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Lecture 4 : Hydrodynamic instability of flames
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Jump across an hydrodynamic discontinuityIV � 1)

UL Ub - UL

Flame

Unburnt mixture

at rest

Burnt gas

Zoom

Tb

Tu
dL

Temperature

[�u]+� = 0 �u = �uUL = �bUb

�
p + �u2

�+
� = 0

[w]+� = 0�u �= 0 �

jump relations (reference frame of the flame)

flame considered as a discontinuity
flame thickness and curvature neglected
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⇥�/⇥t = �⇥(�u)/⇥x� ⇥(�w)/⇥z,

⇥(�u)/⇥t = �⇥(p + �u2)/⇥x� ⇥(�uw)/⇥z,

⇥(�w)/⇥t = �⇥(�uw)/⇥x� ⇥(p + �w2)/⇥z

r = (x, z), u = (u, w)reference frame of the flame

x

u
u w

z

�u

�b

2 dim

tilted planar front

�
a(x, y, t)dx = 0lim

dL � 0
dL

if a(r, t) is regular

flame � surface of zero thickness separating two incompressible flows

�⇥�/⇥t = ��.(�u) �Du/Dt = ��p ⇥(�u)/⇥t = ��.(pI + �uu)
Low Mach nb approx + inviscid approx: Euler eqs

�� dL
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�u �b

UL Ub

�u > �b

Flame front

Burnt gas
at rest

Fresh mixture

UL Ub - UL

Flame

Unburnt mixture

at rest

Burnt gas

Zoom

Tb

Tu
dL

Temperature

Piston e�ectreference frame of the flame front

Inclined flame front

Burnt gas

Fresh mixture

deviation of the stream lines

tilted front
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Ub

UL
=

�u

�b
=

Tb

Tu

u�|B > UL

u�|A < UL

flame motion

flame motion

instability mechanism
�� dL, dL/�� 0

� � UL/�

dL

”instantaneous” modification of the flow field, both upstream and donstream
(low Mach nb approx: the speed of sound is infinite, a � �)



Unburned gas Burned gas

�� �+

x = �(y, t)

��
y � ⇥�/⇥y

nf =

�

� 1�
1 + ��2

y

, �
��

y�
1 + ��2

y

�

� , un � uf .nf =
�
uf � ��

ywf

�
/
�

1 + ��2
y

wtg =
�
wf + ��

yuf

�
/
�

1 + ��2
y

�̇t � ⇥�/⇥t Df =
�̇t�

1 + ��2
y

normal velocity of the front

equation of the perturbed front

��U�n = �+U+
n

⇥�
�
u�f � �̇t � ��

yw�
f

�
= ⇥+

�
u+

f � �̇t � ��
yw+

f

�

conservation of mass

[Wtg]
+
� = 0

�
p + �U2

n

�+
� = 0

p�f + ⇥�

�
u�f � �̇t � ��

yw�
f

�2

1 + ��2
y

= p+
f + ⇥+

�
u+

f � �̇t � ��
yw+

f

�2

1 + ��2
y

�
w�

f + ��
yu�f

�
=

�
w+

f + ��
yu+

f

�

conservation of momentum

uf = (uf , wf )flow velocity at the front
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Wtg = wtgUn ⇥ un �Df =
�
uf � �̇t � ��

ywf

�
/
�

1 + ��2
y

flow velocity relative to the perturbed front

normal component tangentail component

( reference frame !)

reference frame of the planar unperturbed flame



Linearised Euler equations of an incompressible fluid IV � 2)

a = a + �a
mf = ��u�f = �+u+

f

�
⇤2

⇤x2
+

⇤2

⇤y2
+

⇤2

⇤z2

�
�⇥± = 0

⇥

⇥x
�u± +

⇥

⇥y
�w± = 0,

�
⇤±

⌅

⌅t
+ mf

⌅

⌅x

�
�u± = � ⌅

⌅x
�⇥±

�
⇤±

⌅

⌅t
+ mf

⌅

⌅x

�
�w± = � ⌅

⌅y
�⇥±,

�± � p± � ⇥±g(t)x,

x� �� : no disturbances, �u� = 0
x� +� : disturbances remain finite,

6

⇥±
�

⇤

⇤t
+ u±

⇤

⇤x

�
ũ±(x, t) = ±|k|�̃±f (t)e�|k|x�ũ±

�x
+ ik.w̃± = 0flow velocity

⇥2�̃±

⇥x2
� |k|2�̃± = 0 �̃±(x, t) = �̃±f (t)e�|k|xpressure

general solution to the homogeneous equation + particular solution

ũ±(x, t) = ũ±R(x, t) + ũ±P (x, t)

�ũ±R
�t

+ u±
�ũ±R
�x

= 0, ⇥±
�

d
dt
� u±k

�
ũ±p (t) = ±k�̃±f (t)

ũ±P (x, t) = ũ±p (t)e�kx,

P.Clavin IV

/12

⇥a(x,y, t) = ã(x, t)eik.y �(y, t) = �̃(t)eik.y

transverse coordinates
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�ũ±R
�t

+ u±
�ũ±R
�x

= 0, ũ±R = ũ±r (t� x/u±), ũ�R = 0,

3 unknown functions: ũ�f (t), ũ+
p (t), ũ+

r (t)

x < 0 :

�
��

��

ũ�(x, t) = ũ�f (t)e+kx,

k�̃�(x, t) = �⇥�
�

d
dt

+ u�k

�
ũ�f (t)e+kx,

�
��

��

ũ+(x, t) = ũ+
p (t)e�kx + ũ+

r (t� x/u+),

k�̃+(x, t) = ⇥+

�
d
dt
� u+k

�
ũ+

p (t)e�kx,
x > 0 :

ũ±(x, t) = ũ±R(x, t) + ũ±P (x, t)

ik.w̃�(x, t) = �kũ�(x, t), ik.w̃+(x, t) = � �

�x
ũ+(x, t).

2 for the conservation of normal and tangential momentum

4 boundary conditions at the flame front involving the additional unknown �̃(t)

�m�
f = �m+

f = 0
2 for the conservation of mass (inner flame structure not modified)

m � �(u� ��/�t)

ũ+
R = ũ+

r (t� x/u±),
vorticity of the burnt gas flow

ũ+
P = ũ+

p (t)e�kxk � |k| = 2�/� ũ� = ũ�P = ũ�f (t)ekx

potential flows



�

(⇥� + ⇥+)
d2�̃

dt2
+ 2mfk

d�̃

dt
� k[(⇥� � ⇥+)g(t) + (u+ � u�)mfk]�̃ = 0ũ�f = d�̃/dt �

Equation for the front
elimination of ũ+

p

P.Clavin IV
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�

dũ+
r

dt
= �

dũ+
p

dt
+

d2�̃

dt2

x < 0 :

�
��

��

ũ�(x, t) = ũ�f (t)e+kx,

k�̃�(x, t) = �⇥�
�

d
dt

+ u�k

�
ũ�f (t)e+kx,

�
��

��

ũ+(x, t) = ũ+
p (t)e�kx + ũ+

r (t� x/u+),

k�̃+(x, t) = ⇥+

�
d
dt
� u+k

�
ũ+

p (t)e�kx,
x > 0 :

� mf

�
1

u+

d
dt
� k

�
ũ+

p + mf

�
1

u�
d
dt

+ k

�
ũ�f = (⇥� � ⇥+)kg(t)�̃(t)

�

Normal momentum

⇥p�f + 2⇤�u�f (⇥u�f � �̇t) = ⇥p+
f + 2⇤+u+

f (⇥u+
f � �̇t)

Mass

ũ�f (t) = ũ+
p (t) + ũ+

r (t) = d�̃/dt⇤�
�
⇥u�f � �̇t

�
= ⇤+

�
⇥u+

f � �̇t

�
= 0 ⇥u�f = ⇥u+

f = �̇t�

IV-3) Conditions at the  front

kũ+
p (t) +

1
u+

dũ+
r (t)
dt

+ kũ�f (t) = mf

�
1

⇥+ �
1

⇥�

�
k2�̃(t)�

Tangential momentum
⇥

⇥y

�
w�

f + ��
yu�f

�
=

⇥

⇥y

�
w+

f + ��
yu+

f

�� �

k
d�̃

dt

d�̃

dt

notation

af (t) � a(x = 0, t)
a(x, t)

�

�
1

u+

d
dt
� k

�
ũ+

p = �mf

�
1

⇥+ �
1

⇥�

�
k2�̃ +

1
u+

d2�̃

dt2
+ kũ�f

elimination of dũ+
r /dt

ik.w̃�(x, t) = �kũ�(x, t), ik.w̃+(x, t) = � �

�x
ũ+(x, t).

���
y/�y � �k2�̃(t)

/12

⇥̃+
f � ⇥̃�f = (⇤� � ⇤+)g(t)�̃(t)�

hydrostatic presure
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(⇥� + ⇥+)
d2�̃

dt2
+ 2mfk

d�̃

dt
� k[(⇥� � ⇥+)g(t) + (u+ � u�)mfk]�̃ = 0

IV-4) Dynamics of a passive interface
mf = 0

Rayleigh

Rayleigh-Taylor instability

g = cst. (�� � �+)g > 0 �2 �Atkg = 0, At > 0

Ububble = 0.361
�

2gRg > 0, At �
�� � �+

�� + �+
> 0

Rayleigh-Taylor bubble (upwards propagation)

� =
�

Atgk

�̃(t) = �̂ ei�t � = B
�

gk B �

�
(�+ � ��)
(�+ + ��)

g = cst.

Gravity waves

(�� � �+)g < 0
� � Im � �= 0

Faraday (parametric) instability. Mathieu’s equation
d2�̃

dt2
+ ⌅2

o [1 + ⇥ cos(⌅⇤)] �̃ = 0g(t) oscillating

linearly unstableRe(�) < 0 :

�̃(t) = �̂ e�tFourier mode

linearly stable Re(�) > 0 :

�(y, t) = �̃(t)eik.y

ok with dimension
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shorter is the wavelength stronger is the instability !?k = 2�/�
however the analysis is valid only in the limit dL/�� 0
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Stabilisation at small wavelength, � � dL

⇥�

⇥t
= BDT

⇥2�

⇥y2
. �di� ⇥ 1/⇥di� = �BDT k2 = �BULk(dLk)

Unstable

Stable
kdL < 1 : � = AULk � Bk2dL + . . .

B > 0 ?first order correction

(⇥� + ⇥+)
d2�̃

dt2
+ 2mfk

d�̃

dt
� (u+ � u�)mfk2�̃ = 0

mf = ��u� = �+u+g = 0

�

ULk
=

1
1 + ⇥�1

b

�
�1±

�
1 + ⇥b � ⇥�1

b

�
� = AULk, A > 0u� � UL

⇥b � ��/�+ = u+/u� > 1
Landau

�u � �b : ⇥ =
�

UbUL k (�u � �b)/�u � 1 : ⇥ = (Ub � UL)k/2

� � ULkno length scale in the problem; dimensional analysis �dL/�� 0 :

Darrieus 1938
Landau 1944

(�� + �+)⇥2 + 2mfk⇥ � (u+ � u�)mfk2 = 0
�̃(t) = �̂ e�t
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VI-6) Curvature effect: a simplified approach
modification to the inner flame structure

⇥m�
f /⇤� ⇥ (⇥u�f � �̇t) = �BDT ⌅2�/⌅y2

m̃�
f (t)/mf � BdLk2�̃(t) DT = ULdL

flame propagating downwards g < 0
�

1 +
⇥b

⇥u

�
d2�̃

dt2
+ 2ULk

d�̃

dt
=

�
⇥u

⇥b
� 1

�
k

�
� ⇥b

⇥u
|g| + U2

Lk

�
1� k

km

��
�̃

1
km

� 2BdL

equation for the flame front

curvature e�ect
(⇥u+⇥b)

d2�̃

dt2
+2mfk

d�̃

dt
(1 + BkdL) = k�̃(⇥u�⇥b) [g(t) + UbULk (1� 2BkdL)]

(correction due to curvature, finite thickness e�ect kdL �= 0)

Stability limits of flames propagating downwards � = 0
marginal wavenumber

�
�Go + �

�
1� �

�m

��
= 0,

Normal momentum ⇥p�f + 2⇤�u�f (⇥u�f � �̇t) = ⇥p+
f + 2⇤+u+

f (⇥u+
f � �̇t)

⇥̃f+ � ⇥̃f� = �2mf

�
1
⇤b
� 1

⇤u

�
m̃f (t) + (⇤u � ⇤b)g(t)�̃(t)(flame notations: �+ � �b, �� � �u, �u > �b)

non-dimensional parameters ⇥b � ��/�+ = u+/u� > 1
� � kdL G0 � (�b/�u)Fr�1 Fr�1 � |g|dL/U2

L�m � 1/(2B)s = ��L

(1 + ��1
b )s2 + 2�s� (�b � 1)�

�
�Go + �

�
1� �

�m

��
= 0

�m�
f = �m+

f �= 0
?

first order in perturbation analysis dL/�� 1



P.Clavin IV Stability limits of flames propagating downwards
� � kdL G0 � (�b/�u)Fr�1 Fr�1 � |g|dL/U2

L�m � 1/(2B)non-dimensional parameters

� = 0marginal wavenumber
�
�Go + �

�
1� �

�m

��
= 0,

curvature stabilizes the small wavelengths

gravity stabilizes the large wavelengths of slow propagating flame

gravity stabilizes the large wavelengths of slow propagating flame UL < 10cm/s

UL � 10cm/sinstability threshold
Goc =

kcdL

2
, kc =

km

2
, ULc =

�

2
�b

�u

|g|
kc

OK with experiments by Boyer Quinard and Searby (1982)
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Flames propagating upwards: bubble flames

(1 + ��1
b )s2 + 2�s� (�b � 1)�

�
�Go + �

�
1� �

�m

��
= 0s = ��L

g = 0, G0 = 0

G0 = G0c
G0 > G0c


