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IV —1) Jump across an hydrodynamic discontinuity

flame considered as a discontinuity A dy
flame thickness and curvature neglected

flame =~ surface of zero thickness separating two incompressible flows
Low Mach nb approx + inviscid approx: Euler egs
dp/ot = —V.(pu) pDu/Dt = —Vp & 0(pu)/ot = —V.(pI + puu)
tilted planar front
reference frame of the flame r=(z,z), u=(u,w)

Op/0t = —0(pu)/dx — O(pw)/0z,
d(pu) /ot = —=0(p + pu®)/dz — d(puw) /D=,

O(pw) /0t = —0(puw)/0x — A(p + pw?)/0z y lim 0 a(z,y,t)dr =0
L —
dr,
jump relations (reference frame of the flame) /ém% if a(r,t) is regular
pu]t =0 pu=pUL=pUy "/
|:p_|_pu2]t — O <a

pu#£0 = [w’ =0
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reference frame of the planar unperturbed flame

equation of the perturbed front

flow velocity at the front

r = a(y,t)
u; = (us, wy)

( reference frame !)

1 oy :

= y — » Up =upng = (uf —a,wyr)//14+al?
VI1+aZ 14 a? ( os) -
ay, = 0/ y

Wy = (wf + oz;uf)/ 1+ oz;f

normal velocity of the front
D al
f

@/1+a?’f

flow velocity relative to the perturbed front

Up =un — Dy = (uf — oy — cwy) /1)1 + o2

normal component

th = wtg

tangentail component

conservation of mass
P UL = U

D

i

Uy

Ot +

f

)

/
- ozyw

— Gy — O/yw;> = (u}L —

conservation of momentum

[p+,5U3JJ_F =0 [Wigl™ =0

2
Uy — dy — a;w;)

1—|—a;2

(

Py +p

=pf +p"

o
f

2
+ -
(uf A = Ay ) (w; 1 a%u?) = (w;’{ + a;u}')

1+a§f
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IV —2) Linearised Euler equations of an incompressible fluid

0, 0 1+
ox ou™ 8y5w =9
_ L0  _ 0 9,
_e=atda (pia * mf%) out = —gomt = pF (),
mf=p Uy =p U; 5 5 5
ot 4 mp— | dwT = ——orx*
ot urr oy ’
x — 400 : disturbances remain finite, (65’22 I 8822 I ;2) e
x — —o0 : no disturbances, du~ =0 * Y z

transverse coordinates

(5@(33’, Yy, t) = gl,(x’ t)eik.§ Oé(y, t) — &(t)eiks.‘y

7T
pressure o°r= k|?7E =0 7 (x,t) = %f(t)eﬂk'x
Ox?
. out ., s (0 [ _4+ 0\ 4 ~ 4+ Flk|z
flow velocity B +ik.w™ =0 P (a +u 57 ) & (z,t) = £|k|7; ()e

general solution to the homogeneous equation + particular solution

it (w,t) = a5 (2, t) + 05 (x, t)

T (1) = G (1)
Oty . Oig (D gt
W"‘u %:O, 0 /12 P E:Fu k up(t)_:tkﬁf<t)
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it (x,t) = ag (v, t) + a5 (2, t)

k=lk|l=2m/A U =ip =, (t)e"” up=a)(t)e
8’L~Li Bﬂi N . potential flows N
Ry gt R up =, (t—z/u ip =0, =1 (l—x/u

ot tu ox O’ R " ( / )7 YR 0’ Jiiforticit}?fﬂ of the bur/nt ga)s’ﬂow

3 unknown functions: a5 (t), (1), a,) (t)

r<0: <« d
kn(z,t) = —p~ (— +ﬂ_k) Uy (t)eTre,
\ dt
(At (2, t) = 4 (e + @ (t — x/ath),
SR

r>0 k7t (z,t) =p* (g — _+k> ay (H)e™,

\ dt
e ~— e ot 9 _+
ikw™ (x,t) = -kt (x,t), kw'(zt)= —5 U (x,1)

x

4 boundary conditions at the flame front involving the additional unknown &(t)

2 for the conservation of mass (inner flame structure not modified)

om,; = 5m}_ =0 m = p(u — da/Ot)
2 for the conservation of normal and tangential momentum

7
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Mass

5 <5u; _ at) - (5u;t . at) — 0

IV-3) Conditions at the front

= (5uJ7 = (5u3f =y

notation
a(z,t)
ar(t) =a(z =0,t)

+ @t (t) = da/dt
daf  diy N d*a
Tangential momentum dt  dt  dt?
o [ _ — 9 . . 1 daf(¢) o _ 1 1 g -
. . ) ~+
ikw (z,t) = ki (x,t), ikw'(z,t)= —§u+(x t ChInlnatllondOf da, /dt : ” Ivl’ o
Doy, [y — —k*a(t) <ﬂ_+a — k) ﬂ;_ = —my (ﬁ_+ — :> k26 + : a2 T k’ﬂ;
1
Normal momentum . da
dt
sv7 + 277 (5upK ) = + 2" K ) | T Ay = 7 7 e0a)
{ a (z,t) = ﬁ;(t)e"‘k"”, U
x<0: d
ki (x,t) = —p = +u k| a; ()t d d
(i) = o (uﬂdt—k) i+ <1dt+k) 37 = (5~ — 7 )hg(£)a(t)
at(z,t) = af (t)e ke LAt (t—a/at), 1
x>0: B . (d _ _ —kz &
kit (@, 6) =" (dt - U+k) iy (e, elimination of @} U it
Equation for the front
o - __, da  da —— o \e L]
ay =da/dt = |~ +77) g +2msk—r —kl(pT —p7)g(t) + (T —w)mykla =0
g /12
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IV-4) Dynamics of a passive interface

mys =0
d’a A -
(b~ +7") g + 2Bt — k(2™ —p)g(t) + (a" PTGk =
Rayleigh Fourier mode |a(t) = ae” a(y;1) = a(t)e™?
Re(c) < 0: linearly stable Re(o) > 0 : linearly unstable

Rayleigh-Taylor instability
0'2—At]€g:O, At>0

g=cst. (p-—p")g>0
Rayleigh-Taylor bubble (upwards propagation)

g >0, A= S0 o= /Awgk Upubbie = 0.3614/2gR

p— TP+ ok with dimension

Gravity waves w=Imo #0

g=cst. (p —p)g<0 S\ A it _ (p+ — p-)

a(t) =ae w = B+\/gk B= .|~
*) g (p+ + p-)
Faraday (parametric) instability. Mathieu’s equation
_ d*a -

g(t) oscillating ——— + w1+ ecos(wT)] @ =0

a2 ;
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IV-5) Darrieus-Landau instability of flames

Darrieus 1938

g= 0 mf — ﬁ_ﬂ_ — p‘i‘ﬂ"‘ Landau 1944
. da . da .
(P~ +7") =7 +2mpk— — (" —u )mpk*a =0
Landau d d a(t) = ae’t
=+ 2 — N 1.2 _
w=p /pt =utju > 1 (p~ +p")o"+2msko — (™ —u )Mk =0
o 1
U = = —1 4+ \/1 - —1 -
[ Urp, ULk 1—|—Ub_1 [ + vy Uy, ] o .AULI{?, A>0
dr,/A — 0 : no length scale in the problem; dimensional analysis = o x Upk
pu>py: 0=\ UULE (pu=pp)/pu <1: o= (U —UL)k/2
k =2mx/A shorter is the wavelength stronger is the instability !7
however the analysis is valid only in the limit dy, /A — 0
Stabilisation at small wavelength, A ~d; ,
8_04 = BDT82—a. O diff = 1/7-diﬁ’ = —BDT]CZ = —BULk(deJ) 0:?' B>0
ot Oy? !
first order correction B> 07 i
kd, <1: |o = AULk — Bk2dp, + ... | i
k* k\ Stable

10
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?

modification to the inner flame structure 5m; = 5m? # 0
first order in perturbation analysis dp /A <1 dm} /p- = (5u; — &) = —BD70%*a/0y?
ﬁ’L; (t)/mf ~ Bde‘25é(t) Dy =Updj,

Normal momentum 0py +2p Uy (du; — éu) = opf + 2p7u) (duf — cu)
- - _ 1 1\ . -
(flame notations: T — pp, D — Pu, Pu > Pb) Tfy —Tf_ = —2mf (% - ,0_) mf(t> + (pu o pb)g(t)a<t>
U

equation for the flame front (correction due to curvature, finite thickness effect kdy # 0)

d%a da
(Putpp) g +2mpk— (1 + BRg) = ka(pu—ps) [9(t) + UpUrk (1 — 2Bkd )]
dt? dt
curvature effect/

flame propagating downwards g < 0 N

1 d*a da p \k
— =2 1+ =) —4+2Utk—=[—-1
km Bz ( " >d2+ T (Pb ) [ Pu p, lol + ULk ( km)]

non-dimensional parameters — , =5~ /pt =7wT/u” > 1

s=o01, k=kd, km=1/2B) Go=(pp/pu)Fr "t Fr ' =|gld/U?
(1+wv, )s? + 265 — (v — Dk [—QO + K <1 — i)] =0

Fom
Stability limits of flames propagating downwards g = ()

marginal wavenumber [—Q 1k (1 _ i)] —0
Ko, ’
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non-dimensional parameters k= kd;,  kp = 1/(2B)  Go = (pp/pu)Fr™ ' Frt = |gldp /U3

- - K
S = 0Ty (1—|—”Ub1)32_|_21438—(?)b—1)/€[—go+/<;<1__)]:O
’fm
- K Reto} e Ey e
marginal wavenumber g = () —G,+r([1——]| =0,
Rm 9=0, Go|=0 d Unstable
gravity stabilizes the large wavelengths of slow propagating flame 4 / \Qm ) ;
= Yoe
curvature stabilizes the small wavelengths @ 0

gravity stabilizes the large wavelengths of slow propagating flame Up < 10cm/s

instability threshold Uy ~ 10cm/s




