the expressions (3.23) for the harmonic
solution. We obtain the following expression for the mean flow:

v0 = E−1/2v̂0 (4.14)

with

v̂0r = − 1√
2

∂

∂ z̃1

{
Re

[(
QN

1 + QS
1

) (
−QN∗

0 + QS∗
0

)]}
, (4.15a)

v̂0φ = 1
2

∂

∂ r̃1

{∣∣∣QN
1 + QS

1

∣∣∣2 −
∣∣∣−QN

0 + QS
0

∣∣∣2
}

−
∣∣QN

1 + QS
1

∣∣2

r̃1
, (4.15b)

v̂0z = 1√
2

(
∂

∂ r̃1
+ 1

r̃1

) {
Re

[(
QN

1 + QS
1

) (
−QN∗

0 + QS∗
0

)]}
. (4.15c)
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Figure 11. Comparison of the AS and NS of velocity profiles at local region P1 (cuts position at SP1 ).
The directory containing the data and the Jupyter notebook used to compute the asymptotic theory and
generate this figure can be accessed at https://www.cambridge.org/S0022112025109841/JFM-Notebooks/files/
Figure11/Figure11.ipynb.

In figure 11 we compare the AS from (4.15) with numerical results for three different
Ekman numbers. The profiles analysed are taken at SP1 and include one profile in the
direction perpendicular to the rotation axis and another along the rotation axis (see
figure 4). Due to the axisymmetry of the system, only the axial velocity component
is considered along the rotation axis, as the two other components, v0r and v0φ , are
identically zero.

The width of the local region scales with E1/3, while the amplitude scales with E−1/2.
Although the overall agreement between the AS and the numerical results is strong,
particularly for the azimuthal component, a noticeable deviation is observed in the smaller
v0r component near the axis. This discrepancy was already observed in the linear harmonic
solution in He et al. (2022). We suspect that it could come from higher-order corrections
that could become non-negligible owing to the smallness of the solution at this leading
order.

5. Numerical scalings of the bands
In the previous section we analysed the mean flow corrections generated in the interaction
regions and in the bulk from the oscillating boundary layer on the inner core. These
represent the dominant contributions. As illustrated in figure 1, numerical results also
reveal the presence of faint vertical beam-like bands within the bulk. These bands originate
from the local interaction regions. However, the leading-order mean flow corrections
computed in these regions were shown to be localised. The observed bands must therefore
be associated with higher-order effects. Finding an approximation for the velocity field
in the bands is thus also more complex, as it requires higher-order expansions of the
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Figure 12. Velocity scalings from the NS in the band originating from P1. Variation along the cut Sr1
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velocity. (b) Radial velocity. (c) Axial velocity. The scalings are those predicted by the theory (Appendix C).
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Figure 13. Vertical dependency of the bands originating from P1 and P2 (NS). (a) Band from P1. Axial
velocity along the axis (cut Sz1), demonstrating a nonlinear dependency with respect to the vertical coordinate
z. (b,c) Band from P2. Axial velocity versus z along the cut Sz2, showing a uniform behaviour at the order
E1/5 (b) and a linear variation at the order E3/10. The localised variation of the velocity close to z ≈ 0.75 in
(b) and (c) corresponds to the crossing with the main beam travelling between P1 and P4.

harmonic solution. Nevertheless, some general insight into the scaling and structure of the
velocity field in each band can be obtained through asymptotic reasoning. These results
are summarised in Appendix C and will be used to interpret the numerical results that are
now presented.

Figure 12 displays the scaling of the vertical band aligned with the rotation axis,
analysed along the cut Sr1 shown in figure 4. Near r = 0, the width of the band scales
as E1/3. As explained in the appendix, the amplitude of the axial and azimuthal velocity
components in the band should be E1/3 smaller than in the local region around P1. This
leads to expected scalings of E−1/6 for v0φ and v0z , and O(E1/6) for v0r . These scaling
are confirmed by the numerical results shown in figure 12. The variation of the mean flow
correction within this band along the axial coordinate is also complex, as illustrated in
figure 13(a).

Figure 14 illustrates the scaling behaviours in two distinct regions: the critical latitude
region (analysed at cut SP2) and the resulting zonal band in the bulk (analysed at cut
Sr2). The horizontal width of the critical latitude region scales as E2/5, while the width
of the associated band is O(E1/5). As explained in Appendix C, the scaling of the
azimuthal velocity in the band depends on the Ekman pumping generated in the local
region P2, which is challenging to evaluate analytically. However, the scalings of the

1026 A15-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
98

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10984


Journal of Fluid Mechanics
v 0

φ
/
E

–
1
/
1
0

v
0
φ
/
E

–
1
/
1
0

v
0
r/

E
1
/
2

v
0
r/

E
–
1
/
5

v
0
z/

E
1
/
5

v
0

z/
E

–
1
/
5

×10–2 ×10–2 ×10–2

×10–1 ×10–3 ×10–3

(r – rP2
)/E2/5 (r – rP2

)/E2/5

–2

0

2

–2

0

2

–2

0

2

0 5 10

(r – rP2
)/E2/5

(r – rP2
)/E1/5

0 5 10

–1 0 1

(r – rP2
)/E1/5

–1 0 1

(r – rP2
)/E1/5

–1 0 1

–2

–1

0

1

–2

–1

0

1 NS : E = 10−10

NS : E = 10−9

NS : E = 10−8

0 2 4
–0.3

–0.2

–0.1

0

0.1 NS : E = 10−10

NS : E = 10−9

NS : E = 10−8

(a)

(b)

Figure 14. Velocity scalings from the NS in the local region P2 (cut SP2 in panel b) and in the band
originating from P2 (cut Sr2 in panel a).

different components are interrelated. In figure 14(a) we propose a scaling in E−1/10 for
v0φ , E1/2 for v0r and E1/5 for v0z that is consistent with the expected structure of the
mean flow correction in the band issued from P2. Figure 14(b) presents scaling behaviour
in the local region P2 that may be compatible with the observed scalings in the band. In
particular, a scaling of v0r and v0z in E−1/5 is expected to yield an Ekman pumping of
order E1/5, which matches the amplitude of the axial velocity observed in the band. In
figure 13(b,c) we observe that the axial velocity within the band from P2 is uniform along
the axial direction at leading order E1/5 but linear at the next order E3/10, as predicted by
the theory.

Figures 15 and 16 present the velocity profiles along cuts Sr3 and Sr7, respectively. We
have applied the scalings predicted by the asymptotic analysis, namely, an amplitude of
order E0 for the azimuthal and axial velocity components, and E1/3 for the radial velocity
(see Appendix C). These scalings are consistent with the numerical results. However, for
the azimuthal velocity in the band issued from P7, an alternative scaling appears to better
match the numerical data (see figure 17). At present, we have no theoretical justification
for this alternative scaling.

As discussed in Appendix C, no significant band is expected to form from P4, which
was already evident in figure 1(e). In figure 18 we confirm that the numerical results align
with the theoretically predicted scaling of E1/6 for both the azimuthal and axial velocity
components.

A faint band originating from the critical point on the outer core is visible in figure 1(a).
This band is not associated with the local region P5, which is not expected to generate
any visible band, but rather with P6. As explained in Appendix C, the structure of the
velocity field in this band is peculiar. Its width scales as E1/6, matching with the width
of the local region P6. However, unlike the bands originating from P3 and P7, the axial
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Figure 15. Same caption as figure 12 but for the band originating from P3 (cut Sr3).
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Figure 16. Same caption as figure 12 but for the band originating from P7 (cut Sr7).
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Figure 17. Alternative NS scaling for the azimuthal velocity in the band originating from P7 (cut Sr7).

velocity here is significantly weaker than the azimuthal velocity and varies linearly in z.
The scaling used in figure 19(a,b) – E0 for v0φ and E1/2 for v0z – are those predicted by
the theoretical analysis. The radial velocity, which is expected to be O(E2/3), is too weak
to be correctly resolved and has not been plotted. In figure 19(c) we demonstrate that the
azimuthal velocity is uniform along the vertical direction, as expected from the theory.
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Figure 19. Velocity scalings from NS in the band originating from P6. (a) Azimuthal velocity versus r along
the cut Sr6. (b) Axial velocity versus r along the cut Sr6. (c) Azimuthal velocity versus r for different z, along
the cut Sr6, Sr+

6 and Sr−
6 at z = 0.4, z = 0.5 and z = 0.1, respectively.

6. Conclusion
In this study we have used both numerical and asymptotic approaches to analyse the mean
flow corrections generated by the nonlinear self-interaction of a harmonic solution in a
rotating, librating spherical shell. We have focused on the case where the inner core librates
at a frequency ω̂ = √

2Ω̂ , for which the harmonic solution exhibits a simple structure,
primarily composed of critical point beams propagating along a closed rectangular
periodic path. Using the asymptotic structure of the harmonic solution obtained in He
et al. (2022), we have obtained expressions for the dominant mean flow corrections in the
limit of small Ekman numbers. These theoretical predictions have been compared with
numerical results obtained for Ekman numbers ranging from 10−8 to 10−10, providing
strong validation for both the numerical and asymptotic methods. In addition, scaling laws
for weaker mean flow bands have been derived and compared against numerical data. This
analysis has allowed us to obtain a comprehensive picture of the mean flow correction
structure, summarised for the three velocity components in figures 20, 21 and 22.

The main findings are as follows. We have shown that the largest mean flow corrections
are localised in the regions where two beams propagating in different directions intersect.
In these localised overlap regions, the three velocity components share the same scaling.
The largest correction, of order E−1/2, occurs in the local region P1 where the critical
beam reaches the rotation axis. Significant corrections of order E−1/6 have also been found
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Figure 20. Ekman scaling of the mean flow correction azimuthal velocity v0φ . The blue and red colours
denote the amplitude and length scale scalings, respectively. The scalings indicated in bold have been validated
by an AS.

in regions P3 and P7, where the critical beam reflects on the outer boundary, and in region
P4, where it intersects its symmetric counterpart on the equator. Weaker contributions,
scaling as E0 have been observed in regions P5 and P6 where the main critical beam
interacts with the wider and weaker secondary beam propagating between the critical
points on the inner and outer core.

We have further demonstrated that these strong localised interactions could serve as
sources of weaker mean flow bands aligned with the rotation axis. From regions P3 and P7
on the outer boundary, we have shown that mean flow bands are generated, characterised
by axial and azimuthal velocities of order E0 and a radial velocity of order E1/3, thus
confirming the viscous generation mechanism proposed by Le Dizès (2020). When the
local interaction occurs away from the boundary, as in regions P1 and P4, the resulting
mean flow bands are relatively weaker. In all of these bands, each of width E1/3, the
velocity and pressure fields have a complex axial structure and, therefore, do not form
Taylor–Proudman columns. In contrast, broader mean flow bands are generated from the
critical point region P2 and P6 located on the inner and outer cores. These bands behave
as Taylor–Proudman columns, characterised by a dominant azimuthal velocity component
that is independent of the axial coordinate, accompanied by much weaker axial and radial
velocity components.

In this study we focused on the mean flow correction. However, double-harmonic
corrections, scaling as the square of the harmonic solution, are also expected. For the
frequency considered, 2ω lies outside the frequency range of inertial waves. As a result,
double-harmonic corrections are not expected to propagate. Nevertheless, as explained in
Le Dizès (2020), such corrections are still generated within the interaction regions. We
expect them to exhibit the same scaling as the mean flow corrections in the local regions
Pβ , but without the emission of beams from these regions.

1026 A15-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
98

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10984


Journal of Fluid Mechanics

E1/3 E1/5 E1/3E1/3 E1/3 E1/6

v0z

E1/3

r

z

E1/3

E1/5

E1/3

E1/6

E1/3

E–1/2

E–1/6

E0

E0

E–1/6

E–1/6

E4/3

E1/2

E1/5

E–1/6

E1/6
E0 E1/3

E2/5

E–1/5

E0

E1/2 E1/3

E1/6

E1/6

E1/3

E5/42 E3/2

E5/6

E5/6

E1/3

E1/6

E1/3

Amplitudes

Length scales

Figure 21. Same caption as in figure 20 but shown for the velocity component v0z .
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Figure 22. Same caption as in figure 20 but shown for the velocity component v0r .

In the present study we have considered a viscous libration forcing of the inner core,
which gives rise to an harmonic response of order E1/12. For a larger harmonic response,
such as that obtained with inviscid forcing, larger mean flow corrections are expected.
He, Favier & Le Dizès (2025) considered the same geometry but with a different forcing,
corresponding to an inner core vertical oscillation. When the same frequency is used,
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they showed that a similar harmonic solution is obtained, concentrated along the same
rectangular critical ray pattern, but characterised by a different similarity index, m = 1/2,
and a larger amplitude scaling as E−1/6. A similar analysis can be applied to this solution,
which has an amplitude E−1/4 larger than the present harmonic solution. We expect
analogous results for the mean flow corrections generated by the interaction of the critical
beam with itself, specifically within the local interaction regions Pβ , as well as in the
bands originating from these points. However, since the mean flow corrections scale with
the square of the harmonic solution amplitude, all such corrections would be amplified by
a factor of E−1/2 in that case. In particular, this leads to amplitude scalings of E−3/2 in
P1, E−2/3 in P3, P4 and P7, and E−1/2 in the bands originating from P3, P6 and P7.

Our results give some theoretical grounds to previously observed results in the literature.
For example, the fact that differential rotation is preferentially driven at locations where
wave beams reflect on the boundaries has been observed in the tidally driven zonal flows
of Favier et al. (2014), albeit at a much higher Ekman number that those discussed
here and for different forcing frequencies. Additionally, tentative scaling for the volume-
averaged energy of the differential rotation were reported in Tilgner (2007) and Favier
et al. (2014), with exponents ranging from E−1/2 to E−3/2 (see also the scaling of E−3/10

for the azimuthal velocity observed experimentally by Morize et al. (2010) but for a full
sphere, less relevant to our particular spherical shell). Since these authors considered
tidally driven flows, their scaling are to be compared with our prediction for an inviscid
forcing. From our local analysis, we expect scaling for the volume-averaged energy of
the differential rotation of E−2 for the local region around P1 and E−2/3 for the local
regions around P3, P4 and P7. The volume-averaged energy associated with the bands
emanating from P3, P6 and P7 are predicted to scale as E−2/3. Our predictions are
compatible with existing scaling, in particular with the fact that we expect intense zonal
flows in the limit of the vanishing Ekman number. Note however that our approach remains
valid only in the weakly nonlinear limit but clearly disentangles the different zonal flow
contributions, which was not the case of the volume-averaged approach used in Tilgner
(2007) and Favier et al. (2014). Note finally that the strongest response on the rotation
axis around P1 might be connected to the focusing effect discussed by Shmakova et al.
(2021) and Liu et al. (2022) in the case of an oscillating torus. The fact that both the
harmonic solution and the mean flow corrections reach their largest amplitudes near P1
allows us to consider the future development of a strongly nonlinear theory, in which the
nonlinear effects are concentrated in the vicinity of that point. At a qualitative level, our
predicted localised corrections and axial bands agree with the experimental steady zonal
flow patterns of Subbotin et al. (2022, 2023), but we refrain from making a quantitative
comparison because the forcings and accessible Ekman numbers in those experiments
differ significantly from the asymptotic regime considered in our study.

These scalings, for both an inviscid and a viscous forcing, define the limits of validity for
the weakly nonlinear approach employed in this study. The requirement that the mean flow
corrections remain small implies that the forcing amplitude ε must be much smaller than
E1/4 in the viscous case, and much smaller than E3/4 in the inviscid case. An even more
stringent condition arises from requiring that the mean flow correction remains smaller
than the harmonic solution. This leads to the constraint ε � E5/12 for the viscous case and
ε � E7/6 for the inviscid case. This condition also ensures that the gradient of the mean
flow correction remains small, thereby guaranteeing that the propagation of the harmonic
beam is not perturbed by the mean flow correction at leading order.

The weakly nonlinear solution may also lose its physical relevance if it becomes
unstable. The harmonic solutions exhibit strong shear regions that are potentially unstable.
A crude estimate of the instability threshold associated with this shear is obtained by
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Figure 23. (a) Contours of amplitudes of harmonic linear azimuthal velocity |v1φ |. The blue lines are a critical
line from the source point Sc. (b) Mean flow azimuthal velocity |v0φ | at E = 10−9 and the libration frequency
of the inner core is ω = 0.8317.

balancing the vorticity within each layer against the viscous damping of a perturbation
with a characteristic wavelength comparable to the layer width. For the libration forcing,
this yields the condition ε > O(E1/2) for instabilities in the Stokes–Ekman layer on the
inner sphere, and ε > O(E7/12) for instabilities in both the main internal shear layer of
width E1/3 and the secondary internal shear layer of width E1/6. These constraints are
more restrictive than the condition of validity of the weakly nonlinear analysis. It would be
valuable to obtain more precise estimates for the instability thresholds through a dedicated
stability analysis of the harmonic solution or by means of direct numerical simulations.

It is worth emphasising that the results presented here are for a harmonic solution
with a relatively simple structure, in which the number of beam crossings is limited.
For other forcing frequencies, the harmonic response can be significantly more complex,
involving multiple reflections of the critical point beams and the possible formation of
wave attractors (He et al. 2023). An illustration of such a harmonic response is shown
in figure 23(a) for a libration frequency ω̂ = 0.8317Ω̂ . In figure 23(b) we present the
azimuthal velocity contours of the mean flow correction obtained numerically from
this harmonic response. Despite the added complexity, many features of the mean flow
corrections remain similar. The dominant contribution arising from the boundary layer
oscillation of the inner core is still present. Localised contributions at beam intersection
points in the bulk are also clearly visible, as are bands originating from locations where
beams reflect on the boundaries. For both the localised contributions and the emitted
bands, a similar asymptotic analysis is expected to hold. In fact, the structure of the
solution may be simpler in this case, as the main beam is now a single critical point beam
(with the same similarity index m = 5/4 and amplitude scaling as E1/12), propagating in
only one direction – unlike in our previous case, which involved an infinite sum of beams
propagating in both directions. As long as the analysis is restricted to regions away from
the attractor, we therefore expect similar localised contributions of order E−1/6 at beam
intersections, and bands of width O(E1/3), with velocity scaling as E0, originating from
reflection points on the outer boundary.
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∇ × v̌1

∇ × ((∇ × v̌1)∗ × v̌1) + c.c

N0 = (∇ × v1)∗ × v1 + c.c

Ň0 = (∇ × v̌1)∗ × v̌1 + c.c

∇ × v1

v1v̌1

v̌0

Figure 24. Schematic of the pseudo-spectral method workflow.
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validation of Ekman scaling at various cut positions (shown in figure 4) from numerical computations
at https://www.cambridge.org/S0022112025109841/JFM-Notebooks/files/Figure_num_scaling/mean-num-
scaling.ipynb. This validation corresponds to figure 6 and figures in § 5.
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Appendix A. Numerical convergence details
The pseudo-spectral method workflow is shown in figure 24. Based on the linear velocity
in spectral space v̌1 of the harmonic solution, we calculate the steady Reynolds stress
through the pseudo-spectral method and then obtain the mean flow. For the angular
components, we employ the SHTns package to efficiently transform spherical harmonic
coefficients to physical space (Schaeffer 2013).

We tested two dealiasing approaches: traditional 2/3 truncation for the spherical
harmonic coefficients and the SHTns package’s anti-aliasing capability for angular
dimensions (Schaeffer 2013). No dealiasing was needed in the radial direction as we used
Chebyshev differentiation matrices in physical space. Since both methods yielded identical
results to simulations without dealiasing at our resolution, we present all results without
applying dealiasing operations.

The convergence of the spectral codes with various resolutions is tested by the spectra
of the Chebyshev coefficients and the spherical harmonic components, as in Rieutord &
Valdettaro (1997). Figure 25 shows the spectra at the smallest Ekman number E = 10−10.
We have verified that for all Ekman numbers, the resolutions shown in table 1 ensure
that the ratio Esmin/Esmax is less than 10−8, where Esmin and Esmax are the minimum
and maximum values of the energy spectrum, respectively. This ensures that all of the
length scales are properly resolved down to small dissipative structures, as is attested by
the exponential cutoff observed at high wavenumbers in figure 25.

1026 A15-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
98

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10984
https://www.cambridge.org/S0022112025109841/JFM-Notebooks
https://www.cambridge.org/S0022112025109841/JFM-Notebooks
https://www.cambridge.org/S0022112025109841/JFM-Notebooks/files/Figure_num_scaling/mean-num-scaling.ipynb
https://www.cambridge.org/S0022112025109841/JFM-Notebooks/files/Figure_num_scaling/mean-num-scaling.ipynb
https://doi.org/10.1017/jfm.2025.10984


Journal of Fluid Mechanics

Ekman number Chebyshev grid resolution N Spherical harmonic grid resolution L

E = 10−6 300 600
E = 10−7 300 900
E = 10−8 900 3000
E = 10−9 900 3500
E = 10−10 2500 8000

Table 1. Resolutions of different Ekman numbers.
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Figure 25. Spectra comparison of (a) linear Chebyshev coefficients, (b) linear spherical harmonic
components, (c) nonlinear Chebyshev coefficients and (d) nonlinear spherical harmonic components at E =
10−10 with three different resolutions Res1 = (2500, 8000), Res2 = (2500, 7000) and Res3 = (2000, 8000),
as red, green and blue lines, respectively. The toroidal component (w solid line) and the radial component (ρu
dashed line) have been separated. For each l and n, the maximum value over the other spectral component is
chosen.

Appendix B. Parameters for the harmonic solution
The parameters defining the harmonic solution along the main rectangular circuit are given
in tables 2 and 3 for the northward and southward beam, respectively.

They use the quantities

L = l1 + l2 + l3K −3 + l4 + l5, (B1)

with

l1 = η, l2 =
√

1 − η2 − η, l2 = 2η, l4 = l2, l5 = l1, (B2)
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Critical line x N‖ x N⊥ C̃ N
0 L N

Sc → P1
−r + z√

2

r + z − √
2η√

2
C̃ N

0 L

P1 → P3 l1 + r + z − √
2η√

2

−r + z − √
2η√

2
iC̃ N

0 L

P3 → P7 (l1 + l2)K 3 + r − z + √
2η√

2

−r − z + √
2 − 2η2

√
2

iK −1/4C̃ N
0 K 3 L

P7 → P4 l1 + l2 + l3 K −3 + −r − z + √
2 − 2η2

√
2

r − z − √
2η√

2
iC̃ N

0 L

P4 → Sc l1 + l2 + l3 K −3 + l4 + −r + z + √
2η√

2

r + z − √
2η√

2
iC̃ N

0 L

Table 2. Northward path coordinates, amplitudes and propagation distances within one cycle.

Critical line x S‖ x S⊥ C̃ S
0 L S

Sc → P4
−r − z + √

2η√
2

−r − z + √
2η√

2
C̃ S

0 L

P4 → P7 l5 + r + z − √
2η√

2

−r + z + √
2η√

2
C̃ S

0 L

P7 → P3 (l5 + l4)K 3 + −r + z + √
2η√

2

r + z − √
2 − 2η2

√
2

K −1/4C̃ S
0 K 3 L

P3 → P1 l5 + l4 + l3 K −3 + −r − z + √
2 − 2η2

√
2

r − z + √
2η√

2
C̃ S

0 L

P1 → Sc l5 + l4 + l3 K −3 + l2 + r − z + √
2η√

2

−r − z + √
2η√

2
iC̃ S

0 L

Table 3. Southward path coordinates, amplitudes and propagation distances within one cycle.

and

K = sin(α + π/4)

sin(α − π/4)
. (B3)

Appendix C. Mean flow bands
In this section we analyse the structure of the mean flow bands that are created within the
bulk from the local interaction regions Pβ . These bands have the particularity to be present
in fluid regions where the Reynolds stress is very small. The corresponding velocity field
is therefore expected to satisfy homogeneous equations.

C.1. Bands issued from P3, P4 and P7

We first consider bands generated from the local regions P3, P4 and P7. These regions
have a width of order E1/3 and we can expect the bands to have the same width. It is thus
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natural to introduce the local radial variable r̃ = E−1/3(r − rPβ ) and to use the following
ansatz for the velocity field:

v0 = (E1/3v0r , v0φ, v0z, E1/3 p0)(r̃ , z). (C1)

The velocity field then satisfies the following set of equations:

−2v0φ + ∂p0

∂ r̃
= 0, (C2a)

2v0r − ∂2v0φ

∂ r̃2 = 0, (C2b)

∂p0

∂z
− ∂2v0z

∂ r̃2 = 0, (C2c)

∂v0r

∂ r̃
+ ∂v0z

∂z
= 0. (C2d)

For P3 and P7, the solution should be valid from −zPβ to zPβ with a condition of anti-
symmetry on the axial velocity component with respect to the equatorial plane. This
implies that the general solution for the bands issued from P3 and P7 takes the form

v0r = − i
4

∫ +∞

−∞
A(k)k3 cosh(k3z/2)eikr̃ dk, (C3a)

v0φ = − i
2

∫ +∞

−∞
A(k)k cosh(k3z/2)eikr̃ dk, (C3b)

v0z = −1
2

∫ +∞

−∞
A(k)k sinh(k3z/2)eikr̃ dk, (C3c)

p0 =
∫ +∞

−∞
A(k) cosh(k3z/2)eikr̃ dk, (C3d)

where A(k) is a function determined by the boundary condition at z = zPβ . In particular,
A(k) is set by the Ekman pumping generated at the boundary close to Pβ . We have seen
that, at the order E−1/6, the Ekman pumping vanishes. This explains why the order of
the band is smaller than E−1/6. As shown in Le Dizès (2020), the Ekman pumping first
appears at the order E0. If we denote by w∞(r̃) = ṽ0z(r̃ , z̃ = −∞) the Ekman puming at
this order, the function A(k) is just obtained by the condition v0z(r̃ , zPβ ) = w∞(r̃), which
leads to

A(k) = − 2ŵ∞
k sinh(k3zPβ /2)

, (C4)

where ŵ∞ is the Fourier transform of w∞.
For the band issued from the point P4 on the equatorial plane, the solution must

satisfy non-penetration conditions at the ends of the band, corresponding to z = ±z4 =
±√

1 − 2η2. This leads to the following form for z > 0:

v0r = − i
4

∫ +∞

−∞
A(k)k3 cosh(k3(z − z4)/2)eikr̃ dk, (C5a)

v0φ = − i
2

∫ +∞

−∞
A(k)k cosh(k3(z − z4)/2)eikr̃ dk, (C5b)

v0z = −1
2

∫ +∞

−∞
A(k)k sinh(k3(z − z4)/2)eikr̃ dk, (C5c)
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p0 =
∫ +∞

−∞
A(k) cosh(k3(z − z4)/2)eikr̃ dk. (C5d)

The amplitude A(k) is now prescribed by the axial flux generated from the Reynolds stress
close to z = 0 around P4. We have seen that it is zero at the order E−1/6. We further claim
that it also vanishes at the orders E−1/12 and E0, due to the similar form of the Reynolds
stress at these orders. Indeed, as shown in § 3.5, up to O(E1/3), the viscous corrections to
the leading-order harmonic solution has a similar structure to the main beam. They also
satisfy the two key properties – (3.10) and (3.11) – that were used to derive the mean flow
correction expression (4.4), which notably exhibits no axial flux.

The first correction that generates a non-zero axial flux from P4 is therefore expected to
appear at a magnitude E1/3 smaller than the dominant term – that is, at the order E1/6. If
this flux is denoted as E1/6w∞(r̃), the function A(k) is obtained by enforcing the condition
v0z(r̃ , z = 0) = E1/6w∞(r̃), leading to

A(k) = E1/6 2ŵ∞
k sinh(k3zQ4/2)

. (C6)

We therefore expect the band generated from P4 to be of order E1/6 smaller than those
originating from P3 and P7.

It is worth emphasising that the velocity field in the bands issued from the three points
P3, P4 and P7 depends on the axial coordinate z. These bands are therefore not Taylor–
Proudman columns, in which axial and azimuthal velocity components are invariant along
the rotation axis. Here, due the smallness of the radial scale, the viscous effects responsible
for axial variations become observable over the O(1) axial extent of the column.

C.2. Band issued from P1

For the band originating from the point P1, the analysis differs slightly due to the presence
of the cylindrical singularity. We still introduce the local variable r̃ = E−1/3r and adopt
the same ansatz (C1) for the mean flow corrections. The governing equations become:

−2v0φ + ∂p0

∂ r̃
= 0, (C7a)

2v0r −
(

∂2

∂ r̃2 + 1
r̃

∂

∂ r̃
− 1

r̃2

)
v0φ = 0, (C7b)

∂p0

∂z
−

(
∂2

∂ r̃2 + 1
r̃

∂

∂ r̃

)
v0z = 0, (C7c)

∂v0r

∂ r̃
+ v0r

r̃
+ ∂v0z

∂z
= 0. (C7d)

On either side of P1, we obtain solutions that satisfy the non-penetration condition at
z = z+

1 = 1 and at z = z−
1 = η, respectively. These solutions take the following form:

v±
0r = 1

4

∫ +∞

−∞
A±(k)k3 cosh(k3(z − z±

1 )/2)J1(kr̃)dk, (C8a)

v±
0φ = −1

2

∫ +∞

−∞
A±(k)k cosh(k3(z − z±

1 )/2)J1(kr̃)dk, (C8b)

v±
0z = −1

2

∫ +∞

−∞
A±(k)k sinh(k3(z − z±

1 )/2)J0(kr̃)dk, (C8c)
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p±
0 =

∫ +∞

−∞
A±(k) cosh(k3(z − z±

1 )/2)J0(kr̃)dk. (C8d)

Here the superscript ‘+’ refers to the region zP1 < z � 1 and the superscript ‘−’ refers to
η � z < zP1 . The two functions A±(k) are obtained by the conditions of matching with
the local solution close to P1. As previously shown, at the order E−1/2, the local solution
is confined to the vicinity of P1, and thus, does not generate any mean flow bands. For
the same reasons as in the case of P4, the corrections at the orders E−5/12 and E−1/3

are also localised and do not induce any non-local band structure. The first non-localised
contribution is expected to arise at the order E−1/6. The functions A± can be related to the
jumps E−1/6δv̂ and E−1/6δŵ of the azimuthal and axial velocity across the local region
around P1 by the following relations:

v+
0φ(r̃ , z = zP1) − v−

0φ(r̃ , z = zP1) = E−1/6δv̂(r̃), (C9a)

v+
0z(r̃ , z = zP1) − v−

0z(r̃ , z = zP1) = E−1/6δŵ(r̃). (C9b)

As with the bands originating from P3, P4 and P7, the band emanating from P1 also
exhibits axial dependence.

C.3. Bands issued from P2 and P6

The bands issued from the local regions P2 and P6 differ from those previously discussed,
as their radial width is larger than E1/3. As a consequence, the azimuthal velocity can no
longer depend on the axial coordinate z. These bands are then Taylor–Proudman columns.

For P6, the appropriate radial variable and velocity ansatz are r̆ = (r − rP6)/E1/6 and

v0 = (E2/3v0r , v0φ, E1/2v0z, E1/6 p0)(r̆ , z). (C10)

This leads to the following governing equations:

−2v0φ + ∂p0

∂ r̆
= 0, (C11a)

2v0r − ∂2v0φ

∂ r̆2 = 0, (C11b)

∂p0

∂z
= 0, (C11c)

∂v0r

∂ r̆
+ ∂v0z

∂z
= 0. (C11d)

The ansatz, (C10) and (C11a) show that an azimuthal velocity of order 1 in the bulk can
only be compatible with an axial velocity of order E1/2. In particular, (C11b,d) imply that
the axial velocity, which has to be antisymmetric with respect to the equatorial plane, must
satisfy

v0z = −z
∂v0r

∂ r̆
= − z

2
∂3v0φ

∂ r̆3 (C12)

for a given azimuthal velocity profile v0φ(r̆). However, the O(1) particular solution that
we computed in § 4.2.2 is expected to induce Ekman pumping of order E1/3. Similarly,
an O(1) azimuthal velocity in the bulk also generates Ekman pumping of the same order.
These two contributions must cancel each other to ensure compatibility with the axial flow
in the bulk. This matching condition prescribes the function v0φ(r̆), from which the full
velocity and pressure field in the band is entirely determined.
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The case of P2 is more complex, as both E1/5 and E1/6 radial scales are, a priori,
possible. Assuming the E1/5 scale dominates, we introduce r̄ = (r − rP2)/E1/5 and the
ansatz

v0 = (E3/5v0r , v0φ, E2/5v0z, E1/5 p0)(r̄ , z). (C13)

The resulting equations are analogous to those in (C11) with r̆ replaced by r̄ . As in the
case of P6, the leading-order azimuthal velocity component must be independent of z.
However, the axial velocity may now either be linear in z with the scaling prescribed
by the ansatz (C13) or independent of z and larger in magnitude. It is important to note
that the bulk solution with an O(1) azimuthal velocity is expected to generate O(E3/10)
Ekman pumping at both the inner and outer cores. These Ekman pumpings differ on each
boundary and are larger than the possible linear axial flow in the bulk. Therefore, the
azimuthal velocity in bulk must be chosen such that the Ekman pumping generated in
P2, by the solution forced by the Reynolds stress, exactly cancels the Ekman pumping
produced by the bulk solution at the outer boundary. This cancellation allows for a z-
independent axial flow in the bulk at leading order. Although evaluating the Ekman
pumping precisely is challenging, the above reasoning enables us to deduce the relative
orders of the velocity components. For instance, if the Ekman pumping in P2 is O(E1/5)
then, in the bulk, we expect v0φ = O(E−1/10), v0z = O(E1/5) and v0r = O(E1/2). A weak
axial dependence of the axial velocity is also expected at the order E3/10 and given by the
analogue of (C12) for this band.

To conclude this section, we briefly comment on the band originating from P5. As in the
case of P1, such a band is generated by the jumps of v0φ and v0z across the local region
P5. Due to the different scales of the two interacting beams, these jumps are expected to be
of order E2/3. The jump of v0z must be compensated by an Ekman pumping of the same
order at the outer boundary. This requires an azimuthal velocity in the band of order E1/3.
This velocity amplitude is comparable to the background azimuthal velocity in the bulk,
which explains why no distinct band originating from P5 is visible in figures 1 and 5(b).
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