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a b s t r a c t

A fluid–structure model describing the equilibrium state of a flexible blade rotor with its
own wake is derived for various external axial flow conditions. The model is based on
three building blocks. The two-dimensional lifting-line theory is first used to compute
the local aerodynamic loads and the blade circulation profile. The blade deformation
is then obtained by solving the nonlinear equations for bending and twisting angles
deduced from a one-dimensional beam model. Finally, the wake is obtained using a
Joukowski model. In this wake model, the wake of each blade is modeled by two small-
core-size counter-rotating vortices emitted from the rotor axis and blade tip. The velocity
field induced by these vortices is computed using the Biot–Savart law. We show that,
in the rotor frame, we can obtain a stationary vortex structure for almost any vertical
flight regimes. This wake solution can then be used to compute the induced velocity in
the rotor plane and apply the two-dimensional lifting-line theory again. By iterating a
few times this loop, we converge toward a nonlinear solution of the problem for which
the aerodynamics loads, blade deformation and wake structure are compatible.

As illustration, this newly-developed model is applied to two rotors. We analyze the
effects of the external wind conditions, geometry and material properties of the blades
on the blade deformation and wake characteristics. We show that we can describe slow
descending regimes for which the classical momentum theory does not apply.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Rotors have been widely studied, often empirically, with practical applications in mind. Many models have also been
proposed to estimate rotor performance in different operational conditions. General reviews of these models can be found
in Leishman’s book (Leishman, 2006) for helicopters and in Hansen’s book (Hansen, 2015) for wind turbines.

In several applications, rotor blades are long and flexible structures. These characteristics make blades prone to
deformation when subject to aerodynamics loads. For helicopters and large wind turbines, significant deformations are
indeed observed close to the blade tip, even if the blade material is not particularly compliant. By contrast, for some
drones, the material is so elastic that the blade shape drastically changes when the rotor is in operation.

The external flow properties and, specially, the rotation of the blades introduce an heterogeneous airload distribution
on the blades. These heterogeneous loads deform the blades, and consequently change both the blade position and the
induced wake. As the wake also affects the incident velocity seen by the blade, the fluid–structure problem is always
strongly coupled. In this paper, instead of trying to solve this nonlinear problem by direct numerical simulation (Bazilevs
et al., 2011), our objective is to introduce few simplifications that will allow us to perform a parametric analysis at low
computation cost.
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The first simplification concerns the blade geometry. Due to the slenderness of the blades, it is natural to use beam
theory (Timoshenko, 1922) that exploits this property. Different one-dimensional equations for the bending and twisting
angles are obtained along the blade centerline depending on the asymptotic limit considered (Carrera et al., 1926).
The most used models are the simple Euler–Bernoulli rod model (Dias and Audoly, 2014) and the nonlinear ribbon
model (Volovoi et al., 2001; Dias and Audoly, 2015) with an intrinsic non-linear coupling between bending and twisting.
Several authors have studied the effect of this coupling on the adaptability of the rotors to non-optimal operational
conditions (Lobitz and Veers, 2003; Maheri and Isikveren, 2010; Bottasso et al., 2013). In the present work, we shall
use the simple rod model.

One of the main difficulties of rotor modeling is to have a good description of the flow that goes through the rotor
plane. The most popular strategy is to use a momentum balance to relate the thrust and torque felt by the rotor to changes
of axial and angular momentum in the flow (Glauert, 1935). This so-called Blade Element Momentum Theory is widely
used for the design of wind turbines (Hansen et al., 2006). It has been progressively improved to account for the vortical
wake, multiple blades or three-dimensional effects (Sørensen, 2016). However, it assumes a particular topology of the
flow streamlines that is not always satisfied, especially in the context of helicopters. In particular, in hovering and in
weakly descending regimes, Blade Element Momentum theory does not apply.

For these cases, a more precise description of the wake based on vortex methods has often been used (Gupta and
Leishman, 2005). The wake is then composed of vortex elements (such as tubes or sheets) that can have a prescribed
form or move according to the Biot–Savart law (Leishman et al., 2002). Free-vortex methods can be very precise but they
are unstable and costly when the number of vortex elements is large. A good alternative, that we adopt in this work, is
to use a reduced vortex model involving only a tip and a hub vortex from each blade (Joukowski, 1929). This so-called
Joukowski model offers a simple but relatively efficient way to describe the wake (Gupta and Leishman, 2005).

The paper is organized as follows. In Section 2 we present the model, introducing all its building blocks. The model is
then applied to two different flexible rotors in Section 3. The effects of blade flexibility and external flow conditions on
the blade deformation and wake properties are then analyzed. Finally, some conclusions are drawn in Section 5.

2. The model

In this section, we provide a description of the model. The model can be divided into five parts: the calculation of the
aerodynamic loads, a model for the deformation of the blades, a model for the near wake, the calculation of the wake
structure and the fluid–structure coupling.

2.1. Aerodynamic loads

The aerodynamic forces acting on the blade are calculated using the two-dimensional lifting-line theory (Phillips and
Snyder, 2000). The effective velocity felt by a blade element at the radial coordinate rb, when the rotor is rotating at the
angular velocity Ω in an external axial flow V∞, is given by

U =

√(
V∞ + V̄ ind

z

)2
+

(
Ω + Ω̄ ind

)2 r2b , (1)

where V̄ ind
z and Ω̄ ind are the axial and angular velocities induced by the wake. The inflow angle with respect to the rotor

plane is given by

ϕ = arctan
(

V∞ + V̄ ind
z

Ωrb + Ω̄ indrb

)
. (2)

If the pitch angle of the blade element is β (Fig. 1), we can then define the angle of attack by

α = β − ϕ. (3)

The aerodynamic lift fL and drag fD forces per unit length on the blade element are given by

fL =
1
2
ρU2c CL(α), fD =

1
2
ρU2c CD(α). (4)

where CL(α) and CD(α) are the lift and drag coefficients, ρ is the density of the fluid and c is the chord of the element. The
dependence of CL and CD on the Reynolds number is neglected, as well as any hysteretic behavior. The forces fL and fD are
exerted perpendicularly and parallel to the velocity direction (Fig. 1). The aerodynamic force components perpendicular
and parallel to the blade element direction are then given by

f⊥ = fL cosα + fD sinα, f∥ = fD cosα − fL sinα. (5)

In the present model, we shall consider azimuthally averaged quantities for the induced velocities. This averaging
procedure is necessary to smooth out the strong velocity variations that are artificially introduced by our wake model
(see Section 2.3).
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Fig. 1. Blade element airfoil in generic climbing (a) and descending (b) flight cases.

Fig. 2. Blade schemes showing the local orthonormal frame (a) and bending and torsion angles (b).

2.2. Deformation model

The blade deformation is obtained using a beam model for the blade. Such a 1D model provides a simple way to
compute bending and torsion from the forces exerted on the blade. We are looking for equilibrium configurations. These
configurations satisfy the Kirchhoff equations (Dias and Audoly, 2015), expressing the balance of forces and moments on
the blade element located at the curvilinear coordinate s

∂T
∂s

+ f = 0, (6)

∂M
∂s

+ d3 × T + m = 0. (7)

where f and m are the external forces and moments per unit length, T and M the internal forces and moments and
d3 the vector tangent to the blade centerline. These equations are conveniently written in the local orthonormal frame
(d1, d2, d3) (Fig. 2a). These vectors d i, i = 1, 2, 3 satisfy

∂di

∂s
= ω(s) × d i(s), (8)

where the Darboux vector ω(s) is defined by

ω = κ1(s)d1(s) + κ2(s)d2(s) + τ (s)d3(s). (9)

The components of ω in the local frame are the normal curvature κ1(s), the geodesic curvature κ2(s) and the torsion τ (s).
The normal curvature κ1 and the torsion τ can also be defined in terms of a bending angle θ and a torsion angle γ (Fig. 2b)

∂θ

∂s
= κ1 ,

∂γ

∂s
= τ . (10)

Eqs. (6) and (7) have to be completed by the beam constitutive law

M = EIκ1d1 +
EJ

2(1 + ν)
τd3, (11)

where ν is the Poisson ratio, E the Young modulus, I and J the second moments of area in the direction d1 and d3
respectively. We have assumed uniform elastic properties of the blades and neglected deformations in the direction d2
(κ2 = 0).
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Fig. 3. (a) The Joukowski model. (b) Illustration of the discretization into straight segments of the tip vortex.

Fig. 4. Fluid–structure loop scheme.

Moreover, in the following, we assume that the airfoil profile is the same all along the blade, meaning that we can
write I = I∗c4 and J = J∗c4, where I∗ and J∗ are dimensionless quantities. The cross section area of the airfoil can also be
written as A = A∗c2 where A∗ is a dimensionless quantity.

The blade deformation problem is then defined by the parameters linked to the blade profile (CL, CD, I∗, J∗ and A∗), one
parameter characterizing the blade aspect ratio c∗

= c/Rb and three parameters associated with the blade material

ν, E∗
=

E
ρbgRb

, ρ∗

b =
ρb

ρ
, (12)

where Rb is the length of the blade, ρb and ρ the density of the blade and of the fluid respectively, and g the gravitational
acceleration. The parameter E∗ compares the elastic forces with gravity. It is also useful to introduce the Froude number
Fr that compares gravitational forces with centrifugal forces:

Fr2 =
RbΩ

2

g
. (13)

In order to obtain two differential equations for θ and γ , we manipulate Eqs. (6)–(11). For the equation on θ , we
differentiate Eq. (7) with respect to s and we take its projection on the local direction d1. After imposing κ2 = 0, we
obtain for the first term:

d1 ·
∂2M
∂s2

=
∂2

∂s2
(M · d1)+ τ 2 (M · d1) ≃

∂2

∂s2
(M · d1) , (14)

where we neglect the term implying τ 2, as the torsion curvature is small compared to the deflection, which will be verified
a posteriori. So the final expression will be:

∂2(M · d1)
∂s2

+
∂T
∂s

· d2 = 0, (15)

where κ2 = 0 has been used again to obtain the second term and neglect the term coming from the external moments.
From the constitutive law (11) and using the definition (10), the first term of Eq. (15) can be written as

∂2(M · d1)
∂s2

= E
(
I
∂3θ

∂s3
+ 2

∂ I
∂s
∂2θ

∂s2
+
∂2I
∂s2

∂θ

∂s

)
. (16)
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Fig. 5. (a) Blade geometry of rotor A (upper plot) and rotor B (lower plot). (b) Lift coefficient CL (dashed line) and drag coefficient CD (solid line)
with respect to the angle of attack α for a NACA0012 profile, from Chritzos et al. (1955). (c) Chord c∗ and twist angle β (in degree) along the rotor
B blade.
Source: Adapted from Quaranta et al. (2015).

The second term of (15) is the projection on the direction d2 of the forces exerted on the blade (see Eq. (6)). They include
the aerodynamic force perpendicular to the blade, f⊥, the centrifugal force and the weight of the blade per unit length.
In the following, the rotor axis will be assumed to be aligned with the direction of gravity, as for a helicopter in vertical
flight. The projection on d2 of the centrifugal force and weight can then be written:

f cent · d2 = Aρbrb(s)er · d2 = AρbΩ rb(s) sin θ = AρbΩ
[
Rb

∫ s

0
cos θds

]
sin θ, (17)

f w · d2 = Aρbgez · d2 = Aρbg cos θ sin(β + γ ). (18)

Developing Eq. (15) with (5), (16)–(18) we obtain the final equation for θ . The equation for γ is obtained by projecting
Eq. (7) on d3 with (10) and (11). Finally, the two dimensionless differential equations for the bending and torsion angles
θ and γ are:

ρ∗

bE
∗I∗

Fr2
[
c∗4θ ′′′

+ 8c∗′c∗3θ ′′
+ 4(3c∗′c∗2

+ c∗′′c∗3)θ ′

]
−

1
2
c∗U∗2(CL(α) cosα + CD(α) sinα)

+ρ∗

bA
∗c∗2

[∫ s

0
cos θds

]
sin θ +

ρ∗

bA
∗c∗2

Fr2
cos θ sin(β + γ ) = 0,

(19)

ρ∗

bE
∗J∗0

2(1 + ν)Fr2
[
c∗4γ ′′

+ 4c∗3c∗′
γ ′

]
−

1
2
c∗2U∗2 [

(CL(α) cosα + CD(α) sinα)δaccm + Cm,ac(α)
]

= 0, (20)

where the prime denotes differentiation with respect to s. The last two terms of the bending Eq. (19) correspond to the
centrifugal force and the weight of the blade. The second term of the torsion Eq. (20) corresponds to the aerodynamic
moment. The quantity δaccm is the distance (non-dimensionalized by c) from the center of mass to the aerodynamic center
of the airfoil, typically located at a distance of c/4 from the leading edge for subsonic flows. The coefficient Cm,ac is the
pitching moment coefficient of the airfoil, which is in general constant for small angles of attack and equal to zero for
symmetric airfoils. The angle of attack α(s) and the normalized incident velocity U∗(s) = U(s)/(ΩRb) are obtained from
the wake model discussed in the next two subsections. These equations have to be integrated with the following boundary
conditions

θ (0) = θ ′(1) = θ ′′(1) = 0 , γ (0) = γ ′(1) = 0, (21)

that correspond to a ‘‘clamped’’ condition at the blade root, and a ‘‘free’’ condition at the blade tip.
In order to analyze the blade deformations in a more intuitive way, we also introduce the bending deflection function

fθ (s) that measures the distance of each blade element from its original undeformed position.

2.3. Joukowski model

To describe the wake, we use a Joukowski model (Joukowski, 1929). In this model, the wake of each blade is composed
of a bound vortex on the blade and two free vortices of opposite circulation Γ , emitted from two positions rt and rh close
to the tip and hub of the blade. The points of emission and the vortex circulation Γ are computed from the circulation
profile Γ̄ (s) of the blade which is obtained from the local 2D Kutta–Joukowski formula

Γ̄ (s) =
1
2
U(s)c(s)CL(α(s)). (22)
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Fig. 6. Radial position of the wake in the axial direction for different tip-speed-ratio values of rotor A. (a) Helicopter regimes for β = 40◦ . Climbing
flight (λ = −10, λ = −20), hover (λ = ∞), and weakly descending flight (λ = 15). (b) Wind turbine (or windmill brake) regimes for β = 15◦ . Other
parameters are E∗

= 107 , ρ∗

b = 100, Fr2 = 1000.

The vortex circulation Γ is defined as the maximum value of Γ̄ (s), while r tipb and rhubb are the centers of mass on either
side of the point of maximum of Γ̄ (s) of the quantity ∂Γ /∂s. For the point of emission close to the hub, we shall assume
rhubb = 0, i.e. the emission is on the rotor axis. This hypothesis is justified if we consider that the hub vortices emitted by
all the blades are expected to merge away from the rotor on the rotation axis. It actually corresponds to the initial model
introduced by Joukowski (1929). For the other point of emission, it corresponds to the tip if the circulation reaches its
maximum at this point. In general, we shall be in this situation, which is illustrated in Fig. 3(a).

2.4. Wake structure

The wake structure is computed using a free-vortex method (Leishman, 2006). Each vortex is discretized in small
segments of vorticity that move as material lines in the fluid according to

dξ
dt

= U (ξ) = U∞
+ U ind(ξ), (23)

where ξ is the position vector of the vortex filament, U the velocity field, composed of the external velocity U∞ and the
induced velocity U ind(ξ) generated by the vortex filaments. When the rotor has N blades, the induced velocity deduced
from the Biot–Savart law (Saffman, 1992) is given by

U ind(ξ) =
Γ

4π

N∑
j=1

∫ (ξj − ξ) × dτ j

|ξj − ξ|2
, (24)

where the integrals cover each vortex filament defined by its position vector ξj and tangent vector τ j . This expression
is also used to obtain the mean induced velocity on the blade defined in Eq. (1). On the vortex filament, the Biot–Savart
integral is singular, the self-induced velocity diverges. To avoid this singularity, a small but finite core size a is introduced.
This allows us to obtain the self-induced velocity by the so-called cut-off method (Saffman, 1992). In the present study,
we assume an identical and constant core size for all the vortices.

In the present work, we do not consider any temporal evolution of the rotor system. We focus on regimes where the
rotor is equilibrium with its wake. We therefore look for helical wake structures that are stationary in the rotor frame.
This means that the vortices should be steady in the frame rotating at the angular velocity Ω of the rotor. This condition
of steadiness implies a condition for the velocity field with respect to the vortex structures: it should everywhere be
tangent to the structure. This condition reads(

U∞(ξmj ) + U ind(ξmj )
)
× τm

j = 0, (25)

where the external field U∞ is the sum of the external axial velocity V∞ez and the azimuthal velocity −rΩeψ . This
condition can also be written for each vortex filament as

drw
dψ

=
V ind
r

Ω ind −Ω
,
dzw
dψ

=
V ind
z + V∞

Ω ind −Ω
(26)

where rw(ψ) and zw(ψ) are the radial and axial positions of the filament. Concerning the boundary conditions, it is imposed
that the free vortices are attached to their point of emission (the axis center and in general the blade tip). If the azimuthal
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Fig. 7. Circulation profile obtained along the blade of rotor A for different tip-speed-ratio values. (a) Helicopter regimes (β = 40◦); (b) Wind turbine
regimes ( β = 15◦). Other parameters are the same as in Fig. 6.

origin is fixed at the point of tip emission, the condition of attachment reads rw(0) = r tipb and zw(0) = ztipb , where r tipb and
ztipb are the radial and axial coordinates of the tip emission point. Far from the rotor, the wake is assumed to become
homogeneous. In other words, we assume that each filament becomes a uniform helix after a certain number of turns,
typically of order 15. The impact of this far wake is then computed by considering 8 additional turns of perfect helices.
As shown by Ali and Abid (2013), this is sufficient to have a good approximation of the effect of infinite helices.

It is worth mentioning that the wake structure deduced from the Joukowski model only depends on the number of
blades N and three dimensionless parameters:

λ =
r tipb Ω

V∞

, η =
Γ

(r tipb )2 Ω
, ε =

a

r tipb

, (27)

where λ is known as the tip-speed-ratio and η and ε represent the vortex strength and the vortex core size respectively.

2.5. Fluid–structure interaction

To obtain the circulation profile of the blade, we must determine the flow in the rotor plane. But this flow, especially the
induced flow, also depends on the circulation and emission point of the vortices. The wake/rotor problem is thus always
strongly coupled. The solution to this problem is here obtained through an iterative procedure following a fluid–structure
interaction loop (see Fig. 4).

In practice, the problem is first solved for a rigid rotor. The first loop is performed by neglecting the induced velocity,
so that first estimates for the circulation profile and the resulting wake can be computed from the external velocity only.
This first loop also gives an estimate of the induced velocity, so that a second loop can be performed with the full velocity
field. The process is repeated until convergence.

The flexible case is treated by considering the rigid rotor configuration as guess value. The difference with the respect
to the rigid case is that the circulation profile is now obtained after having computed the new position of each blade
element using the beam model (Section 2.2). As for the rigid case, the process is repeated until convergence.

For both rigid and flexible rotors, convergence is typically obtained in 5 or 6 loops.

3. Applications

3.1. Description of the rotors

In this section, we apply the model to two different two-bladed rotors, named here rotor A and rotor B. For both
rotors, we consider a same NACA0012 profile for the blade cross-section. The characteristic constants for this profile are
I∗ = 0.0033, J∗ = 3.28 and A∗

= 0.0822. For the aerodynamic coefficients CL and CD, we assume the functions given
in Chritzos et al. (1955) and shown in Fig. 5(b) and, for the aerodynamic moment, we use Cm,ac = 0 and δaccm = 0.15. The
blades of rotor A have a simple geometry with a uniform dimensionless chord c∗

= 0.1 and a uniform twist angle β . We
shall vary this angle β . Rotor B is inspired by the rotor used in the experiments by Quaranta et al. (2015), which was
designed to have a constant circulation profile. The original geometry has been slightly modified to operate in a larger
range of tip-speed ratio λ. The distributions of chord and twist angles are shown in Fig. 5(c). The geometry of the blades
of each rotor is illustrated in Fig. 5(a).
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Fig. 8. Blade deformation of rotor A for the helicopter regimes with β = 40◦ (upper plots) and for the wind turbine regimes with β = 15◦ (lower
plots). Left: Torsion angle γ ; Center: Bending angle θ ; Right: Bending deflection function fθ . The other parameters are the same as in Fig. 6.

In the following section, we shall vary the operational conditions of the rotors (i.e. the angular rotation Ω and the
external wind speed V∞) that affect the tip speed ratio λ and the Froude number Fr . The material properties of the blade
will also be varied such that the effect of the dimensionless parameters ρ∗

b and E∗ will be considered. However, the Poisson
ratio will be kept fixed and equal to ν = 0.5.

Except for the twist angle of the rotor A blade, the geometry of the two rotors without external forces will not be
varied. We shall also not analyze the effect of the vortex core size that is fixed to ε = 0.01.

3.2. Results

In this section, we first analyze the effect of the tip-speed ratio λ on the wake characteristics and blade shape of rotor
A. We fix the Young modulus E∗, the density ratio ρ∗

b , the Froude number Fr, and vary λ by changing the external fluid
velocity.

In Fig. 6, we have illustrated the radial trajectories of the vortices in the wake when λ is varied. In the rotor frame,
the external wind is going downwards when λ is negative and upwards when it is positive. For a helicopter, this means
that negative values of λ correspond to climbing flight, and positive values of λ to descending flight. Hover is associated
with an infinite value of λ. Normal flight situations of a helicopter are shown in Fig. 6(a). For this case, the wake is
contracting and moves downwards. The contraction increases when λ becomes more negative, that is when the climbing
speed decreases. This contraction process continues when the climbing speed vanishes and changes sign, i.e. when we
move to a slow descent flight regime corresponding to large positive values of λ. However, for this regime, the vortices
are emitted upwards and therefore cross the rotor plane before going downwards. For smaller values of λ, a downward
wake ceases to exist, and we jump to another type of solution shown in Fig. 6(b): the wake expands and goes upwards.
This situation corresponds to the so-called windmill brake regime of helicopters. If gravity was not aligned with the rotor
axis, it would correspond to the wind turbine regime. As expected, the stronger the external wind (i.e. the smaller λ), the
less expanding is the wake.

The intervals of λ where downward and upward wakes exist do not seem to overlap. For all the parameters that we
have considered, we have found an interval of λwhere both solutions cease to exist. The limits of this interval are different
for each case. We suspect that this is reminiscent of the Vortex Ring State (VRS) (Drees and Hendal, 1951).

In Fig. 7, we have plotted the circulation profile obtained on the blade for the configurations shown in Fig. 6. For normal
flight conditions (Fig. 7(a)), the circulation profile is found not to vary much. It is mainly associated with the blade rotation
that prescribes a linear dependence of the circulation on the radial coordinate. The small bump observed for small values
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Fig. 9. Effect of the other parameters on blade deformation of rotor A for β = 30◦ and λ = −20. The default parameters are E∗
= 106 , ρ∗

b = 100 and
Fr2 = 100 Left column: Twist angle γ ; Central column: Bending angle θ ; Right column: Bending deflection function fθ . Upper line: Young Modulus
effect. Middle line: Blade density effect. Lower line: Froude number effect.

of s/Rb is associated with the lift coefficient crisis obtained for small angles of attack [see Fig. 5(b)]. The small overshoot
of circulation observed when λ = 15 corresponds to an induction effect of the vortices that are above the rotor plane for
s/Rb > 0.7. In the windmill brake regimes (Fig. 7(b)), a larger effect of variation is observed, with an increase of 40% of
the total circulation when λ changes from 3 to 5.7. This can be understood by the larger relative contribution of the axial
wind in the total velocity for these cases.

The effect of λ on the blade deformation is shown in Fig. 8. The material chosen for the blade is weakly flexible
so the deformation in terms of torsion angles (left plots) and bending angles (central plots) remains small. For normal
flight conditions (upper plots), the deformation increases as the climbing velocity decreases. The largest deformation is
reached for the slow descending regime. In the windmill brake regime (lower plots), the opposite behavior is observed
: the deformation diminishes when the descent speed decreases. Both behaviors are in agreement with the variation of
circulation with respect to λ. Larger circulation leads to larger deformation. Note however that the variations of γ and θ
along the blade are much smoother and do not exhibit the bumps and jumps observed in the circulation profile.

The effect of the other parameters on blade deformation for a typical climbing regime of rotor A (λ = −20) is analyzed
in Fig. 9. The torsion angle γ remains always much smaller than the deflection angle θ . However, both are similarly affected
by variations of E∗ (upper plots), ρ∗

b (central plots) and Fr (lower plots): twisting and bending increase when E∗ or ρ∗

b
decreases or when Fr increases. These similarities can be understood by going back to Eq. (19). For the parameters of Fig. 9,
weight and centrifugal forces remains small. If the corresponding terms (third and fourth terms in Eq. (19)) are neglected,
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Fig. 10. Highly deformable case. Rotor A with a twist angle β = 30◦ for E∗
= 106 , ρ∗

b = 1 and λ = −10. Solid line: Fr2 = 100; Dashed line: Fr = 0
(rotor at rest). (a) Torsion angle γ ; (b) Bending angle θ ; (c) Bending deflection function fθ . (d) Three-dimensional visualization of the wake and the
deformed rotor.

the equations for θ and γ become dependent on the parameters E∗, ρ∗

b and Fr2 through the combination ρ∗

bE
∗/Fr2 only.

It is then obvious that decreasing ρb by a factor of 10 is equivalent to decreasing E∗ by the same factor, or to increasing
Fr2 by a factor of 10.

In Fig. 9, the deformation is relatively small. Highly deformed cases can nevertheless be calculated in the same way. In
Fig. 10 we illustrate such a configuration by considering a very compliant material for rotor A. We observe in Fig. 10(c),
that the deflection reaches 50% of the blade length when we consider the flow conditions λ = −10, ρ∗

b = 1 and Fr2 = 100.
The same rotor at rest is however almost undeformed as seen on this figure. We see also that, even for this very deformed
case, the torsion remains very small compared to the deflection. This agrees with the assumption made in Eq. (14), where
the terms involving τ 2 were neglected.

So far, we have considered the simple geometry of rotor A. There is no difficulty to consider the more complex geometry
of rotor B. In Fig. 11, we compare the circulation profile and blade deformation of both rotors for the same flow conditions,
and the same material. We have chosen a value of λ close to conditions for which the rotor B has been designed. In
Fig. 11(a), we observe that the circulation profile associated with rotor B is almost constant for s/Rb > 0.4 in agreement
with the design properties (Quaranta et al., 2015). The circulation profile obtained by rotor A is completely different. It
gives a smaller vortex circulation but it gets more deformed by the flow (see Fig. 11(b–d)).

4. Comparison with experimental data

In this section, we compare our model with experimental data for a wind turbine rotor and a helicopter rotor in hover.
For both cases, the blades are rigid.

The data for the wind turbine rotor are taken from the MEXICO project (Schepers et al., 2012). This rotor has variable
chord and pitch angle and resembles rotor B. In the left column of Fig. 12, we have plotted the wake geometry, the lift
force along the blade, and the predicted circulation profile for a tip-speed ratio λ = 6.67. The experimental data are
indicated by symbols. We observe that there is a very good agreement for both the wake geometry and the lift force. This
is not surprising as the circulation profile is mainly flat (lower left plot). The Joukowski model is expected to work for
such a case. The good agreement therefore validates the numerical procedure.

The data for the helicopter rotor are extracted from a two-bladed rotor experiment from NASA technical rapport
TM81232 (Caradonna and Tung, 1981). The rotor has in this case an untwisted constant-chord blade with a uniform
pitch angle β = 12◦ as rotor A. Similar quantities as for the wind turbine rotor are plotted in the right column of Fig. 12.
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Fig. 11. Effect of the blade geometry. Solid lines: rotor A with β = 20◦; Dashed lines: rotor B. (a) Circulation Γ̄ along the blade; (b) Torsion angle
γ ; (c) Bending angle θ ; (d) Bending deflection function fθ . The other parameters are λ = 3.5, E∗

= 107 , ρb = 100, Fr2 = 100.

For this rotor, the agreement with the model is not as good as for the wind turbine case. In the model, the wake is more
contracted and the lift is underestimated in the inner part of the blade and weakly overestimated near the tip. As in the
wind turbine case, a better agreement near the tip would be obtained if a tip correction was implemented in the model
(see Sørensen’s book Sørensen, 2016). The circulation profile obtained from the model is shown in Fig. 12 (lower right
plot). It strongly varies with the radial position. Note in particular that it becomes negative for r/R < 0.4. In principle,
with such a circulation profile, we expect, from Prandtl lifting-line theory, vortex sheet shedding all along the blade, and
the formation for each blade of three vortices: an inner vortex at r/R ≈ 0.2, a tip vortex at r/R ≈ 1 and third opposite sign
vortex close to r/R = 0.6 resulting from the roll-up of the vortex sheet. It is the merging of the root and middle vortices of
all the blades that is supposed to give the hub vortex of Joukowski model. This complicated roll-up and merging process
is not considered. It may naturally affect the induced flow in the rotor plane. For the rotor in hover, the induced flow
becomes the dominant part of the flow close to the rotor center. It is therefore in this region that the largest inaccuracy
can be expected.

The discrepancy observed in the wake geometry (upper right plot of Fig. 12) may not be associated with the model.
Indeed, the experimental rotor is fixed on a big shaft aligned with the wake axis. We suspect that the shaft limits the
contraction of the wake. It is not excluded that it could also influence the lift forces. For these reasons, it is difficult to
have a definite opinion on the errors associated with the model for this case.

5. Conclusion

We have presented a model providing the equilibrium state of a flexible rotor in vertical flight conditions. The solution
is stationary (in the frame rotating at the rotor angular speed), but takes into account the strong coupling between the
rotor geometry and its wake. A simple but complete description of the blade deformation and of the wake generated by
the rotor has been provided. A parametric study has also been performed for a simple rotor geometry in order to quantify
the effect of external flow conditions and material properties. We have shown that the model is able to describe rigid as
well as very flexible rotors. It also works in operational conditions where classical momentum theory does not apply. In
particular, we have shown that we can describe rotors in slow descending regimes of helicopter flight, where the vortices
created by the rotor move above the rotor plane before being advected downwards.
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Fig. 12. Comparison of the model (solid line) with two experimental cases (◦): A wind turbine configuration from MEXICO project (Schepers et al.,
2012) at λ = 6.67 (left column) and a rotor in hover with an untwisted constant-chord blade at a constant pitch angle 12◦ from NASA (Caradonna
and Tung, 1981) (right column). Upper line: Radial position of the tip vortices in the axial direction. Central line: Lift force along the blade. Lower
line: Circulation profile along the blade.

We have compared the rigid version of the model to experimental data for two rotors. We have found a good agreement
for the lift distribution and the wake geometry for a wind turbine rotor exhibiting an almost constant circulation
distribution along its blades. But further comparisons are needed to fully assess the validity of the model in hover or
for other rotors.

It is worth emphasizing that we have only consider steady solutions. Strongly unsteady regimes such as the Vortex
Ring State (Stack et al., 2005; Quaranta, 2017) are outside the scope of the present work. Furthermore, we have no
information on the stability of the solutions. We know that the wake is a priori unstable with respect to long-wavelength
instability (Widnall, 1972; Gupta and Loewy, 1974; Quaranta et al., 2015). But other instabilities associated with the blade
flexibility, such as flutter, may also be present (Eloy and Schouveiler, 2007; Shelley and Zhang, 2011).
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