Internal wave beams: transport and attractors

Jeroen Hazewinkel1,2,3

Supervision

Leo R.M. Maas 1 Stuart B. Dalziel2 Arjen Doelman3

1Royal Netherlands Institute for Sea Research
Texel, The Netherlands

2Department for Applied Mathematics and Theoretical Physics
University of Cambridge, UK

3Centre for Mathematics and Computer science,
Amsterdam, The Netherlands

Waves and Instabilities in Geophysical and Astrophysical Flows,
Porquerolles 09
Internal wave beams: transport and attractors

Internal wave beam 2D

A viscous internal wave beam is described by

$$\psi(\chi, \eta, t) = \int_0^\infty e^{-\nu k^3 \chi} \cos(k\eta - \omega t) dk.$$ \hspace{1cm} (1)

1st order approximation, in tilted coordinate frame. Integration of kinematic equations $u(\chi, \eta) = -\psi_\eta$, $w(\chi, \eta) = \psi_\chi$, gives Poincaré plot.

Colour: energy. Black dots: position of particles per period starting from red position, 50 periods.
Internal wave beams in the lab

- To test the theory we need
 - Clear beam(s), steady state
 - Many periods for Poincaré plot
- In finite tank, i.e. physical setting, reflections play a role

- Internal wave attractor provides controlled reflection
Internal wave beams: transport and attractors
Focus on attractors

Reflection from sloping boundaries

In almost all domains focussing dominates *Maas & Lam. JFM '95*
Internal wave attractors

- Clearly defined direction of energy propagation
- Strong beams, linear waves (non-breaking)
- Steady state

Hazewinkel et al. JFM 598
Internal wave beams: transport and attractors
Focus on attractors

Growth and equilibrium

Forced stage of experiment; growth of the attractor

\[A = \frac{\rho_z'}{\bar{\rho}_z}, \text{ i.e. the vertical perturbation density gradient relative to the unperturbed background stratification.} \]
Internal wave beams: transport and attractors
Focus on attractors

Decay

The unforced aftermath
Variations in frequency
Internal wave beams: transport and attractors
Focus on attractors

Variations in frequency
Attractors are found in other domains than trapezoidal
Towards transport by internal wave beams

- To test the theory we need
 - Clear beam(s), steady state
 - Many periods for Poincaré plot

The internal wave attractor provides us with

- Clearly defined direction of energy propagation
- Strong beams, linear waves (non-breaking)
- Steady state
Internal wave beams: transport and attractors
Transport by internal wave beams
Experiments on transport

Particle drift? PIV particles, once per period.
Internal wave beams: transport and attractors
Transport by internal wave beams
Experiments on transport

Integrated Eulerian velocity fields

Obtain Eulerian fields from PIV, for many periods 32 obs/T

$$\dot{x} = u(x, z, t) \rightarrow x(t), \text{ 3T full resolution followed by } 100T \text{ plotted once per period}$$
Internal wave beams: transport and attractors
Transport by internal wave beams
Experiments on transport

Integrated Eulerian velocity fields

yield particle displacements

Conclusion: Net drift along beam, against energy propagation direction.

But: the integration does not bring buoyancy into account, so is this what the particles do?
Internal wave beams: transport and attractors
Transport by internal wave beams
Experiments on transport

PIV II: net Lagrangian velocity

particle tracking over one period (i.e. disregarding oscillation as in movie)

Weaker net vertical motion due to stratification (neglected in theoretical model; 1st order approximation)
Is our naive model realistic for particles in a stratified environment?

On a particle the forces are $\mathbf{F} = \mathbf{D} \text{rag} + \mathbf{B} \text{uoyancy}$

- $\mathbf{D} = 6\pi \nu \rho_* R_p \mathbf{V}_{\text{rel}} = 6\pi \nu \rho(z) R_p (\mathbf{v}(x,z) - \dot{x})$

- $\mathbf{B} = - \frac{4\pi R_p^3 g}{3} \Delta \rho \approx - \frac{4\pi R_p^3 g}{3} (\rho_* + z \frac{\partial \rho}{\partial z} - \rho_*) = - \frac{4\pi R_p^3 g}{3} (z \frac{\partial \rho}{\partial z})$

Particles small \rightarrow non-inertial; $\mathbf{F} = 0$

Neglecting \mathbf{B} gives $\mathbf{D} = 0 \rightarrow \mathbf{v}(x,z) = \dot{x}$ Our naive model.
If buoyancy is accounted for

\[\dot{x} = u(x, z, t) \] \hspace{1cm} (2)

\[\dot{z} + \tau z = w(x, z, t) \] \hspace{1cm} (3)
Internal wave beams: transport and attractors
Transport by internal wave beams
Particle motion in stratification

But still vertical transport exists

- Suppresses net vertical motion.
- Does this also describes the fluid?
 - Horizontal convergence into beam
 - Growth of density perturbation; steady state steady?
 - Driving currents
In NS buoyancy was included so how come we have to bring it in again by hand?

\[(\rho_0(z) + \rho)_t + \mathbf{u} \cdot \nabla (\rho_0(z) + \rho) = 0 \quad (4)\]

\[\rightarrow\]

\[b_t + \mathbf{u} \cdot \nabla b + w = 0 \quad (5)\]

but what if \(\rho_0(z, \epsilon t)\), since we regard the slow time for the transport
Conclusion

- Transport has opposing components along inclined beam
 - Observed integrated Eulerian velocity
 - Theoretical drift from zero mean streamfunction
- Buoyant particles are transported horizontally into the beams (convergence) and subsequently in the vertical

Questions

- Does the transport depend on the tracer considered? (Diffusivity, how fast is the exchange?)
- Do internal wave beams drive currents?

references: Hazewinkel et al.08 JFM, *Transport by IW beams* submitted to Geophysical Research Letters
Internal wave beams: transport and attractors
Transport by internal wave beams
Particle motion in stratification

Questions?

Film: Blown by the attractor