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Characterisation of flexible fibre deformations in turbulence

A. Gay, B. Favier and G. Verhille (a)

Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, Marseille, France

PACS 47.27.-i – Turbulent flows
PACS 47.55.Kf – Particle-laden flows
PACS 47.57.Ng – Polymers and polymer solutions

Abstract – The transport of deformable objects by a turbulent flow is common in environmental
sciences which are interested for instance by the dynamics of plankton in the ocean, and in industry,
such as the papermaking or textile industries. In this study, the deformations of flexible fibres in
homogeneous isotropic turbulence are experimentally and numerically investigated, focusing on
the local curvature κ. By comparing our results to the predictions for worm-like chain polymers
in an ideal solvent, we are able to identify the role of the spatial and temporal correlations of the
turbulent forcing. In particular, we show that these correlations are responsible for a straightening
of long fibres which become statistically less distorted by turbulence as their length increases.

Introduction. Particle advection in turbulence is com-
mon in industrial processes, e.g. papermaking [1], and
in natural phenomena with the transport of plankton in
ocean [2] or the dispersion of pollen species in the atmo-
sphere [3]. The Lagrangian dynamics of particles was ex-
tensively studied, exploring the properties of isotropic or
anisotropic rigid objects [4, 5]. Recent studies highlighted
the importance of particle shape on the transport. For in-
stance, the rotation rate of small axisymmetric anisotropic
particles depends on their aspect ratio [6,7]. One can then
address the question of the transport of flexible objects,
such as plankton in the ocean or pulp fibres in the pa-
permaking industry, for which the shape may evolve with
time depending on the external stresses. Several studies
considered the case of flexible fibres at low Reynolds num-
bers [8, 9] but very little is known about the motion of
such objects when the flow is turbulent.

Inspired by flexible objects in nature or industrial pro-
cesses which can often be considered as one-dimensional
elongated objects, this study is focused on flexible fibres
in Homogeneous and Isotropic Turbulence (HIT). Their
dynamics should be determined by their time-dependent
shape which is related to their deformations due to the
turbulent viscous stresses. This letter is focused on the
characterisation of the fibre deformations which is a first
step to understand their dynamics. As the fibre extensibil-
ity and torsion are second order effects with respect to the
bending [10], we only consider the bending deformations.
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Following Kirchhoff-Love theory and Euler-Bernoulli elas-
ticity, their dynamics is then given by [11–13]

σ∂2t r − ∂s (T∂sr) +B∂4sr = ξ , (1)

where r is the position of the fibre centre line, ξ an external
forcing and s the curvilinear coordinate. σ and B are,
respectively, the linear density and the bending modulus
of the fibre, all assumed to be constant along the fibre. T is
a tension term acting as a Lagrange multiplier in order to
ensure the fibre inextensibility (|∂sr| = 1). It is expected
that this system shares some similarities with worm-like
chain polymers as their idealised equations of motion are
similar [14,15].

The crucial difference between polymers in a thermal
bath and fibres in a turbulent flow lies in the nature of
the linear forcing term ξ. Assuming that the particle
Reynolds number is small and ignoring the anisotropic
nature of the viscous drag for slender bodies, we have
ξ ' 4πη(ln 2λ)−1uslip [16] where η is the fluid dynami-
cal viscosity, λ = L/d the aspect ratio between the fibre
length L and its diameter d, and uslip = u − ∂tr the slip
velocity between the fluid and the fibre. For the poly-
mer regime, we assume that the forcing is effectively delta
correlated in space and time

〈u(x+ s, t+ τ) · u(x, t)〉 = u2rmsδ(τ)δ(s) , (2)

where 〈·〉 corresponds to an ensemble average. For station-
ary HIT, the fluid velocity u is spatially and temporally
correlated in the inertial range. This result is at the origin
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of the classical Kolmogorov 4/5 law [17]:〈
[(u(x+ χ)− u(x)) · eχ]

3
〉

= −4

5
εχ, (3)

where ε is the dissipation rate of the turbulent kinetic
energy per unit mass and eχ = χ/|χ|.

Using the integral length scale LI and the root mean
square velocity of the turbulence U as references, a di-
mensionless version of equation (1) is

∂2t r − ∂s (T∂sr) + γ∂4sr +
1

St
∂tr =

1

St
u . (4)

The fibre dynamics depends on two dimensionless param-
eters: a Stokes number

St = σU/
[
4πη(ln(2λ))−1LI

]
, (5)

which compares the inertial term σ∂ttr and the viscous
term 4πη(ln 2λ)−1∂tr and a dimensionless rigidity γ which
compares the inertial term and the bending term B∂4sr:

γ = B/
(
σU2L2

I

)
. (6)

In polymer science, the deformations of worm-like chain
polymers are classically characterised by the persistence
length `p defined by C(`) ≡ 〈t(s+ `) · t(s)〉 = e−`/`p where
t = ∂sr/|∂sr| is the unit tangent vector. This length
is generally related to a balance between the elastic en-
ergy and the thermal energy B/`p ∼ kBT where kB is the
Boltzmann constant and T the bath temperature [18]. By
measuring the distance between fibre extremities, Brouzet
et al. [19] showed that the same approach may be applied
to fibres in turbulence. However, in the inertial range,
the persistence length cannot be modelled from an energy
balance since the fibre dynamics and the forcing occur on
different timescales. Thus, they used a power balance to
define a new characteristic length called the elastic length

`e = B1/4/(ρfηε)
1/8 , (7)

where ρf is the fluid density. The transition from rigid
to flexible fibres is then governed by the ratio of the fibre
length L to the elastic length `e: for L < `e (resp. L > `e)
the fibre deformations are weak (resp. large), i.e. the aver-
aged distance between the fibre extremities is nearly equal
to (resp. much smaller than) the fibre length L. To in-
vestigate this analogy, Verhille and Bartoli [20] performed
a 3D experimental reconstruction analysis to measure the
correlation function C(`). They observed that the cor-
relation function is well described by an exponential law
C(`) ∼ e−`/`p for ` > `e. However, in turbulence, and
contrary to polymers, the persistence length `p depends
on the fibre length L itself and cannot be assimilated to
the elastic length. The main objective of this letter is to
understand this phenomenon by investigating the role of
the spatial correlations of the forcing.

Several regimes are expected depending on the ratio
between the fibre length scales (its length L and elastic
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Fig. 1: Schematic comparing the fibre length L with the differ-
ent length scales in the problem from largest fibres behaving
like polymers (L � LI) down to small fibres in the Stokes
regime (L � ηK). ηK is the Kolmogorov length scale and LI

the integral scale of the homogeneous isotropic turbulent flow.
We focus on a new turbulent regime where ηK � L� LI . The
vertical axis shows the fibre length versus ld, the typical length
above which elastic deformations become significant. In the
turbulent regime of interest here, ld = `e as discussed in the
text. The regimes covered by both experiments and numerical
models are qualitatively indicated by the dashed boxes.

length `e) and the flow length scales (the integral scale
LI and the Kolmogorov scale ηK). In the following, we
assume that all fibre scales are much larger than the
Kolmogorov scale and that fibres are flexible (L > `e).
Therefore, three different regimes can be distinguished
(see fig. 1). In a first regime, the integral scale is much
smaller than the elastic length (L > `e � LI), so that
the forcing is effectively uncorrelated at the scale of the
fibre deformations (neglecting for simplicity spatial cor-
relations at scales larger than LI). This is called the
polymer regime, for which the turbulent fluctuations can
be seen as a thermal bath since it is only correlated at
scales much smaller than the relevant elastic scale. Note
that physically the elastic length `e, derived in the in-
ertial range, is not pertinent for this regime and should
be replaced by a persistence length `p as done in poly-
mer science [18]. In a second case, the fibre length lies
in the inertial range (LI � L > `e) and the forcing is
now correlated along the fibre. This case is called the
turbulent regime. Finally the last case is an intermediate
regime (L > LI > `e) for which the fibre experiences a
forcing correlated at small scale but uncorrelated at the
larger scale. Both turbulent and intermediate regimes
were largely unexplored up to now. In this letter, we in-
vestigate experimentally and numerically the evolution of
the local curvature κ(s) = |∂st(s)| of a flexible but inex-
tensible fibre. It is natural to focus on the local curvature
since it gives access to the elastic energy stored in the fibre
EB = (1/2)B

∫
κ2(s)ds and is also related to the correla-

tion function C(`) ' 1− 〈κ2〉`2/2 +O(`3).

Materials and methods. We now describe our experi-
mental setup and numerical model. Experimentally, the
turbulence is generated within a von Kármán setup similar
to the one used in our previous experiments [20] (see fig. 2).
It is a water-filled cubic tank (side length 20 cm) with
two impellers (R = 8.6 cm in radius fitted with blades)
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Fig. 2: Left: image of the experimental setup. Middle: example of 3D reconstruction of a fibre conformation from experimental
data, the colour codes the curvature κ(s). Right: example of a fibre conformation from a numerical simulation in the turbulent
regime (the fibre length is smaller than the integral scale), the colour shows the local value of the curvature κ(s) normalised by
the integral length scale LI .

counter rotating at a fixed frequency F = 15 Hz. The
Reynolds number is of the order of Re = 2πR2F/ν ∼
8 × 105, the integral scale LI ∼ R and the Kolmogorov
length ηK ∼ 40 µm. The fibres are made of silicone
with a Young modulus E = 40 ± 15 kPa and a density
ρ = 1.03 × 103 kg.m−3. They are moulded in a stainless
steel tube to tune their diameter to d = 505±3 µm, leading
to σ = 2.06 · 10−4 kg.m−1, and their length L from 1.0 cm
to 5.0 cm. The Reynolds number based on the diameter
is of the order of Red = (d/ηK)4/3 ∼ 30. For simplicity,
we assume that this value is small enough to consider only
the linear Stokes’ drag presented in the introduction [21]
Their elastic length is equal to `e = B1/4/(ρfηε)

1/8 =
2.7±0.4 mm with B = πEd4/64 = 1.3±0.5×10−10 N.m2.
The Stokes number St is of order of 0.2 – 0.4 and γ ∼ 10−4.
The comparison between the different length scales shows
that only the intermediate regime is achievable experimen-
tally with the current setup. The turbulent regime would
require a much larger integral scale or much more flexible
objects, both of which being challenging experimentally.
Two IDS UI-5240CP-C-HQ cameras with 25 mm lens are
used to capture the motion of the fibres at two different
angles. The images are then processed to determine the
fibre 3D shape thanks to an optimised version of the al-
gorithm proposed by Verhille and Bartoli [20]. A typical
fibre 3D shape is shown in fig. 2. To increase the contrast
we used a LED-panel back-light. These light sources allow
us to image fibres with an exposure time of 0.3 ms, chosen
to avoid motion blur, and at a maximum frequency of 5
images per second. The relatively low acquisition rate is
justified since we only focus on the statistical properties
of the fibre curvature, not on its dynamics.

Since the turbulent regime cannot be achieved ex-
perimentally using our current setup, we also rely on
an idealised numerical model. For the elastic part of
the problem, we solve equation (4) using a numerical
scheme directly inspired from previous studies on flexible
fibres [22–24]. Spatial derivatives are approximated using

sixth-order finite differences on a staggered grid and we
use a semi-implicit backward difference temporal scheme
of third order [25], the bending term being solved implic-
itly while the other terms are solved explicitly. We typi-
cally use between 128 and 2048 grid points regularly dis-
tributed along the fibre. The inexensibility of the fibre
leads to a Poisson-type equation on the tension T , which
is solved at each time step. We have checked that the
relative error on the fibre length is typically smaller than
10−5 for all cases discussed here. Concerning the fluid
flow, and contrary to previous methods considering Stokes
flows [22] or using Immersed Boundary Methods [26], our
fluid velocity u is obtained analytically as a superposition
of incompressible random Fourier modes. This method,
often called Kinematic Simulation [27], has a long history
[28] and was used in various Lagrangian studies [29, 30].
Although the flow is not a solution of the Navier-Stokes
equations, it is rigorously incompressible and its second-
order statistics can be finely tuned to mimic those of re-
alistic turbulence. All the results shown in this paper are
obtained using 103 incompressible Fourier modes whose
two-point correlations are derived from an energy spec-
trum given by E(k) = Ckε

2/3k−5/3 and using a typical
eddy turnover time ω(k) = 1/2

√
k3E(k) [31]. In all cases,

our synthetic turbulent flow is defined over three decades
of wave numbers, thus ensuring ample scale separation be-
tween the integral and Kolmogorov scales. For simplicity,
we neglect correlations at scales larger than the integral
scale, thus idealising the transition between the turbu-
lent and polymer regimes. Note that the results do not
qualitatively depend on these particular choices, only the
spatial correlations and therefore the amplitude and slope
of the energy spectrum matter. As mentioned in the in-
troduction, the viscous forcing is assumed isotropic (which
is not the case for a slender body, see [10, 32]). We have
checked that this assumption does not change qualitatively
the different results presented here. Note that solving the
full two-way coupling between the elastic fibre and the
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turbulent flow using Direct Numerical Simulations (DNS)
would be a tremendous task, which we leave for future
works, whereas our simple approach allows us to consider
many realisations of the same input parameters. Finally,
the dimensionless elastic length can be defined as:

(`e/LI)
8 = (σ/ρfL

2
I)γ

2St ≈ γ2St , (8)

where the prefactor σ/ρfL
2
I is constant and of order unity

for all the numerical simulations discussed below (the fi-
bre is assumed to have the same density of the fluid and in
the experiment (σ/ρfL

2
I)

1/8 ∼ 0.3 justifying the approxi-
mation made here). We used St = 0.1 and different fibre
rigidities γ from 10−6 to 106, noting that different val-
ues of the Stokes number do not qualitatively change the
results discussed in this letter. In the following, we partic-
ularly focus on three cases: γ = 103 which corresponds
to the polymer regime (`e/LI ≈ 4.2), γ = 0.2 which
corresponds to the intermediate regime (`e/LI ≈ 0.5)
and γ = 10−5 which corresponds to the turbulent regime
(`e/LI ≈ 0.042). All the numerical results are obtained af-
ter time averaging during the quasi-steady state over tens
of turnover times and over 102 independent realisations.
An example of a fibre conformation from a numerical sim-
ulation in the turbulent regime can be seen in Fig. 2.

Results. We first discuss the evolution of the mean
squared distance between the fibre extremities 〈Re2〉 =
〈|r(s = 0) − r(s = L)|2〉. Within the worm-like chain
assumption, this quantity is related to the fibre length L
and the persistence length `p [18]:

〈R2
e〉 = 2`2p − 2L`p

(
1− e−L/`p

)
. (9)

Figure 3 represents the evolution of the mean squared
distance between the fibre extremities 〈R2

e〉 as a function
of the fibre length L both normalised by the persistence
length, determined by fitting expression (9) to our data.
We can observe that all the experimental and numerical
points are very close to the worm-like chain prediction, as
already observed by [19]. However, for the longest fibres in
the turbulent regime, equation (9) tends to underestimate
the values observed in our numerical model. This indicates
that the forcing correlations play a role in the deforma-
tions. Our observations show that the global quantity Re
is not sensitive enough to investigate the influence of the
correlations of the forcing, as mentioned by [20]. This is
why we now focus on the evolution of the mean curvature
as a function of the fibre length in the different regimes.
Since the boundary conditions impose a curvature κ = 0
at the fibre extremities, we compute the mean value of the
curvature as:

κ̄ = 1/(L− 2`e)

∫ L−`e

`e

〈κ(s)〉ds . (10)

This allows to remove effects from the fibre extremities
where the curvature rapidly increases (see fig. 4).

Otherwise, for short rigid fibres with L < `e, the mean
value is taken as the maximum of the mean curvature
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Fig. 3: Top: Evolution of the mean squared distance between
fibre extremities R2

e as a function of the fibre length L, both
quantities being normalised by the persistence length `p. The
dot-dashed line represents the worm-like chain prediction and
the dashed line the evolution for rigid fibres. Bottom: Evolu-
tion of the fibre mean curvature κ̄ as a function of the fibre
length L both normalised by `e for the experiments (◦, the
error bars indicate the uncertainties associated with the fit-
ting process from the 3D reconstructed points), the turbulent
regime (�, γ = 10−5 and `e/LI = 4.3×10−2), the intermediate
regime (N, γ = 0.2 and `e/LI = 0.5) and the polymer regime
(�, γ = 103 and `e/LI = 4.5).

along the fibre, i.e. at the center of the fibre s = L/2.
This quantity is represented in fig. 3 for both experiments
and numerical simulations as a function of the fibre length
normalised by the elastic length `e defined by the power
budget. In the polymer regime (�, γ = 103, `e/LI ≈ 4.2),
the numerical results are compatible with worm-like chain
prediction. The mean curvature increases with the fibre
length until it saturates to a constant value independent
of the fibre length. The transition length between the two
tendencies is nearly the persistence length `p independent
of the fibre length L as it is defined in polymer science. For
the turbulent regime (�, γ = 10−5, `e/LI ≈ 0.042) and
the intermediate one (N, γ = 0.2, `e/LI ≈ 0.5), the mean
curvature increases with the fibre length L up to a maxi-
mum after which it decreases. This effect is also observed
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Fig. 4: Evolution of the local mean curvature 〈κ(s)〉 for fibres of increasing length L as a function of the normalised curvilinear
coordinate s/L. From left to right, the polymer regime (`e ≈ 4.2LI), intermediate regime (`e ≈ 0.5LI) and turbulent regime
(`e ≈ 0.042LI). The fiber lengths L/`e for each curve are given in the legends. The dashed line in the third graph represents
the scaling law (13).

in the experimental data (◦) which are in the intermediate
regime. This shows that the forcing correlation is at the
origin of a surprising result: long fibres are statistically
less curved than shorter ones. As will be demonstrated
below, this unexpected straightening of flexible fibres as
their length increases is due to two physical ingredients:
inextensibility and cumulative viscous effects.

In the following, we derive a scaling to describe more
quantitatively this decrease thanks to a power budget sim-
ilar to the one used to determine the elastic length `e [19].
For the derivation of the elastic length, an eddy with a size
comparable to the fibre length is considered. Here, the de-
formation is local meaning that κL � 1 and, hence, the
only characteristic length remaining is the characteristic
size of the deformation κ−1. Therefore in the power bud-
get the turbulent power available scales as Pturb ∼ ρfκ−3ε.
As the fibre is inextensible, the local deformation at the
curvilinear coordinate s is accompanied by a global rear-
rangement of the fibre conformation. This rearrangement
is at the origin of an additional viscous dissipation. For
an infinite fibre, two scenarios are possible. For the first
one, the creation of the deformation of size κ−1 is fast,
meaning that it evolves on a timescale smaller than the
bending relaxation time of a fibre of length s. In that
case, the global conformation can be considered as frozen
and the fibre displacement induced by the local defor-
mation is everywhere parallel to the tangent vector. In
the second case, the creation of the deformation of size
κ−1 is slow, then the global conformation can change and
a sweeping phenomenon may occur. The characteristic
timescale of the formation of the deformation κ is given
by τv(κ

−1) ∼ ηκ−4/B and the one of the global rearrange-
ment is given by τv(s) ∼ ηs4/B [10]. Then, for curvature
high enough (such that τv(κ

−1) � τv(s)), the conforma-
tion can indeed be considered as frozen. For fibre with
finite length the reconfiguration should occur on the small-
est part of the fibre to minimise the dissipation ([0 : s] if
s < L/2 or [s : L] if s > L/2). For a deformation occurring

at a curvilinear coordinate s (s < L/2), the average vis-
cous dissipation Pv due to the global rearrangement can
be written as

Pv(s) =

〈∫ s

0

ηuslip · ∂tr(s′, t))‖ ds′
〉
, (11)

where ∂tr(s′, t))‖ = (∂tr(s′, t) · t) t is the tangent velocity
of the center line. Given that the fibre is inextensible, the
norm of the tangent velocity |∂tr(s′, t))||| is constant along

the fibre and scales with 1/(κτv(κ
−1). Thus, the average

dissipated power can be rewritten as

Pv(s) '
η

κτv

∫ s

0

u‖(s
′)ds′ , (12)

where u‖ = uslip ·t. In a turbulent flow, it was shown for a
sphere of diameter d in the inertial range that the slipping
velocity scales as (εd)1/3 [33]. By analogy, the integral
(12) can be approximated by uss where us ∼ (εs)1/3 is
the typical velocity of an eddy of size s. The contribution
of the smallest eddies cancels out as they are not correlated
over the distance s. Hence, the dissipative power at scale
s scales as Pv ∼ η/(κτv)sus. So for long fibres and s & `e,
the turbulent power Pturb = ρfκ

−3ε, is balanced by the
cumulative viscous power Pv, the bending power being
negligible. Thus, the curvature κ(s) should scale as

〈κ(s)〉 ∝ s−2/9 . (13)

Note that even though equation (1) is local, the cumu-
lative effect of the viscous drag along the fibre is present
through the tension term ∂s (T∂sr) which ensures the fibre
inextensibility.

For the polymer regime where the elastic length is larger
than the integral scale, this additional term also exists.
However, the slipping velocity is here a random delta cor-
related variable. So, the integral (12) vanishes and only
the bending term in the power balance remains.

The influence of this additional friction term is high-
lighted in fig. 4 which represents, for the three regimes,
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Fig. 5: Evolution of the maximum of the mean curvature κ̄max

as a function of the fibre stiffness γ. The grey area corresponds
roughly to the intermediate regime (`e/LI ∈ [10−1, 10]). The
power law in the turbulent regime corresponds to equation (16).
The power law in the polymer regime corresponds to a balance
between thermal and bending energies.

the evolution of the local mean curvature 〈κ(s)〉 as a func-
tion of the curvilinear coordinate s from the numerical
model only. While the experimental data also shows a
global straightening of the fibres as their lengths increases,
equation (13) is only valid when there is clear scale sep-
aration between the fibre length and the integral scale
which is not the case experimentally. The boundary con-
ditions (no torque and no force at the extremities) impose
that the curvature is zero at the extremities. For all the
regimes, the curvature increases with the curvilinear co-
ordinate from the extremities until it reaches a maximum
for s ∼ `e. In the turbulent case (fig. 4 on the right),
for fibres long enough, the mean curvature decreases for
`e . s . L/2 due to the additional dissipation term that
dominates the bending term in the power budget. The
scaling proposed in equation (13) is in good agreement for
the longest fibre L = 23.71LI . For the polymer regime,
the delta correlation of the forcing leads to no additional
dissipation and the mean local curvature is constant along
the profile as shown in fig. 4 on the left. This behaviour is
similar to the one observed for worm-like chain polymers
in ideal solvent [34]. For the intermediate case (fig. 4 in
the middle), the evolution of the local curvature is a mix
of these two regimes. For long fibres, the mean local cur-
vature decreases for `e . s . LI and then saturates as the
forcing is no more correlated at larger scales.

We finally focus on the maximal amplitude of the mean
local curvature κ̄max that can be reached for fibres with a
length L greater than `e. We notice in fig. 3 that the elas-
tic length `e properly estimates the typical length at which
the maximum of the curvature is reached. However, the
amplitude of this maximum does not scale with the elastic
length. In fig. 5, we report the evolution of the maximum
of the dimensionless mean curvature κ̄maxLI as a function
of the dimensionless rigidity γ. We varied numerically γ
from 10−6 to 106, leading to `e/LI ∈ [0.02, 23.7] in order

to continuously transit from the turbulent regime to the
polymer regime. As expected, two different power laws
are observed, one for each asymptotic regime. We first
analyse the turbulent regime. We have seen that the fibre
inextensibility, and so the lineic tension along the fiber,
plays a key role to understand the decrease of the curva-
ture profile for long fibres. We now show that the fibre
inextensibility also determines the maximum of the am-
plitude of the curvature. The tension term ensuring the
fibre inextensibility in equation (1) is actually composed
of two terms [13]:

∂s(T∂sr) = ∂s
[
(Tt −Bκ2)∂sr

]
, (14)

where Tt is the classical tangential force whereas Bκ2 is
necessary to satisfy the inextensibility constraint when the
fibre is curved. The term ∂s

(
Bκ2∂sr

)
has one component

parallel to the tangent vector, B∂s(κ
2)∂sr, and one paral-

lel to the curvature vector, Bκ3eκ, where eκ = ∂2sr/|∂2sr|.
This last term is parallel to the classical bending term
B∂4sr and may be larger than the linear term for large
amplitudes, typically κ > 1/`e. In that case, the satura-
tion occurs when the nonlinear term Bκ3 is of the order
of the forcing term ηu` ∼ η(ε`)1/3. The length scale ` to
consider corresponds to the size of the eddy that is re-
sponsible for the deformation at s = `e, i.e. `e. Thus the
following equilibrium can be written

Bκ̄3max ∼ η(ε`e)
1/3 (15)

Using equation (7), the maximum of curvature should
scale as:

κ̄max ∼ γ−11/36St−23/72 ∼ γ−0.3St−0.3 . (16)

This power law is in good agreement with our observation
as shown in fig. 5. For the polymer regime, the forcing
is not correlated at the scale of the deformation. Hence,
the amplitude of the curvature is expected to be weak,
as observed in fig. 3. The saturation is then expected to
be related to the balance between the “thermal energy”
ρf (L/LI)L

3
IU

2 with the bending energy BLκ̄2 leading to
κ̄max ∼ γ−1/2. The “thermal energy” ρf (L/LI)L

3
IU

2 is
the sum of the energy brought by each eddy of size LI
along the fibre. This scaling seems compatible for the
largest values of γ we have tested (γ > 104). Note that
the case presented in fig. 5 is not in this asymptotic regime
yet. This is due to the scale separation between the elastic
length and the integral scale which is not large enough, as
mentioned previously. Note also that in polymer science
the elastic energy stored in the fibre is generally related
to the persistence length: Eel =

∫
Bκ2ds ∼ B/`p and the

persistence length to the fibre curvature `p ∼ κ̄−1 [35],
should lead to κ̄ ∼ γ−1. Understanding the discrepancy
between this simple argument and our measurement is be-
yond the scope of this paper and will be investigated later.

Conclusion. We performed a detailed study focusing
on the mean curvature of deformable fibres in turbulent
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flows. Three different regimes were identified: the poly-
mer regime (LI � `e < L), the intermediate regime
(`e . LI < L) and the turbulent regime (`e < L < LI).
We showed that the differences between these regimes are
related to the temporal and spatial correlations of the tur-
bulence. In a first regime, a fibre in a turbulent flow can
be analogous to a polymer in a thermal bath, leading to
a maximum curvature independent of the fibre length. In
the turbulent regime however, which is the main focus
of this paper, we observe a straightening of the fibre as
the mean curvature decreases when the fibre length in-
creases, an effect ultimately due to a combination of the
fiber inextensibility and the spatial correlation of the forc-
ing through the cumulative viscous forces along the fibre.
Finally, the intermediate regime is a combination of these
two previous cases in which the flow is correlated at small
scales and uncorrelated for the largest deformations.

In the future, the importance of the fibre inertia, mea-
sured by the Stokes number St here, needs to be addressed.
Due to the many simplifying assumptions used to derive
the numerical model used here, further comparative stud-
ies using DNS of the Navier–Stokes equations, fully cou-
pled with the elastic dynamics of the fibre, are a natural
next step. Improving the experimental apparatus in order
to reach the turbulent regime, by using a more flexible
material for the fibres and a larger tank, would also be
valuable. Finally, the statistics of the deformation should
be investigated further to see how the different quanti-
ties discussed in this letter fluctuate around their mean
values. These fluctuations can have a major impact on
the transport of particles, especially for brittle objects for
which large curvatures may be responsible for their frag-
mentation. Once the deformations are fully characterised
in each regime, studying the fibre dynamics is the next
step to model the transport of flexible objects in turbu-
lence.
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aged by the French National Research Agency (ANR).

REFERENCES

[1] Lundell F., Soderberg L. and Alfredsson P., Annu.
Rev. Fluid Mech., 43 (2011) 195.

[2] Nguyen H. and Fauci L., J. R. Soc. Interface, 11 (2014)
20140314.

[3] Sabban L. and van Hout R., J. Aerosol Sci., 42 (2011)
867.

[4] Toschi F. and Bodenschatz E., Annu. Rev. Fluid
Mech., 41 (2009) 375.

[5] Voth G. and Soldati A., Annu. Rev. Fluid Mech., 49
(2017) 249.

[6] Parsa S., Calzavarini E., Toschi F. and Voth G.,
Phys. Rev. Lett., 109 (2012) 134501.

[7] Byron M., Einarsson J., Gustavsson K., Voth G.,
Mehlig B. and Variano E., Phys. Fluids, 27 (2015)
035101.

[8] Lindström S. B. and Uesaka T., Phys. Fluids, 19
(2007) 113307.

[9] Delmotte B., Climent E. and Plouraboué F., J.
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