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A rotating/stratified fluid supports waves that propagate in directions that depend on their fre-
quency. If the fluid is uniformly rotating around an axis Oz with a rotation rate Ω and/or uniformly
stratified along the same axis with a Brünt-Väissälä frequency N , harmonic waves of frequency ω
propagate along characteristic lines that make an angle θ with respect to the horizontal plane Oxy
with θ satisfying the relation ω2 = 4Ω2 cos2 θ+N2 sin2 θ. Any infinitesimal oscillation of the bound-
ary is a source of waves but when this boundary is tangent to a direction of propagation of the
waves, a singularity generically appears. This critical slope singularity propagates along the critical
ray tangent to the boundary. When weak viscous effects are considered, this singular ray forms a
concentrated self-similar wave beam with an amplitude that depends on the nature of the singular-
ity and a width of order (νx‖/ω)1/3, where ν is the kinematic viscosity and x‖ the distance to the
critical point.

The goal of the present work is to provide information on the type of singularities that can be
generated in an infinite domain, and therefore on the amplitude and nature of the concentrated
wave beams that can be created from critical points. We analyse in a 2D framework two generic
configurations corresponding to oscillations normal and tangent to the boundary, respectively. In the
first case (oscillations normal to the boundary), we obtain an amplitude scaling in (ωr3c/(νx‖))

1/6

corresponding to an inviscid singularity in x
−1/2
⊥ , where x⊥ is the distance to the critical ray and rc

the curvature radius at the critical point. In the second case (oscillations tangent to the boundary),

a weaker beam in (νr3c/(ωx
5
‖))

1/12 is obtained corresponding to a stronger singularity in x
−5/4
⊥ . In

that case, the beam is generated by the peculiar viscous boundary layer flow obtained close to the
critical point and the problem can be completely solved by a local analysis. A general expression for
the beam amplitude is derived that depends on the fluid characteristics (Ω, N), the wave frequency
ω, the velocity amplitude of imposed tangential oscillations and the local curvature radius at the
critical point. Finally, the first order viscous correction to the critical slope beam induced by the
no-slip boundary condition on the surface is also calculated.

I. INTRODUCTION

Waves are ubiquitous in rotating and stratified fluids. In a fluid rotating and uniformly stratified along a same
axis Oz, they have the particularity to propagate along characteristic directions making an angle θ with respect to
the horizontal plane that only depend on their frequency. When this direction of propagation is tangent to a surface
which is potentially a source of waves, a singularity generically appears along this direction. This so-called critical
slope singularity is the subject of the present paper.

Figure 1 illustrates the mechanism responsible of the singularity. It shows that if sources were equidistantly placed
on the surface of an object, the rays emitted from these sources will tend to accumulate along the characteristic line
tangent to the object. The same phenomenon occurs when a plane wave is reflected on a supercritical topography [3].

The footprint of this singularity is clearly visible in experiments. It corresponds to the Saint-Andrews cross that is
formed when a small object is oscillated at a frequency in the gravito-inertia wave frequency range [5, 17]. The wave
structure obtained from an oscillating cylinder or an oscillating sphere has been extensively studied in the literature
[see for instance 1, 8, 9]. The reader is referred to [24, 25] for more references and a comprehensive discussion of the
literature.

In the ocean, this singularity is expected to appear when the oscillating tide interacts with a supercritical topography,
that is a topography which exhibits a critical slope. This interaction has been studied experimentally [see for instance
27], theoretically [20], and numerically [4].

The structure of the concentrated wave beam associated with this singularity has been the subject of many works
in both rotating fluids [10, 14, 16, 26] and stratified fluids [19, 22]. The self-similar expression introduced by [16] and
[22] was shown to describe correctly both the far-field of a localized wave source [15, 23], and the intense shear layer
emitted from sharp edges [12] and critical slopes [14].

In the present work, we focus on the generic features of the critical slope singularities. Our goal is to provide
informations on these singularities and show how they completely govern the structure and strength of the intense
shear layers along the critical line.

The paper is organised as follows. In section §II, we first show how the outward radiation condition and the
inviscid non-penetration condition on the boundary close to a critical point provide informations on the amplitude
and strength of the critical slope singularity. In section §III, we explain how the inviscid singularity is smoothen by
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FIG. 1. The rays emitted equidistantly from a surface accumulate on the critical line tangent to the surface at the critical
point.

viscosity. The amplitude and structure of the intense shear layer obtained along the critical line is thus provided in
this section. Two generic configurations corresponding to a normal and a tangential oscillation of the boundary are
then analysed in details in section §IV. The singularity generated by the tangential oscillation is due to the Ekman
pumping in the viscous boundary layer. The calculation of this pumping close to a critical point is provided in the
appendix. In section §V, we provide the first order viscous correction to the solution derived in section §III. A brief
discussion of the results and their possible extension is finally given in the last section §VI.

II. INVISCID ANALYSIS OF CRITICAL SLOPE SINGULARITIES

We consider a weakly viscous incompressible fluid, of kinematic viscosity ν, uniformly rotating around a vertical axis
ez at the constant rotation rate Ω, and uniformly stratified along the same axis with a constant buoyancy frequency
N . The buoyancy diffusivity is neglected and the reference density is fixed to unity.

We are interested in the properties of waves generated by small oscillations of a finite object in infinite domain.
The domain and all the fields are assumed to be independent of the spatial variable y such that the analysis can be
performed in a fixed plane (Oxz).

The velocity U, pressure P , and buoyancy B are assumed to be governed by the Navier-Stokes equations under the
Boussinesq approximation

DU

Dt
+ 2Ωez ×U = −∇P +Bez + ν∆U, (1a)

DB

Dt
+N2ez.U = 0, (1b)

∇.U = 0. (1c)

We are interested in linear time-harmonic fluctuations that can be written as

(U, P,B) = (u, p, b)e−iωt + c.c. (2)
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where c.c. denotes the complex conjugate. The amplitudes u = (u, v, w), p and b satisfy the following system deduced
from the linearisation of (1a-c)

−iωu + 2Ωez × u = −∇p+ bez + ν∆u, (3a)

−iωb+N2w = 0, (3b)

∇.u = 0. (3c)

Equation (3c) reads for a velocity field independent of y as ∂xu + ∂zw = 0. This permits us to introduce a
streamfunction ψ(x, z) such that u = −∂zψ and w = ∂xψ. In an inviscid framework (ν = 0), this function is found to
satisfy the so-called Poincaré equation[

−ω2

(
∂2

∂x2
+

∂2

∂z2

)
+ 4Ω2 ∂

2

∂z2
+N2 ∂

2

∂x2

]
ψ = 0 . (4)

In the presence of rotation (Ω 6= 0) , the velocity component v along y is nonzero and given by

v = −2iΩ

ω
u =

2iΩ

ω

∂ψ

∂z
. (5)

Similarly, in the presence of stratification (N 6= 0), there is a buoyancy perturbation given by

b = − iN2

ω
w = − iN2

ω

∂ψ

∂x
. (6)

We shall assume that the frequency ω is between N and 2Ω. In that case, equation (4) is an homogeneous hyperbolic
equation whose characteristics are the lines that makes an angle θ with respect to the horizontal plane given by

ω2 = 4Ω2 cos2 θ +N2 sin2 θ. (7)

We can assume that 0 ≤ θ ≤ π/2. The three other solutions of (7) are −θ, π+ θ and π− θ. In the following, we shall
denote the three directions θ, π − θ, and −θ by NE (North-East), NW (North-West) and SE (South-East).

It is useful to introduce a coordinate system connected to the characteristics. We define the variables xNE
⊥ and xNE

‖
(resp. xNW

⊥ and xNW
‖ ) along the vectors eNE

⊥ and eNE
‖ (resp. eNW

⊥ and eNW
‖ ) for the wave propagating in the NE

direction (resp NW direction):

xNE
⊥ = − sin θ x+ cos θ z,xNE

‖ = cos θ x+ sin θ z, (8a)

xNW
⊥ = sin θ x+ cos θ z,xNW

‖ = − cos θ x+ sin θ z, (8b)

Equation (4) can then be written as

∂

∂xNE
⊥

∂

∂xNW
⊥

ψ = 0, (9)

so its general solution can be written as

ψ(x, z) = F (xNE
⊥ ) +G(xNW

⊥ ), (10)

where F and G are two arbitrary functions. The velocity field u2D (in the (x, z) plane) reads

u2D = F ′(xNE
⊥ )eNE

‖ +G′(xNW
⊥ )eNW

‖ . (11)

In general, G describes waves propagating in both eNW
‖ and eSE‖ = −eNW

‖ . The part that is propagating in a given

direction is obtained by splitting the Fourier decomposition of G into positive and negative wavenumbers:

G(xNW
⊥ ) =

∫ +∞

0

Ĝ(k)eikx
NW
⊥ dk +

∫ 0

−∞
Ĝ(k)eikx

NW
⊥ dk. (12)

The first part, associated with positive k, describes a wavepacket with phase velocities oriented along eNW
⊥ (assuming

ω > 0). The group velocity of this wavepacket, that gives the direction of propagation, is oriented along with eNW
‖ if
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(a) (b)

FIG. 2. Relation between phase velocity and group velocity orientations. (a) N < 2Ω, (b) 2Ω < N .

N < 2Ω, but with −eNW
‖ if N > 2Ω (see figure 2). This means, that if N < 2Ω, the wavepacket composed of positive

wavenumbers propagates in the direction of eNE
‖ and the one of negative wavenumbers in the direction −eNW

‖ . It is

the opposite if N > 2Ω.

As explained by [2], the condition of causality can be directly expressed as a condition on the functions F and G.
For instance, the function G defines a wave packet that propagates in the direction +θ if

G(xNW
⊥ ) = − iε

π
P

∫ ∞
−∞

G(η)

η − xNW
⊥

dη , (13)

where the P in front of the integral means that the Cauchy Principal Part of the integral is taken. The wave packet
propagating in the opposite direction π + θ satisfies

G(xNW
⊥ ) =

iε

π
P

∫ ∞
−∞

F (η)

η − xNW
⊥

dη . (14)

In these equations, ε = sgn(2Ω−N). When ε = −1, we recover the conditions obtained by Baines for the non-rotating
case.

We shall be interested in solutions exhibiting singularities along the line xNE
⊥ = 0 or xNW

⊥ = 0 issued from the
critical point at (xNE

⊥ , xNW
⊥ ) = (0, 0). The nature of this singularity is subject to constraints that come from the

condition of radiation. If G(xNW
⊥ ) exhibits the following behaviors close to xNW

⊥ = 0:

G(xNW
⊥ ) ∼ C+

(xNW
⊥ )α

, xNW
⊥ > 0, (15a)

G(xNW
⊥ ) ∼ C−

(−xNW
⊥ )α

, xNW
⊥ < 0, (15b)

there is a relation between C+ and C− if it also satisfies (13):

C+ = eiπαεC− . (16)

The relation is

C+ = e−iπαεC− , (17)

if it satisfies (14) instead of (13).
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FIG. 3. Coordinate system near a critical point. One of the direction of propagation is tangent to the surface boundary.

These relations directly come from the equalities

i

π
P

∫ ∞
0

dη

(η − x)ηα
=


i cos(πα)

sin(πα)xα
x > 0,

i

sin(πα)(−x)α
x < 0,

(18a)

i

π
P

∫ 0

−∞

dη

(η − x)(−η)α
=


− i

sin(πα)xα
x > 0,

− i cos(πα)

sin(πα)(−x)α
x < 0,

(18b)

obtained for 0 < α < 1.
If α ≤ 0, G(xNW

⊥ ) vanishes or is finite at xNW
⊥ = 0. In that case, an estimate of the integral in the right-hand side

of (13) cannot be obtained using the local behavior of G close to 0. However, if α is not a negative integer, one just
has to differentiate G once or several times such that its derivative satisfies (15a,b) with a value of α between 0 and
1. Similarly, if α > 1, the integral on the RHS of (13) does not converge, so this equation cannot be used. However,
as above, if α is not a positive integer, one can integrate G once (or several times) such that the primitive of G is less
singular, and satisfies (15a,b) with 0 < α < 1. For both cases, one can then use the relation (16) for the coefficients
of either derivatives or primitives of G. Since differentiation and integration just change α by an integer, (16) is thus
valid for any α provided α is not an integer. Finally, note that if α = 0, (16) would prescribe no jump, that is no
singularity.

We assume that the waves are generated from the displacement of the boundaries. In an inviscid framework, at
any point xS of the boundary S, the velocity field amplitude u should satisfy the non-penetrability condition

u(xS) · n(xs) = U0n(xS), (19)

where U0n(xS) and n(xS) are the normal velocity amplitude and normal vector of the boundary at xS .
We are looking for solutions close to a critical point and choose the origin of the frame at the critical point. The

geometry of the problem can then generically be sketched as shown in figure 3. The critical line, tangent to the surface
at the origin is given by the equation xNW

⊥ = 0. The line xNE
⊥ = 0 divide the domain into two regions.

Close to the critical point, the surface S can be defined in terms of the variables xNE
⊥ and xNW

⊥ by

xNW
⊥ ∼ − (xNE

⊥ )2

2rc(sin 2θ)2
for xNW

⊥ < 0, (20)
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or

xNE
⊥ ∼

√
2rc|xNW

⊥ | sin 2θ for xNE
⊥ > 0, xNW

⊥ < 0, (21a)

xNE
⊥ ∼ −

√
2rc|xNW

⊥ | sin 2θ for xNE
⊥ < 0, xNW

⊥ < 0. (21b)

where rc is the radius of curvature at the critical point.
Similarly, close to the critical point, we can express the cartesian components of n(xS) in terms of xNE

⊥

nx(xS) ∼ sin θ − xNE
⊥

2rc sin θ
,

nz(xS) ∼ cos θ +
xNE
⊥

2rc cos θ
.

(22)

If the velocity field U is expressed in terms of the streamfunction ψ defined in (10), U ·n can then be written close
to the critical point as

U(xS) · n(xS) ∼ sin 2θ F ′(xNE
⊥ ) +

xNE
⊥

rc sin 2θ
G′(xNW

⊥ ). (23)

As the relation between xNE
⊥ and xNW

⊥ depends on the sign of xNE
⊥ , we expect two expressions for ψ :

ψ+ = F (xNE
⊥ ) +G+(xNW

⊥ ) for xNE
⊥ > 0 , (24a)

ψ− = F (xNE
⊥ ) +G−(xNW

⊥ ) for xNE
⊥ < 0 . (24b)

The condition (19) implies that close to the critical point for xNW
⊥ < 0

sin 2θ F ′(xNE
⊥ ) +

√
2|xNW
⊥ |
rc

G′+(xNW
⊥ ) ∼ U0n(xS)

with xNE
⊥ ∼

√
2rc|xNW

⊥ | sin 2θ , when xNE
⊥ > 0 ,

(25a)

sin 2θ F ′(xNE
⊥ )−

√
2|xNW
⊥ |
rc

G′−(xNW
⊥ ) ∼ U0n(xS)

with xNE
⊥ ∼ −

√
2rc|xNW

⊥ | sin 2θ , when xNE
⊥ < 0 .

(25b)

The function F defines a wavepacket propagating towards the North-East direction. This condition is written as

F ′(xNE
⊥ ) = −ε i

π
P

∫ ∞
−∞

F ′(η)

η − xNE
⊥
dη, (26)

where ε = sign(2Ω−N).
Similarly, the function G+ and the function G− define wavepackets propagating towards the North-West direction

and towards the South-East direction, respectively. The function G+ must then satisfy (13) while G− must satisfy
(14):

G′+(xNW
⊥ ) = −ε i

π
P

∫ ∞
−∞

G′+(η)

η − xNW
⊥

dη, (27a)

G′−(xNW
⊥ ) = ε

i

π
P

∫ ∞
−∞

G′−(η)

η − xNW
⊥

dη. (27b)

Moreover, for xNW
⊥ > 0, G+ and G− define a same function and therefore one should have

G+(xNW
⊥ ) = G−(xNW

⊥ ) for xNW
⊥ > 0. (28)

We can now look at the compatibility of these equations for singular fields. Assume for instance that Un(xS)
behaves as

U0n(xS) ∼ C+

(xNE
⊥ )β

for xNE
⊥ > 0 , (29a)

U0n(xS) ∼ C−
(−xNE

⊥ )β
for xNE

⊥ < 0 . (29b)
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The boundary conditions (25a,b) indicate that F ′(xNE
⊥ ) and G′±(xNW

⊥ ) should behave for small values of their variable
as

F ′(xNE
⊥ ) ∼ D+

(xNE
⊥ )β

for xNE
⊥ > 0 , (30a)

F ′(xNE
⊥ ) ∼ D−

(−xNE
⊥ )β

for xNE
⊥ < 0 . (30b)

and

G′+(xNW
⊥ ) ∼ E+

(−xNW
⊥ )(β+1)/2

for xNW
⊥ < 0 , (31a)

G′−(xNW
⊥ ) ∼ E−

(−xNW
⊥ )(β+1)/2

for xNW
⊥ < 0 . (31b)

We also expect for xNW
⊥ > 0 a behavior of G+ = G− = G of same nature:

G′(xNW
⊥ ) ∼ Eo

(xNW
⊥ )(β+1)/2

for xNW
⊥ > 0 . (32)

As explained above, the condition that each wave is an outward wave implies conditions on the coefficients D±, E±
and Eo that can be written as

D+ = eiεπβD− , (33a)

Eo = iεeiεπβ/2E+ , (33b)

Eo = −iεe−iεπβ/2E−. (33c)

The last two equations means that

E+ = −e−iεπβE− . (34)

One can now write down the conditions obtained from (25a,b):

sin 2θD+ +

√
2

rc
(
√

2rc sin 2θ)βE+ = C+ , (35a)

sin 2θ D− −
√

2

rc
(
√

2rc sin 2θ)βE− = C− . (35b)

The system of equations (33a), (34) and (35a-b) is a linear non-homogeneous system for E+, E−, D+ and D−. It
admits a unique solution whatever C+ and C− if and only if

e2iπβ 6= 1, (36)

that is β is not an integer. This condition was already required to derive equations (33a-c).
In that case, this unique solution is given by

D+ = ε
eiεπβC+ − C−
2i sinπβ sin 2θ

, (37a)

D− = ε
C+ − e−iεπβC−
2i sinπβ sin 2θ

, (37b)

E+ = ε
C− − e−iεπβC+

2i(
√

2rc sin 2θ)β sinπβ

√
rc
2
, (37c)

E− = ε
C+ − eiεπβC−

2i(
√

2rc sin 2θ)β sinπβ

√
rc
2
, (37d)

Eo =
eiεπβ/2C− − e−iεπβ/2C+

2(
√

2rc sin 2θ)β sinπβ

√
rc
2
. (37e)

It only depends on the angle θ, the curvature radius of the boundary at the critical point and on the behaviour of
Un(xS) close to the critical point via the coefficients C+, C− and the singularity exponent β.
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When β = 0, the above analysis has to be modified. Since (25a,b) still apply, one can expect a singularity of G′

in (−xNW
⊥ )−1/2 but F ′ should remain regular and simply given by a constant F ′(0). This means that we should still

have (30a,b), (31a,b), (32) with (33a-c) for β = 0. The system (35a,b) obtained for β = 0 is then still valid. It admits
a solution only if C+ = C− = U0n(0). This solution is

E+ = (U0n(0)− sin 2θF ′(0))

√
rc
2
, (38a)

E− = −E+ , (38b)

Eo = iεE+ , (38c)

D+ = D− = F ′(0) . (38d)

It depends on an undetermined constant F ′(0) which is the amplitude of the velocity of the wavepacket emitted in
the direction eNE

‖ on the critical ray (see expression (11)).

III. VISCOUS SMOOTHING OF THE CRITICAL SLOPE SINGULARITY

In a real fluid, diffusion or viscosity is expected to smooth inviscid singularities. A similar phenomenon is active
for the singularities that are created from critical slopes.

We have seen that the singular inviscid solution that propagates in the North-West direction can be written as (for
xNE
⊥ > 0)

uNW
‖ ∼ Eo

(xNW
⊥ )µ

for xNW
⊥ > 0 , (39a)

uNW
‖ ∼ Eoe

−iεπµ

(−xNW
⊥ )µ

for xNW
⊥ < 0 . (39b)

The viscous smoothing of a singularity of this form has already been studied by [16] for rotating fluids and [22]
for stratified fluids. An expression valid for a general rotating and stratified fluid has been given in [13]. For a 2D
configuration without buoyancy diffusion (infinite Prandtl number), this expression reads as

uNW
‖ ∼ CNWHµ(ζNW, xNW

‖ ) = CNW hµ(ζNW)

(xNW
‖ )µ/3

, (40)

where ζNW is the self-similar variable

ζNW = ε
xNW
⊥

(xNW
‖ Λν/ω)1/3

, (41)

with

Λ =
2γ2 cos2 θ + sin2 θ

sin 2θ|γ2 − 1|
, γ = 2Ω/N, (42)

and hµ(ζ) is the Moore-Saffman Thomas-Stevenson function

hµ(ζ) =
e−iµπ/2

(µ− 1)!

∫ +∞

0

eipζ−p
3

pµ−1dp, (43)

defined for µ > 0. The function hµ(ζ) satisfies [see 16]

hµ(ζ) ∼ 1

|ζ|µ
as ζ → +∞ , (44a)

hµ(ζ) ∼ e−iµπ

|ζ|µ
as ζ → −∞ . (44b)

A simple matching of (40) with (39a,b) then gives

CNW =
( ω

νΛ

)µ/3
ei
π
2 µ(1−ε)Eo. (45)
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Expression (40) with (41) and (45) describes a localized beam of width (xNW
‖ Λν/ω)1/3 and velocity amplitude

(ω/(νΛxNW
‖ ))µ/3Eo. Note in particular that the beam becomes wider and weaker as we get away from the critical

point.
A similar analysis can be done for the beam propagating in the South-East direction. If we define eSE‖ = −eNW

‖
and eSE⊥ = −eNW

⊥ , the inviscid solution propagating in the SE direction that agrees with (39) is

uSE‖ ∼
−Eoeiεπµ

(xSE⊥ )µ
for xSE⊥ > 0 , (46a)

uSE‖ ∼
−Eo

(−xSE⊥ )µ
for xSE⊥ < 0 . (46b)

We then immediately obtain

uSE‖ ∼ C
SEHµ(ζSE, xSE‖ ), (47)

with CSE = −eiεµπCNW.
It is worth mentioning that the above analysis is valid only if the non-viscous approximation (39a,b) applies when

x⊥ � (x‖Λν/ω)1/3 close to the critical point. This property is satisfied for the beams propagating in the NW and SE

directions because the width of the viscous boundary layer remains of order ν2/5 (which corresponds to xNW
⊥ = O(ν2/5)

at a distance xNW
‖ = O(ν1/5) from the critical point [10, 11, 21].

By contrast, for the beam propagating in the NE direction, viscous effects are expected to appear close to the
critical point as soon as xNE

⊥ = O(ν1/5). The beam propagating in that direction is possibly larger and not described
by the similarity solution.

IV. APPLICATIONS

A. Normal displacement

This situation corresponds to a generic configuration where the object is displaced in translation or subjected to
an external oscillating flow. In the linear regime, these two configurations are equivalent. What is important is the
normal velocity of the object boundary close to the critical point with respect to the fluid. When there is a normal
displacement, this velocity is nonzero and given by the projection of the boundary velocity along the normal vector
at the critical point:

U0n(xSc) = Ub · n(xSc) = Ub sin θ + Vb cos θ, (48)

if Ub = (Ub, Vb) is the velocity in the (x, z) plane of the object boundary with respect to the fluid. The normal
velocity is therefore not singular and given by expression (29a,b) with β = 0 and C+ = C− = U0n(xSc).

The nature of the singularity along the critical line is therefore expected to be always of same nature with a velocity
diverging as (xNW

⊥ )−1/2. However, its amplitude cannot be obtained in closed form. It depends on the velocity along
the line xNE

⊥ = 0 from the critical point, that is the constant F ′(0). As shown above, the velocity close to the critical
line xNW

⊥ = 0 is given by

u ∼ G′(xNW
⊥ )eNW

‖ , (49)

where

G′(xNW
⊥ ) ∼


E+(−xNW

⊥ )−1/2 for xNW
⊥ < 0; xNE

⊥ > 0

−E+(−xNW
⊥ )−1/2 for xNW

⊥ < 0; xNE
⊥ < 0

iεE+(xNW
⊥ )1/2 for xNW

⊥ > 0

(50)

with

E+ = (Ub sin θ + Vb cos θ − sin 2θF ′(0))
√
rc/2. (51)
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As an illustration, one can look at the flow generated by an oscillating circular cylinder in a non-rotating fluid.
The general solution has been provided by [8] for an elliptic cylinder. For a circular cylinder of radius rc, the solution
reads as

u =
∂ψ

∂σ+
eNE
‖ +

∂ψ

∂σ−
eNW
‖ , (52)

with

∂ψ

∂σ±
= α±

1− σ±√
σ2
± − r2c

 , (53)

where the constants α± are given by

α± =
1

2
(iVb ± Ub)e−iθ, (54)

and the coordinates σ± are related to our coordinates xNE
⊥ and xNW

⊥ by

σ+ = −xNE
⊥ − rc cos(2θ), (55)

σ− = xNW
⊥ + rc. (56)

The definition of the square root depends on the position with respect to the critical lines σ+ = ±rc and σ− = ±rc.
We get close to the critical point (xNE

⊥ , xNW
⊥ ) = (0, 0)

∂ψ

∂σ+
∼ α+(1− i cot(2θ)) =

(Vb − iUb)e
iθ

2 sin 2θ
= F ′(0), (57)

and

∂ψ

∂σ−
∼


−i
√

rc
2 α−(−xNW

⊥ )−1/2 for xNW
⊥ < 0, xNE

⊥ > 0,

i
√

rc
2 α−(−xNW

⊥ )−1/2 for xNW
⊥ < 0, xNE

⊥ < 0,

−
√

rc
2 α−(xNW

⊥ )−1/2 for xNW
⊥ > 0,

(58)

which is in agreement with formulas (50) for the non-rotating case (ε = −1) if one uses (57) for F ′(0) in E+ and (54)
for α−.

As explained above, from the inviscid solution close to the singularity, one can immediately get the viscous solution
smoothing the singularity. Here it gives along the NW and SE directions

uNW
‖ ∼ eiπ4 (1+ε)E+

( ω

νΛ

)1/6
H1/2(ζNW, xNW

‖ ), (59a)

uSE‖ ∼ e
iπ4 (1−ε)E+

( ω

νΛ

)1/6
H1/2(ζSE, xSE‖ ), (59b)

where the function Hµ has been defined in (40-43), and E+ is given by (51). These expressions show that the velocity

field generated by a normal displacement is O(ν−1/6) larger near the critical line than the forcing amplitude. The

amplitude nevertheless decreases as x
−1/6
‖ with the distance x‖ from the critical point.

B. Tangentiel displacement

When the surface displacement is tangent to the surface, there is no inviscid forcing. The forcing of the wave is
due in that case to the Ekman pumping generated by viscous effects close to the boundary. The normal velocity un∞
associated with this Ekman pumping is calculated in the appendix A for a general tangential displacement USet+VSey
of the boundary. It is this velocity component that provides the forcing term U0n(xS) = un∞ of the waves where un∞
is given by (A18). Close to a critical point, the Ekman pumping exhibits a singular behavior which can be written in
terms of the variable xNE

⊥ using

xNE
⊥ ∼ − sin 2θαc(s− sc) (60)
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as

un∞ ∼ ∓
√
νrc
ω

e∓εiπ/4(sin 2θ)3/2

|xNE
⊥ |3/2

(F̄u(θ, 2Ω/N)US + iF̄v(θ, 2Ω/N)VS). (61)

where

F̄u(θ, γ) =
γ2 cos2θ + sin2θ

2
(
sin2θ(2γ2 cos2θ + sin2θ)|γ2 − 1|

)1/2 , (62a)

F̄v(θ, γ) =
γ cos θ

2

(
γ2 cos2θ + sin2θ

sin2θ(2γ2 cos2θ + sin2θ)|γ2 − 1|

)1/2

. (62b)

The normal velocity is therefore of the form (29) with β = 3/2 and

C+ = eiεπ/2C− = −e−iεπ/4
√
νrc
ω

(sin 2θ)3/2(F̄uUS + iF̄vVS) . (63)

Applying formulas (37a-e) gives

D+ = D− = 0 , (64a)

Eo = −eiεπ/4E+ = −e−iεπ/2E− =

√
ν

ω

r
1/4
c

25/4
(F̄uUS + iF̄vVS) . (64b)

A tangential displacement of the boundary then gives rise to a critical slope singularity in |xNW
⊥ |−5/4 with an

amplitude of order ν1/2.
As explained above, such a singularity, when smoothed by viscous/diffusion effect produces a thin internal shear

layer that can be described by the Moore-Saffman / Thomas-Stevenson self-similar solution. The north-west and
south-east critical slope beams are then given by

uNW
‖ ∼ CNW

0 H5/4(ζNW, xNW
‖ ), (65a)

uSE‖ ∼ C
SE
0 H5/4(ζSE, xSE‖ ), (65b)

with

CNW
0 = ei

5π
8 (1−ε)

( ν
ω

)1/12 (rc
2

)1/4
(GuUS + iGvVS), (66a)

CSE
0 = eiεπ/4CNW

0 , (66b)

and

Gu =
Fu

2Λ5/12
=

(γ2 cos2 θ + sin2 θ)

4(sin 2θ)1/12|γ2 − 1|1/12(2γ2 cos2 θ + sin2 θ)11/12
, (67a)

Gv =
Fv

2Λ5/12
=

γ cos θ(γ2 cos2 θ + sin2 θ)1/2

4(sin 2θ)1/12|γ2 − 1|1/12(2γ2 cos2 θ + sin2 θ)11/12
, (67b)

where γ = 2Ω/N and Hµ has been defined in (40-43).
Expressions (65a,b) with (66a,b) mean that the localized beam on the critical line has a velocity amplitude scaling

as (νr3c/(ωx
5
‖))

1/12 where x‖ is the distance from the critical point.

Without stratification, we recover the expression obtained for a librating sphere [6, 7, 14] Note that [6] corrected
a sign error in the expressions first given in [14]. This is not surprising as this expression was obtained by matching
directly the boundary layer solution to the self-similar solution around the critical line. It was then implicitly assumed
that nothing was emitted in the NE direction close to the critical point in [14]. The present analysis which gives
D+ = D− = 0 permits to justify this hypothesis.

V. VISCOUS CORRECTIONS TO THE CRITICAL SLOPE SINGULARITY

We have discussed above how an inviscid singularity is generically formed from a critical slope and how this
singularity is possibly smoothed by viscosity.



12

We have seen that the mechanism of generation is essentially inviscid as the singularity properties (strength and
amplitude) are directly related the velocity component normal to the boundary. The amplitude of the inviscid waves
that are generated is such that their normal velocity matches the normal velocity of the boundary. These waves also
possess velocity components that are tangential to the boundary. This tangential velocity is in principe cancelled in
a viscous boundary layer. But this process also generates, via Ekman pumping, a normal velocity correction that is
responsible of a correction to the emitted inviscid waves. It is the expression of this viscous correction that we want
to calculate in this section.

The singular inviscid beam propagating in the North-West direction that is created from the critical point has a
velocity component along eNW

‖ given by an expression of the form (39). The corresponding transverse velocity v is

given by (5). This gives a velocity tangent to the boundary surface S near the critical point which can be expressed
as uT = utet + vey with

ut(xS) ∼ −uNW
‖ (xS), (68a)

v(xS) ∼ 2iΩ cos θ

ω
uNW
‖ (xS). (68b)

This tangential velocity has to be cancelled in a boundary layer by adding a boundary layer solution satisfying the

boundary conditions u
(0)
t (0) = −ut(xS) and v(0)(0) = −v(xS).

Such a solution has been calculated in the appendix. It is given by (A8). It leads to an expression of the Ekman
pumping given by (A14) with

ũt− ∼ uNW
‖ (xS) (69)

as obtained from (A17). As both ũt− and λ− are singular, the last two terms of (A14) are now contributing to Ekman
pumping. We obtain in terms of the coordinate xNE

⊥

un∞ ∼


−C(v)e−iεπ(µ+1/4)

|xNE
⊥ |2µ+3/2

for xNE
⊥ > 0,

C(v)eiεπ(µ+1/4)

|xNE
⊥ |2µ+3/2

for xNE
⊥ < 0,

(70)

with

C(v) = Eo

√
νΛ

ω
(µ+ 1/4)

(
2

rc

)1/4

(
√

2rc sin 2θ)2µ+3/2, (71)

where λ has been defined in (42).
If we apply the formula (37a-e) with

C+ = −C(v)ve−iεπ(µ+1/4) , (72a)

C− = C(v)eiεπ(µ+1/4) , (72b)

and β = 2µ+ 3/2, we get

D
(v)
+ = D

(v)
− = 0, (73)

and

E(v)
o = Eo

√
νΛ

ω

(rc
2

)1/4
(µ+ 1/4), (74a)

E
(v)
+ = −e−iεπ(µ+1/4)E(v)

o , (74b)

E
(v)
− = −eiεπ(µ+1/4)E(v)

o . (74c)

This means that the viscous correction associated the critical slope singularity in |xNW
⊥ |−µ gives rise to a stronger

singularity in |xNW
⊥ |−(µ+5/4). However, the amplitude has decreased by a factor proportional to

√
ν/ω. In the

North-West direction, it then gives a viscous self-similar correction of the form

u
NW(v)
‖ ∼ CNW(v)Hµ+5/4(xNW

⊥ , xNW
‖ ), (75)
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with

CNW(v) = ei
π
2 (µ+ 5

4 )(1−ε)
( ω

νΛ

)µ/3+5/12

E(v)
o , (76)

which can be written, using (45) and (74a), as

CNW(v) = CNWei
5π
8 (1−ε)

(
νΛ

ω

)1/12 (rc
2

)1/4
(µ+ 1/4). (77)

Similarly, in the SE direction, we get

u
SE(v)
‖ ∼ CSE(v)Hµ+5/4(xNW

⊥ , xNW
‖ ), (78)

with CSE(v) = eiεπ(µ+1/4)CNW(v).

In both NW and SE directions, the viscous correction is therefore smaller by a non-dimensional factor of order
(νr3c/(ωx

5
‖))

1/12 compared to the leading order beam. Interestingly, no viscous correction is generated in the North-

East direction.

VI. DISCUSSION

In this paper, we have analysed the generic properties of the singularity generated by critical slopes on waves in a
stratified and rotating unbounded fluids. We have shown that this singularity is of inviscid nature and results from a
geometric focusing of the normal velocity forcing on the characteristic line tangent to the boundary. By applying the
non-viscous boundary conditions on the normal velocity close to the critical point and adequate outwards boundary
conditions at infinity, we have been able to obtain relations between coefficients on either side of the singularity lines.
Two generic configurations have been analysed: an oscillating translation leading to direct normal velocity forcing,
and a tangential boundary oscillation for which the normal velocity forcing results from Ekman pumping. For the first
case, we have seen that the velocity singularity is in |x⊥|−1/2 but its amplitude cannot be obtained in closed form.
For the second case, the velocity singularity is in |x⊥|−5/4 and an explicit expression for the amplitude is derived.
This stronger singular behaviour for the tangential forcing comes from the singular behaviour of the Ekman pumping
close to the critical point.

We have shown how the inviscid singularity can be smoothed by viscosity using the self-similar expression intro-
duced by [16] and [22]. It leads to a thin shear layer of width of order (νx‖/ω)1/3 and of a velocity amplitude in

(ωr3c/(νx‖)))
1/6 for the first case and in (νr3c/(ωx

5
‖))

1/12 in the second case.

A viscous correction in ν1/12 generated by corrections in the viscous boundary layer has also been calculated for
each case. This correction is larger than the next order correction to the self-similar solution which is in ν1/3 [16],
and also larger than the viscous correction in ν1/6 obtained when such a solution reflects on a fixed boundary [13].

The analysis has focused on 2D unbounded geometries. The extension to 3D axisymmetric geometry should not
be a problem. In that case, there is no global expression for the velocity in terms of a streamfunction, but as long
as we are far from the vortex axis, curvature effects are negligible for singular behaviours. Moreover, a self-similar
expression describing viscous smoothing also exists in axisymmetric geometries far from the axis [see 7, for instance].
The analysis that has been done for a librating axisymmetric object in a rotating fluid in [14] can then be extended
to other types of forcing and in the presence of stratification without difficulty using the results of the present study.

The extension to a closed domain is by contrast a much more complicated issue. In a closed domain, the condition
of outward waves from the critical point cannot be used and therefore the analysis a priori breaks down. Depending
on the frequency and on the geometry, the characteristics may be periodic, space filling or may converge towards
an attractor. Each case is expected to be different for a given forcing. Nevertheless, [6, 7] have demonstrated that,
in a spherical shell, the linear periodic solution obtained by librating the inner sphere can still be related in many
situations to the critical slope singularity generated from the critical point as if the fluid was unbounded.

Finally, it is worth mentioning that other boundary singularities such as corners or discontinuities could probably
be treated by the same approach. The singularity generated by a boundary discontinuity is in particular expected
to be in |x⊥|−1. It should then give rise to internal shear layers with a velocity amplitude in ν−1/3. It would be
interested to provide a complete theory for this case, and extend the present analysis to all the possible singular
boundary features.
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Appendix A: Ekman pumping

In this section, we discuss the Ekman pumping coming from tangentiel displacement of a surface. We provide the
general expression of the normal velocity obtained close to a critical point due to Ekman pumping.

We consider a 2D surface in the (x, z) plane given by (x(s), z(s)) and define the tangent and normal vectors et and
en. At the critical point reached for s = sc, the tangent vector et is oriented along with −eNW

‖ :

et(sc) = −eNW
‖ = cos θex − sin θez . (A1)

We dimensionalize length and time scales using a characteristic length lo and the forcing frequency ω. Defining the
Ekman number as

E =
ν

ωl2o
, (A2)

the governing equations read

−iωu + 2Ωez × u = −∇p+ bez + E∆u, (A3a)

−iωb+N2u.ez = 0, (A3b)

∇.u = 0. (A3c)

Defining the tangent and normal velocity components

ut =
x′u+ z′w

α
, un =

−z′u+ x′w

α
, (A4)

with α =
√
x′2 + z′2, where the prime denotes differentiation with respect to s, and introducing the boundary layer

scalings

(ut, v, un, b, p) = (u
(0)
t (s, η), v(0)(s, η),

√
Eu(0)n (s, η), b(0)(s, η),

√
Ep(0)(s, η)), (A5)

with

η =
xn√
E

(A6)

we get from (A3a-c) at leading order

−iωu
(0)
t − 2Ω

x′

α
v(0) =

∂2u
(0)
t

∂η2
+
z′

α
b(0), (A7a)

−iωv(0) + 2Ω
x′

α
u
(0)
t =

∂2v(0)

∂η2
, (A7b)

2Ω
z′

α
v(0) = −∂p

(0)

∂η
+
x′

α
b(0), (A7c)

−iωb(0) +N2 z
′

α
u
(0)
t = 0, (A7d)

1

α

∂u
(0)
t

∂s
+
∂u

(0)
n

∂η
= 0. (A7e)

Equations (A7a,b,d) form an homogeneous system for the functions u
(0)
t , v(0) and b(0). The general solution can be

expressed as a sum of four exponential functions. Only two of these functions are bounded as η → +∞, so we get

u
(0)
t = ũt−e

−λ−η + ũ+e
−λ+η, (A8a)

v(0) = ṽ−e
−λ−η + ṽ+e

−λ+η, (A8b)

b(0) = b̃−e
−λ−η + b̃+e

−λ+η, (A8c)

where λ± are the solution of positive real part satisfying

λ2± = − i

ω

(
ω2 − N2z′2

2α2
± 1

2

(
N4z′4

α4
+

16Ω2x′2ω2

α2

)1/2
)
. (A9)
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Moreover, the amplitudes ũt±, ṽ± and b̃± are related between each other by

(λ2± + iω)ṽ± =
2Ωx′

α
ũt±, (A10a)

iωb̃± =
N2z′

α
ũt±. (A10b)

This general solution is not valid up to the critical point where one of the λ± vanishes. As shown by [21], the
boundary layer becomes larger with a width of order E2/5 when we get at a distance of order E1/5 from the critical
point, and a different ansatz should be used in that region. In the following, we then assume that we are at a distance
from the critical point that is large compared to E1/5.

We assume that the velocity at the boundary is tangential and given by

ut(xS) = US(s), (A11a)

v(xS) = VS(s). (A11b)

This gives two additional equations

ũt− + ũt+ = US , (A12a)

ṽ− + ṽ+ = VS . (A12b)

They can be used together with (A10a) to obtain ũt±

ũt± =
(λ2± + iω)US − (λ2± + iω)(λ2∓ + iω)VSα/(2Ωx′)

λ2± − λ2∓
, (A13)

from which we can also deduce ṽ± and b± using (A10a,b).

The Ekman pumping is given by the value u
(0)
n∞ of u

(0)
n as η goes to infinity. It is obtained from (A7e) using the

expression of u
(0)
t that we have just obtained and the condition u

(0)
n (η = 0) = 0. The calculation is straightforward.

It gives

u(0)n∞ = −
ũ′t+
αλ+

+
ũt+λ

′
+

αλ2+
−
ũ′t−
αλ−

+
ũt−λ

′
−

αλ2−
. (A14)

This is the general expression of Ekman pumping from any surface. We are interested in the behaviour close to a
critical point. At such a point sc,

x′(sc) = x′c = αc cos θ, z′(sc) = z′c = −αc sin θ, (A15)

and one of the two λ± vanishes. More precisely, we get close to sc:

λ2+ ∼ λ2+c = −i
N2 sin2θ + 8Ω2 cos2θ

ω
= −iω − i

4Ω2 cos2θ

ω
, (A16a)

λ2− ∼ −i
sin 2θ(4Ω2 −N2)ω

ω2 + 4Ω2 cos2θ

αc(s− sc)
rc

. (A16b)

These behaviours show that the Ekman pumping is dominated by the last term of (A14). Taking into account that
(A13) for ũt− reduces close to sc to

ũt− ∼ −i
ωUS + i2Ω cos θVS

λ2+c
=
ω2US + i2ωΩ cos θ VS

ω2 + 4Ω2 cos2θ
, (A17)

we get from (A7c) an Ekman pumping that can be written in dimensional form close to the critical point as

un∞ ∼
√
νrc
ω

∓e∓εiπ/4

(αc|s− sc|)3/2
(F̄uUS + iF̄vVS), (A18)

where F̄u and F̄v are functions of θ and γ = 2Ω/N only:

F̄u(θ, γ) =
γ2 cos2θ + sin2θ

2
(
sin2θ(2γ2 cos2θ + sin2θ)|γ2 − 1|

)1/2 , (A19a)

F̄v(θ, γ) =
γ cos θ

2

(
γ2 cos2θ + sin2θ

sin2θ(2γ2 cos2θ + sin2θ)|γ2 − 1|

)1/2

. (A19b)
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In (A18), the upper sign is taken if (s− sc) < 0, the lower sign if s− sc > 0. We recall that the parameter ε is equal
to +1 if 2Ω > N , −1 otherwise.

For γ = 0 (that is Ω = 0) and γ =∞ (that is N = 0), we therefore have

F̄u(θ, 0) =

√
tan θ

8
, F̄v(θ, 0) = 0, (A20a)

F̄u(θ,∞) = F̄v(θ,∞) =
1

4
√

tan θ
, (A20b)

which gives for the Ekman pumping

un∞(Ω = 0) ∼
√
νrc
N

∓e±iπ/4

(αc|s− sc|)3/2
US

2
√

2
√

cos θ
, (A21a)

un∞(N = 0) ∼
√
νrc
2Ω

∓e∓iπ/4

(αc|s− sc|)3/2
US + iVS

4
√

sin θ
. (A21b)
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