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Abstract. The interaction between a tip vortex and a solid surface is responsible for premature
structural component fatigue in wind turbines and undesirable noise in helicopter rotors during
low speed and descending flight. One noise reduction strategy uses a modified airfoil to split
and spread the vorticity in two tip vortices. The present paper aims to provide the wake
structure produced by such a rotor for wind turbine and helicopter regimes. We use a filamentary
approach, such that vortices are assumed to roll-up quickly to form thin vortex filaments of finite
but small size and compute the induced velocity using a cut-off method. The structure of the
wake is analyzed in the near- and far-fields separately. It is found to have a dual nature and to
be well-described by a twisted vortex pair locally aligned along with a larger helical structure.
The linear stability of the far-wake with respect to long-wave displacements is also analyzed.
Two kinds of instability modes are obtained associated with a pairing between successive turns
of the large helical structure and a pairing between successive turns of the vortex pair.

1. Introduction
Rotating blades, such as those of a helicopter rotor or a horizontal-axis wind turbine, generate
concentrated vortices at their tips, transported downstream, creating a helical pattern. These
helical vortices are associated with several practical issues actively investigated. One of these
issues concerns the interaction between a tip vortex and a rotor blade (Blade-Vortex Interaction,
BVI), which causes significant noise and vibration problems. One approach to mitigate BVI
noise is to introduce a modified vane tip to split the tip vortex into two, (see, for instance [1]).
The degree of interaction between the two vortices depends on the relative strength and the
separation distance. For weakly interacting pairs, the rotor wake deviates little from the helical
shape. However, for strongly interacting pairs, the rotor wake resembles a braided pattern where
a small helical pair is inscribed on top of a larger helix [2]. Similarly to the case of vortex rings and
helical vortices, this structure can rotate and translate by self-induction without deformation.
The stability of such structure has practical relevance, since instabilities may contribute to
accelerate the merging process, vortex diffusion and the transition towards a turbulent wake.

From a theoretical perspective, the stability properties of uniform helices have been the
subject of numerous works. Instabilities found in uniform helical vortices can be broadly
classified as short-wave and long-wave instabilities [3]. Short-wave instabilities, such as the
elliptic instability [4, 5] or the curvature instability [6, 7], originate by a deformation of the vortex
core. On the other hand, long-wavelength instabilities are characterized by a local displacement
of the vortex, without changing the internal core structure. For uniform helices, the most
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unstable perturbations are those for which displacements of consecutive turns are out of phase
[8, 9]. More recently, Duràn Venegas & Le Dizès [10] used numerical simulations to obtain
general solutions for helical pairs of different pitch and radius ratios. This approach was used
to characterize the stability properties of the wake for the wind turbine and helicopter flight
regimes [11] consistent with experimental results in a water channel [17, 10]. Perturbations were
found to be quickly advected away from the rotor, such that stability properties are consistent
with theoretical predictions for the far-wake (uniform helices in the case of [11]).

For this work, we study the long-wavelength stability for the wake produced by a tip-splitting
rotor blade. In particular, we use a filamentary approach to address the linear stability of pairs
of closely spaced helical vortices obtained in [2]. Base solutions are characterized by a rotation
of the vortex pair as it moves along a large-scale helical motif. From afar, the vortex structure is
reminiscent of a helical vortex but in a closer view, it resembles a helical vortex pair aligned with
the locally tangent flow. Given these similarities, we expect the solutions to display features
from both systems. In particular, to be linearly unstable and display two kinds of local pairing
instability: of the successive turns of the large-scale pattern, and the successive turns of the
vortex pair.

2. Framework
2.1. Vortex filament framework
The present work is based on a vortex filament approach [10, 11, 2]. All the vorticity is
concentrated in thin vortex filaments which move as material lines in the fluid according to

d ~Xj

dt
= ~U ind( ~Xj) + ~U∞ (1)

where ~Xj = (rj , θj , zj) is the position vector of the j-th vortex filament, ~U ind is the induced

velocity and ~U∞ an external velocity field. Each vortex is discretized in segments [ ~Xn
j ,
~Xn+1
j ].

The induced velocity is obtained using Biot-Savart with a cutoff approach and a Gaussian
vorticity profile. The precise expressions that we use are given in [10].

We are interested in stationary solutions in the rotor frame, in the sense that the vortex
structure and the velocity field are steady, but the vortex elements are moving along the steady
vortex structure. This condition of steadiness is written as

drj
dζ

=
U indr ( ~Xj)

ΩR
,

dθj
dζ

=
Ωind( ~Xj)− ΩR

ΩR
,

dzj
dζ

=
U indz ( ~Xj)− U∞z

ΩR
(2)

where ΩR is the rotation rate of the rotor and vortices are parametrized in terms of the wake age
ζ = ΩR(t − t0) as proposed by [13]. These systems are to be solved with boundary conditions
on the rotor (at ζ = 0) where the position of each vortex is prescribed, and far-field boundary
conditions at ζ → ∞. These last boundary conditions are not trivial as the far-field is a priori
unknown. Therefore, our first task is to characterize the far-field.

2.2. Solutions in the far-field
We consider solutions that are created by the emission of two closely-spaced co-rotating vortices
from a rotating blade tip under an external axial flow. One expects close to the rotor for a
global contraction (resp. expansion) of the structure during a climbing helicopter (resp. wind
turbine) regime, whereas in the far-field, a quasi-uniform regime is expected.

Let us consider two vortices of circulations Γ1 and Γ2 prescribed at the radial coordinates R1

and R2 = R1 − d, respectively. For cases for which Γ1 + Γ2 6= 0, the vortices are expected to
rotate around the invariant vorticity center

R =
Γ1R1 + Γ2R2

Γ1 + Γ2
(3)
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Figure 1. Three-dimensional representation of the vortex structure corresponding to far-field
solutions defined only by geometric parameters: separation distance d, radii R1, R2, and R,
vortex core size a, axial pitches H and h, and twist parameter β = ±2π/θ̃ = H/h. (a,b) View
in the (x, y) and (x, z) planes, respectively.

as they are advected by the mean flow. This motion creates a pair of interlaced helices of radii

ρ1 = (R1 −R), ρ2 = d− ρ1 (4)

and pitch hτ (corresponding to an axial pitch h), inscribed on a larger underlying helix of radius
R and pitch H. This applies to co-rotating pairs, where R1 < R < R2, and for counter-rotating
pairs, where R < R1. For this work, we focus on the co-rotating case. Another important
parameter is the ratio β = H/h measuring the number of turns of the vortex pair per one turn
of the larger helical pattern. Such idealized structure is defined by the geometric parameters
identified in figure 1. The space-curves ~Xj described by the double-helix as a function of the
angular coordinate θ0 are given by

xj = (R+ ρj cosφj) cos θ0 − cτρj sinφj sin θ0 (5)

yj = (R+ ρj cosφj) sin θ0 + cτρj sinφj cos θ0 (6)

zj = (H/2π)θ0 − cκρj sinφj (7)

where φ1 ≡ βθ0 and φ2 ≡ βθ0 +π defines the orientation relative to the x-axis (representing the
chord plane), while

cτ ≡
|H|√

H2 + 4π2R2
, cκ ≡

2πR√
H2 + 4π2R2

(8)

are related to the torsion curvature coefficients, respectively.
The above structure satisfies the following form of spatial periodicity: it is invariant by the

double operation zj → zj + h and θj → θj + θ̃, where θ̃ = 2π/β is the azimuthal period of the
vortex pair. In the following, we keep this property to obtain the proper solutions. Since we
do not want the solution to repeat several times in a spatial period, we further assume that,
there is a single location over an axial distance h where both vortices are at the same azimuth
θ0 = θ1 = θ2. We chose this azimuth to define the radius R and separation distance d. The
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Figure 2. Radial coordinates (a) r1 and (b) r2 as function of the axial coordinate zj for H∗ = 10,
h∗τ = 8, ε = 0.1 and R∗ = 9 + 1/(1 + Γ∗) for different Γ∗.

axial period h then defines a mean axial pitch while H is obtained from H = 2πh/θ̃. In addition
to the core size a and circulation Γj , these parameters can be used to define five dimensionless
parameters

R∗ ≡ R

d
, H∗ ≡ H

d
, h∗τ ≡

hτ
d
, ε ≡ a

d
, Γ∗ ≡ Γ2

Γ1
(9)

that characterize solutions in the far-field. Note that Γ∗ = 1 corresponds to a special case
since both vortices may be deemed as interchangeable, such that our periodic domain is further
reduced to θ̃/2 as presented in [2].

With each geometry there is associated a unique moving frame where the solution is steady.
The main idea is to find the rotation rate ΩF and axial speed UFz as to counter the rotation
of the vortex pair. In practice, this is done by integrating (2) over the interval θ0 ∈ [0, θ̃]
and applying the corresponding boundary conditions, see [2] for a precise description of the
procedure. Since equations (5)-(7) do not fully satisfy the steadiness condition, the helices must
deform to be compatible with the self-induced motion. Because of the spatial periodicity, the
calculation domain is comprised between θ0 = 0 and θ0 = θ̃. Our description is completed by
the corresponding boundary conditions, ~Xj = (Rj , 0, 0) at θ0 = 0 and ~Xj = (Rj , θ̃, h) at θ0 = θ̃.
Equation (2) is solved numerically as a non-linear minimization problem through an iterative
procedure using (5)-(7) as initial guess values. In practice, for most calculations we use pn = 48
segments per period.

A typical result of the far-wake is presented in figures 2 and 3 for different circulation ratios.
Steady solutions are found for a wide range of parameters and circulation ratios Γ∗ ∈ [0.6, 1.2].
Here, the value ofR∗ was chosen to ensure the vortices are emitted at the same radial coordinates,
R1/d = 10 and R2/d = 9, respectively. Solutions with Γ∗ 6= 1 are characterized by min (rj) < R2

for Γ∗ > 1 and max (rj) > R1 for Γ∗ < 1. Solutions are also characterized by a local maxima in
the curvature coefficient in vortex 1 for Γ∗ < 1 and vortex 2 for Γ∗ > 1. Deviations from (5)-(7)
are more easily appreciated in the local coordinates ρj which are no longer constant and equal
to (4). As noted in [2], deviations from the prescribed form increase as the role of self-induction
becomes prominent (small pitch, large curvature).

2.3. Solutions in the near-field
In this section, we consider the vortex structure close to the rotor plane using the approach
described in [11, 2]. Instead of fixing the geometric parameters to find the associated frame
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Figure 3. Local coordinates (a) ρ1 and (b) ρ2 as function of θ0 for the cases in figure 2.

velocities, we solve the inverse problem. That is, we fix the operating conditions (rotation rate
ΩR and external velocity U∞z ) and compute the corresponding wake geometry. For this section,
we use subscripts (·)tip (resp. (·)fin) to denote the properties of vortex 1 (resp. 2), whereas
subscript (·)0 denotes values corresponding to the rotor plane ζ = 0. The prescribed geometrical
parameters are the radial coordinates where the vortices are emitted on the rotor blade, Rtip
and Rfin = Rtip− d0. If we add the circulations Γtip and Γfin, and the core size a, the resulting
problem is governed by five non-dimensional parameters

λ =
RtipΩR

U∞z
, η =

Γtip
R2
tipΩR

, R∗0 =
R0

d0
, ε∗ =

a

d0
, Γ∗ =

Γfin
Γtip

(10)

where λ is known as the tip-speed-ratio, η represents the relative vortex strength, and

R0 ≡ Rtip − d0
Γ∗

1 + Γ∗
= Rfin + d0

1

1 + Γ∗
(11)

is the radial location of the vorticity center on the rotor blade. As in [10, 11, 2], we choose
a convention such that η remains positive, while λ may change sign. Wind turbine regimes
correspond to λ > 0, while helicopters may correspond to either λ < 0 in climbing flight or
λ > 0 in descending flight. We consider R∗0 � 1 and ε∗ = 0.1, as to enhance the rotation of the
vortex pair, but well below the merging threshold of the vortex pair [14, 15].

The near-field solution satisfies (2) with the boundary condition at ζ = 0, which should
match a far-field solution as we go away from the rotor. This condition is implemented as in
[10, 2]. The induced velocity is decomposed into contributions from the near-field and far-field.
Contributions from the far-field are modeled by imposing that after a certain distance from the
rotor plane, the wake adopts the geometry of a far-field solution. The corresponding geometrical
parameters are estimated from the near-field solution at the end of calculation domain. The
computational domain must be sufficiently large for the wake to develop and match the far-field.

3. Comparison with experimental results
For this section, we perform a qualitative and quantitative comparison between numerical results
obtained using the procedure described above, and experimental results from one-bladed rotor
equipped with a perpendicular tip fin placed on its pressure side by [16]. Reference values
correspond to a wake age ζ = 90o, close to the rotor plane. The measurements retained for this
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Parameters Measurements at ζ = 90o

Rtip 24 cm Γtip 161 cm²/s R 22.5 cm
Rfin 21 cm Γfin 153 cm²/s H 16.8 cm
d0 3 cm U∞z 11.5 cm/s d 3.2 cm
a 0.3 cm ΩR 2π Rad/s |β| 0.77

Table 1. Experimental parameters and measurements from [16].
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Figure 4. Steady solution for the parameters in table 1. (a) Schematic representation; Evolution
of (b) the radial coordinates rj and (c) the local pitch H as function of the wake age ζ. Solid
marks indicate the points where the vortices are located at the same azimuthal coordinate.
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Figure 5. Steady solution for the parameters in table 1. Evolution of (a) the separation distance
d and (b) twist parameter β as function of the wake age ζ.
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comparison (table 1) correspond to a climbing helicopter flight regime (Γ∗ = 0.95, λ = −13,
and η = 0.044) shown in figure 4. The wake is characterized by a radial contraction, while the
two vortices trade places continuously with local variations of the axial pitch H also present. A
good agreement is observed with experimental measurements close to the rotor plane (R ≈ 22.2
cm and H ≈ 16.8 cm compared to the experimental values R = 22.5 cm and H = 16.8 cm,
respectively). As shown in [2], the evolution of both quantities is comparable to that of a
equivalent helix with radius R0 and total circulation Γtot = Γtip + Γfin.

Simultaneously, the separation distance is shown to expand roughly by 5% due to the
combined effects of the vortex pair and the rotor’s presence, while the twist parameter β remains
essentially constant (figure 5). Both quantities are also in good agreement with experimental
measurements (d ≈ 3.14 cm and |β| ≈ 0.77 compared to d = 3.2 cm and β = 0.77, respectively).
As shown in [2], both quantities are mainly driven by the evolution of the large scale. If R and
H at the far-field are known, both values can be approximated by

d

d0
≈

[
1 + λ2

1 + λ2R2/R2
0

]1/4
= 1.08 |β| ≈ ηR2

0

πd20
= 0.78 (12)

in good agreement with the numerical and experimental results (table 1).

4. Long-wave instability of the double-helix
In this section, we analyze the evolution of linear perturbations to the base flow obtained above.
Since perturbations are expected to be quickly advected away from the rotor, we are interested
in the structure observed in the far-field. The stability of such structures with respect to long
wavelength perturbations are presented in detail in [19] for the case with Γ∗ = 1.

4.1. Perturbation model
Stability is analyzed by considering the evolution of infinitesimal perturbation displacements

~Xj(ζ, ψ) = ~XB
j (ζ) + δ ~Xj(ζ, ψ) (13)

where ~XB
j (ζ) corresponds to the base flow obtained in the previous sections, δ ~Xj(ζ, ψ) to the

perturbation displacements, and ψ = ΩRt is a proxy of time [13].

Equation (2) is linearized around ~XB
j (ζ) to obtain an approximate locally linear dynamical

system
d~q

dψ
= L~q (14)

where ~q = (δ ~X1, δ ~X2) is the total displacement vector and L is the Jacobian of the system
obtained using a semi-analytical expression as detailed in [11]. As the base flow is stationary,
the operator L is independent of ψ. The long time behavior can therefore be analyzed by looking
at normal modes of the form ψ = Φ(ζ) exp ((σ + iω)ψ) where σ is the growth rate, and ω the
frequency.

We are especially interested in the modes that provide the largest growth rate. The spatial
structure of these modes is analyzed by performing a Fourier decomposition along ζ.

4.2. Most unstable modes
A typical stability diagram for a case matching the far-wake in table 1 is displayed in figure 6.
For this geometry, instability properties are best understood in the frequency spectra. Here,
the spectra is characterized by three contiguous lobes at low frequencies, and one additional
lobe at higher frequencies. The maximum growth rate is comparable to that of an equivalent
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Figure 6. Dimensionless growth rate σ∗n =
σn(2H2/ΓtotΩR) as function of frequency ωn
shown for R∗ = 7, H∗ = 0.75, β = 0.75,
ε∗ = 0.1, and Γ∗ = 0.95.

helical vortex with σ∗ = σ(2H2/ΓtotΩR) ∼ π/2. The three contiguous lobes cover a fixed range
of frequencies, with the maximum growth rates observed close to ω = ±0.5, ω = ±1.5, and
ω = ±2.5, respectively. In contrast, the last lobe corresponds to a variable range of frequencies
between ω = 4.1 and ω = 6.7, with the most unstable mode at ω = ±5.4.

The spatial structure of the unstable deformation modes corresponding to the local maxima
are displayed in figure 7. In order to highlight the deformations affecting the large-scale pattern, a
tubular section enclosing the two vortices around the vorticity center is also shown. For ω = ±0.5
and ω = ±1.5, deformations are best described as a periodic local pairing between consecutive
turns of the large-scale pattern, see figures 7a-b. Indeed, perturbations are predominantly
aligned, i.e., vortices move concomitantly, such that the ensemble is expected to behave like an
equivalent helical vortex. If we consider a longitudinal cut, the displacement of the vortices are
in phase opposition with respect to their neighbors and make a 45° angle with respect to line
connecting both vortices. This behavior is quite general, regardless of individual displacements
of ~X1 and ~X2, and of the geometric parameters [19]. In contrast, deformations corresponding
to ω = ±5.4 are best described as an antisymmetric mode, in the sense that vortices seem to
move towards or away from one another in a coordinated manner, while the large-scale pattern
remains essentially unchanged, see figure 7c. These modes can be seen as a form of local pairing
between the successive turns of the vortex pair [19].

The dominant wavenumbers associated with the most unstable modes are displayed on the
right side in figure 7. On the one hand, for modes in the three contiguous lobes, like ω = ±0.5
and ω = ±1.5, in-phase displacements are clearly predominant, corresponding to azimuthal
wavenumbers k = ∓ω. On the other hand, for modes in the last lobe, like ω = ±5.4, in-phase and
out-of-phase displacements are comparable, with out-of-phase (resp. in-phase) displacements
corresponding to k = ∓ω (resp. k = ∓(ω + β)) and additional harmonics. From this point of
view, perturbation displacements are shown to propagate as a wave-packet with constant phase
velocity vp ≈ −1 and zero group velocity [19].

5. Conclusions
In this article, we have obtained using a cut-off filament approach numerical solutions describing
the wake generated by a single-bladed tip-splitting rotor for different circulation ratios. These
solutions are stationary in the frame rotating with the rotor blade. The structure can be
understood as a rotation of the vortex pair around the vorticity center, that is inscribed on
a larger helical pattern. Because our solutions are based on a filament description, they do not
provide information on the formation of the vortices in the neighborhood of the blade. We have
assumed that well-defined and separated vortices are immediately formed behind the blade, and
viscous effects are neglected. Despite these simplifications, the wake geometry close to the rotor
plane is in good agreement with experimental measurements for a single-bladed rotor by [16].



Wake Conference 2021
Journal of Physics: Conference Series 1934 (2021) 012005

IOP Publishing
doi:10.1088/1742-6596/1934/1/012005

9

(a)

−4 −2 0 2 4

(k + ω)/β

10−2

10−1

100

P
S
D

φ(z+)

φ(z−)

−4 −2 0 2 4

(k + ω)/β

10−2

10−1

100

P
S
D

−4 −2 0 2 4

(k + ω)/β

10−2

10−1

100

P
S
D

(b)

−4 −2 0 2 4

(k + ω)/β

10−2

10−1

100

P
S
D

φ(z+)

φ(z−)

−4 −2 0 2 4

(k + ω)/β

10−2

10−1

100

P
S
D

−4 −2 0 2 4

(k + ω)/β

10−2

10−1

100

P
S
D

(c)

−4 −2 0 2 4

(k + ω)/β

10−2

10−1

100

P
S
D

φ(z+)

φ(z−)

−4 −2 0 2 4

(k + ω)/β

10−2

10−1

100

P
S
D

−4 −2 0 2 4

(k + ω)/β

10−2

10−1

100

P
S
D

Figure 7. (Left) Most unstable modes the case in figure 6. Fig. (a) corresponds to ωn = ±0.5;
(b) ωn = ±1.5; and (c) ωn = ±5.4. A tubular section enclosing the two vortices and centered
around the vorticity center is also displayed to highlight the global displacement. (Right) Fourier
amplitudes of displacement modes in the axial direction, color indicates in-phase (resp. out-of-
phase) displacements in blue (resp. orange).
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We also considered the stability of the solutions to perturbations whose wavelength is large
relative to the vortex core size. In most cases, the most unstable modes are related to the local
pairing of consecutive turns and that growth rates can be predicted from an ‘equivalent’ helical
vortex. A second type of unstable modes, which modify the separation distance between the
vortex pair is also observed. For these modes, the growth rates are comparable to the local
pairing modes, but excite shorter wavelengths selected by the wake geometry.
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[16] Schröder D, Leweke T, Hörnschemeyer R and Stumpf E 2021 AIAA Scitech 2021 Forum 1088
[17] Quaranta HU, Bolnot H and Leweke T 2015 J. Fluid Mech. 780 687–716
[18] Quaranta HU, Brynjell-Rahkola M, Leweke T, and Henningson DS 2019 J. Fluid Mech. 863 927–955
[19] Castillo-Castellanos A, Durán Venegas E and Le Dizès S 2001 Submitted to Phys. Rev. Fluids


