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Abstract

Non-destructive evaluation of heterogeneous materials is of major interest not

only in industrial but also in biomedical fields. In this work, the studied struc-

ture is a three-layered one: a laterally heterogeneous anisotropic solid layer

is sandwiched between two acoustic fluids. An original method is proposed to

solve the wave equation in such a structure without using a multilayered model

for the plate. This method is based on an analytical solution, the matricant,

explicitly expressed under the Peano series expansion form. We validate this

approach for the study of a fluid-loaded anisotropic and homogeneous plane

waveguide with two different fluids on each side. Then, we give original re-

sults on the propagation of elastic waves in an asymmetrically fluid-loaded

waveguide with laterally varying properties. This configuration notably corre-

sponds to the axial transmission technique to the ultrasound characterization

of cortical bone in vivo.

PACS numbers: 43.20.-f (General linear acoustics)
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I. INTRODUCTION

A lot of natural media have unidirectional varying elastic properties. The mantel crust,

the oceans and cortical bone are some of these functionally graded media. Scientists focused

on the advantages presented by this type of materials in terms of mechanical behavior and

since the 80’s, they developed industrial Functionally Graded Materials (FGM) particularly

exploited in high-technology and biomedical applications. Consequently, the non-destructive

evaluation of these materials is a key issue. Surface and guided waves play a major role in

non-destructive testing and evaluation of complex structures. Several studies are dedicated

to the leaky Lamb wave propagation in fluid-loaded plates (Chimenti and Nayfeh, 1990;

Chimenti and Rokhlin, 1990; Deschamps and Poncelet, 2000). In all these studies, the

media are homogeneous or multilayered. In this work, we introduce a general method to

take into account the continuity of the property variation in an anisotropic waveguide.

This method is based on the knowledge of an analytical solution of the wave equation, the

matricant, explicitly expressed via the Peano series (Peano, 1888). The accuracy of the

numerical evaluation of this solution and its validity domain are perfectly managed (Baron,

2005; Youssef and El-Arabawi, 2007). Because it deals with an analytical solution, all the

wave propagation parameters are controlled. This represents an advantage with respect

to numerical methods such as finite-element and finite-difference methods for which the

problem treated is a global one, making difficult to analyze and interpret the experimental

data which result from the interaction and coupling of numerous physical phenomena. To

the best of our knowledge, this is the first method to evaluate the mechanical behavior of a

fluid-loaded anisotropic waveguide with continuously varying properties without modelling

the FGM plate by a multilayered plate. Consequently, in the context of real materials with

continuously varying properties (such as bone, bamboo or manufactured FGM), this method

allows to assess the solution to a more realistic model with a controlled accuracy and without

an increase of the computation-time.

In this work, we first present the method and its setup with fluid-structure interac-

tion; then we proceed to the validation of the method by comparing our results to the

dispersion curves obtained from classical schemes on homogeneous waveguides (isotropic

and anisotropic). Two advantages of the method are underlined: i) an asymmetric fluid-

loading may be taken into account without modifying the scheme for the numerical solution;
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ii) the influence of the property gradient on the ultrasonic response of the waveguide may

be investigated via the frequency spectrum of the reflection coefficient modulus. Finally, we

get onto the relevancy of this model applied to the ultrasound characterization of cortical

bone by the axial transmission technique.

II. BACKGROUND

Contemporary work efforts over the last two decades illustrate some of the technology

interest on guided waves to nondestructive evaluation. Namely, Rose (2002) gave a revue

of ultrasonic guided wave inspection potential. A lot of papers deal with the interaction

between guided waves and a solid plate immersed in a fluid or embedded between two dif-

ferent fluids. Guided modes in an infinite elastic isotropic plate in vacuum were first treated

by Rayleigh (1885) then by Lamb (1917). The Lamb wave problem is reserved, strictly

speaking, for wave propagation in a traction-free homogeneous isotropic plate. To deal with

guided modes in a fluid-loaded plate, we use the term “leaky Lamb waves” as the energy is

partly radiated in the fluids on both sides of the plate. For the basic Lamb problem –plate

in vacuum–, the solutions of the dispersion equation are reals whereas in the case of a plate

bounded by media on both sides, the dispersion equation has complex solutions. In 1961,

Worlton (1961) gave an experimental confirmation of the theoretical work of Lamb, by ob-

taining experimentally the dispersion curves of aluminium and zirconium plates, asserting

that water loading has little effect on the behavior of waves in plates. In 1976, Pitts et al.

(1976) presented some numerical test results on the relationship between real part of the

reflection coefficient poles and the phase velocity of leaky Lamb modes in a homogeneous

isotropic brass plate in water. Folds and Loggins (1977) proposed analytical expressions of

the reflection and transmission coefficients for plane waves at oblique incidence on a multi-

layered isotropic plate immersed in water based on Brekhovskikh’s analysis (Brekhovskikh,

1980). They found good agreement with their theoretical results and experimental data.

Few years later, Fiorito et al. (1979) developed a resonance formalism for the fluid-loaded

elastic plate and gave some theoretical and numerical results for an isotropic steel plate

immersed in the water. This formalism was generalized to the interactions of acoustic plane

waves with an asymmetrically fluid-loaded elastic plate by Franklin et al. (2001). Nayfeh,

Chimenti and Rokhlin produced a lot of works on wave propagation in anisotropic media

4



Baron et al., JASA

and particularly in fiber composite plates immersed in a fluid (Chimenti and Nayfeh, 1986,

1990; Chimenti and Rokhlin, 1990; Nayfeh and Chimenti, 1988, 1989; Rokhlin and Wang,

2002). Based on their formalism, Deschamps and Poncelet (2000) placed the emphasis on

the difference between what they called transient Lamb waves –solutions of the character-

istic equation of the plate for complex frequency and real slowness (time attenuation)– and

heterogeneous Lamb waves for which the slowness is complex and the frequency is real (spa-

tial attenuation). These two ways of resolution of the dispersion equation have two different

physical meanings –space or time attenuation– and so, different physical consequences devel-

oped in their paper. A critical point is the validity of the Cremer’s coincidence hypothesis:

the real couples (angular frequency ω and phase velocity vϕ), such that the reflection coef-

ficient is minimum may be identified as velocity dispersion of plate waves. Experimentally

checked in a lot of configurations, it appears to be not well satisfied in several cases (for

instance, graphite-epoxy plates when the ratio between fluid and plate mass densities is not

“small”) (Chimenti and Nayfeh, 1986; Nayfeh and Chimenti, 1988). The results obtained

by Deschamps and Poncelet (2000) on fluid-loaded plate show a good correlation between

dispersion curves obtained in complex frequency and the minima of the reflection coefficient,

which suggests that the Cremer’s coincidence principle is still valid considering time atten-

uation. All these studies show evidence that the wave propagation in fluid-loaded elastic

plate emerges as a very delicate problem which needs cautious treatment.

III. GENERAL FORMULATION OF THE PROBLEM

We consider a three-dimensional multilayer system composed of one elastic solid layer

sandwiched between two acoustic fluid layers. Let R(O,x1,x2,x3) be the Cartesian frame

of reference where O is the origin of the space and (x1,x2,x3) is an orthonormal basis for

this space. The coordinate of the generic point x in R is specified by (x1, x2, x3). The

thickness of the solid layer is denoted by d and its mass density by ρ. The acoustic fluid

layers occupy an open unbounded domain. The both fluids f1 and f2 are supposed perfects,

of respective mass densities ρf1 and ρf2 ; the constant speeds of sound in each fluid are

cf1 and cf2 respectively. The interfaces between the fluids and the solid layer are infinite

planes parallel to the (x1,x2)-plane. The x3-axis is oriented downward and the origin O is

located at the interface between the upper fluid f1 and the solid layer. Therefore, we assume
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that the structure is a two-dimensional one and that the guided waves travel in the plane

x2 = 0; in the following parts, this coordinate is implicit and is omitted in the mathematical

expressions. Moreover, the solid layer will be so-called plate.

The elastic plate is supposed to be anisotropic and is liable to present continuously varying

properties along its thickness (x3-axis). These mechanical properties are represented by the

stiffness fourth-order tensor C = C(x3) and the mass density ρ = ρ(x3).

A. System equations

1. The wave equation in the fluid fn (for n = 1 or 2)

In the fluid fn and the context of the linear acoustic theory, the linearized Euler equation

and the constitutive equations are written as:



−∂p(n)

∂xj

= ρfn

∂2u
(n)
j

∂t2
,

p(n) = Kfndiv u(n),

(1)

where u(n) and p(n) respectively represent the displacement vector and the pressure in the

fluid fn; its compressibility and the speed of sound in the fluid at equilibrium are respectively

Kfn and cfn =
√

Kfn/ρfn . The operator div is the divergence.

The solutions of the system (1) for the fluid fn are sought under the form:

fn(x1, x2; t) = An(x3) exp ı(k1x1 + k
(n)
3 x3 − ωt), (2)

where k1 and k
(n)
3 are the wavenumbers respectively along the x1-axis and x3-axis in the

fluid fn; the angular frequency is noted ω and ı is the imaginary unit.

We consider an incident wave reaching the plate at an angle θ1 from the x3-axis in the

fluid f1. The incident displacement-field is defined in the following form, assuming that its

amplitude is normalized:

u
(1)
I =




sin θ1

0

cos θ1


 exp ı(k1x1 + k

(1)
3 x3 − ωt), (3)

with k1 = (ω/cf1) sin θ1 and k
(1)
3 = (ω/cf1) cos θ1. From this, the expressions of the reflected

displacement-field u
(1)
R in f1 and of the transmitted displacement-field u

(2)
T in f2 are deduced:
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u
(1)
R = R




sin θ1

0

− cos θ1


 exp ı(k1x1 − k

(1)
3 x3 − ωt),

u
(2)
T = T

cf2

cf1




sin θ1

0

cos θ1


 exp ı(k1x1 + k

(2)
3 x3 − ωt).

(4)

where R = R(x1, x3; t) and T = T (x1, x3; t) respectively represent the reflection and trans-

mission coefficients which will be expressed explicitly in the sequel. The incident, reflected

and transmitted pressure fields, respectively noted p
(1)
I , p

(1)
R and p

(2)
T , are deduced from the

expressions (3) and (4) and the second equation of the system (1):

p
(1)
I = −ı ω × ρf1cf1 × exp ı(k1x1 + k

(1)
3 x3 − ωt),

p
(1)
R = −ı ω × ρf1cf1 ×R× exp ı(k1x1 − k

(1)
3 x3 − ωt), (5)

p
(2)
T = −ı ω × ρf2cf2 × T × exp ı(k1x1 + k

(2)
3 x3 − ωt).

B. The wave equation in the plate waveguide

The body forces in the solid plate are neglected. The balance equation of linear momen-

tum associated with the constitutive law of linear elasticity (Hooke’s law) gives the following

equations: 



∂σij

∂xj

= ρ
∂2ui

∂t2
,

σij =
1

2
Cijk` (

∂uk

∂x`

+
∂u`

∂xk

)
(6)

where ui (for i = 1, ..., 3) and σij (for i, j = 1, ..., 3) respectively represent the components

of the displacement-field u and of the stress σ. In the system (6), the Einstein convention

of summation on repeated indices is used. The solutions are sought for the vectors of

displacement u and traction σi3 (for i = 1, ..., 3) (assumed to be harmonic in time t and

space along the x1-axis) under the form:

f(x1, x3; t) = A(x3) exp ı(k1x1 − ωt), (7)
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C. Fluid-loading interface conditions

The conditions at both interfaces x3 = 0 and x3 = d are the continuity of the normal

displacement and the one of the normal stress. We consider the fluids f1 and f2 are perfect,

consequently, the shear stresses are zero at the interfaces (σ13(x1, 0; t) = σ13(x1, d; t) = 0

and σ23(x1, 0; t) = σ23(x1, d; t) = 0). The following relations are obtained:




u3(x1, 0; t) = u
(1)
3 (x1, 0; t), u3(x1, d; t) = u

(2)
3 (x1, d; t),

σ33(x1, 0; t) = −p(1)(x1, 0; t), σ33(x1, d; t) = −p(2)(x1, d; t).
(8)

with

u
(1)
3 = u

(1)
I .x3 + u

(1)
R .x3, u

(2)
3 = u

(2)
T .x3 and p(1) = p

(1)
I + p

(1)
R , p(2) = p

(1)
T . (9)

D. A closed-form solution: the matricant

Introducing the expression (7) in the equation (6), we obtain the wave equation under the

form of a second-order differential equation with non-constant coefficients. For particular

forms of geometrical configurations, this equation has analytical solutions expressed with

special functions (Bessel or Hankel functions) (Vlasie-Belloncle and Rousseau, 2003). But,

in the general case, there is no analytical solution to the problem thus formulated. The

most current methods to solve the wave equation in unidirectionally heterogeneous media

are derived from the Thomson-Haskell method (Haskell, 1953; Thomson, 1950). These

methods are appropriate for multilayered media (Hosten and Castaings, 2003; Kenneth,

1982; Levesque and Piche, 1992; Wang and Rokhlin, 2001). But, for continuously varying

media, these techniques mean to replace the continuous profiles of properties by step-wise

functions. Thereby, the studied problem becomes an approximate one, even before the

resolution step; the accuracy of the solution as its validity domain are hard to evaluate.

Moreover, the multilayered model of the waveguide creates some “virtual” interfaces likely

to induce artefacts. In order to deal with the exact problem, that is to keep the continuity

of the properties variation, the wave equation is re-written under the form of an ordinary

differential equations system with non-constant coefficients for which an analytical solution

exists: the matricant (Baron, 2005).

8



Baron et al., JASA

a. Hamiltonian form of the wave equation. We consider that the plate presents material

symmetries which allow to decouple the P-SV (Pressure - Shear Vertical) waves, polarized in

the propagation plane (x1,x3) and the SH (Shear Horizontal) waves polarized along x2-axis.

The incident media f1 is a perfect fluid, only the P-SV waves travel in the plate. Applying

a spatio-temporal Fourier transform on (x1, t) of the displacement field (noted û(k1, x3; ω)

after Fourier transform) and on the traction field (noted σ̂i3(k1, x3; ω) for i = 1, ..., 3) and

using the Voigt notation (Cijk` for i, j, k, ` = 1, ..., 3 is replaced by cIJ for I, J = 1, ..., 6),

Eq. (6) leads to:

∂σ̂13

∂x3

= ρ(ı ω)2û1 − ık1σ̂11,
∂σ̂33

∂x3

= ρ(ı ω)2û3 − ık1σ̂13, (10)

σ̂11 = ık1c11û1 + c33
∂û3

∂x3

, σ̂13 = c55(
∂û1

∂x3

+ ık1û3), σ̂33 = ık1c13û1 + c33
∂û3

∂x3

. (11)

According to Eqs. (10) and (11), σ̂11 is function of û1 and σ̂33. The wave equation

becomes a matrix system expressed using the Thomson-Haskell parametrization of the Stroh

formalism (Stroh, 1962):
d

dx3

η(x3) = ı ωQ(x3)η(x3), (12)

that is:

d

dx3




ı ωû1

ı ωû3

σ̂13

σ̂33




=

(13)

ıω




0 s1 1/c55(x3) 0

−s1c13(x3)/c33(x3) 0 0 1/c33(x3)

ρ(x3)− s2
1ζ(x3) 0 0 −s1c13(x3)/c33(x3)

0 ρ(x3) −s1 0







ı ωû1

ı ωû3

σ̂13

σ̂33




,

with the relations:

ζ(x3) = c11(x3)− c2
13(x3)

c33(x3)
, k1 = ωs1, (14)

where s1 is the x1-component of the slowness. The matrix Q includes all the information

about the heterogeneity of the waveguide because it is expressed from the plate mechanical

properties (ρ(x3),C(x3)) and from two acoustical parameters (s1, ω).
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b. Explicit solution: the Peano expansion of the matricant. The wave equation thus for-

mulated has an analytical solution expressed between a reference point (x1, 0, x
0
3) and some

point of the plate (x1, 0, x3) in the propagation plane. This solution is called the matricant

and is explicitly written under the form of the Peano series expansion (Gantmacher, 1959;

Peano, 1888; Pease, 1965):

M(x3, x
0
3) = I + (ı ω)

∫ x3

x0
3

Q(ξ)dξ + (ı ω)2

∫ x3

x0
3

Q(ξ)
(∫ ξ

x0
3

Q(ξ1)dξ1

)
dξ + ..., (15)

where I is the identity matrix of dimension (4, 4). If the matrix components Q(x3) are

bounded in the study interval, these series are always convergent (Baron, 2005). The com-

ponents of the matrix Q are continuous in x3 and the study interval is bounded (thickness

of the waveguide), consequently the hypothesis is always verified. We underline that the ıω-

factorization leads up to a polynomial form of the matricant. The ıω-polynomial coefficients

are matrices independent of ω.

c. Boundary conditions: fluid-structure interaction. Using the propagator property of

the matricant through the plate thickness, the state-vector (defined in (13)) at the second

interface η(d) is evaluated from the state-vector at the first interface η(0) as follows:

η(d) = M(d, 0)η(0). (16)

The fluid-structure interaction sets the conditions of zero shear stresses (see sub-

section III C), used after a spatio-temporal Fourier transform on (x1, t). The equation (16)

becomes:




ı ωû1(k1, d; ω)

ı ωû3(k1, d; ω)

0

σ̂33(k1, d; ω)




=




M11 M12 M13 M14

M12 M22 M23 M24

M13 M23 M33 M34

M14 M24 M34 M44







ı ωû1(k1, 0; ω)

ı ωû3(k1, 0; ω)

0

σ̂33(k1, 0; ω)




. (17)

The condition to obtain a nontrivial solution to the equation (17) leads to the following

relation:

ı ωû1(k1, 0; ω)×M13 + ı ωû3(k1, 0; ω)×M32 + σ̂33(k1, 0; ω)×M34 = 0, (18)
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where Mij (for i, j = 1, ..., 4) represent the components of the matrix M. The displace-

ment component û1(k1, 0; ω) can be expressed as a linear combination of û3(k1, 0; ω) and

σ̂33(k1, 0; ω); thus the system (16) of dimension 4 is reduced to a matrix system of dimension

2:

η(d) =


P1 P2

P3 P4


 η(0), where η(x3) =


ı ωû3

σ̂33


 . (19)

with the relations:

P1 = M22 −M21
M32

M31

, P2 = M24 −M21
M34

M31

,

P3 = M42 −M41
M32

M31

, P4 = M44 −M11
M34

M31

.

(20)

The interface conditions (8) are transformed in the Fourier domain (k1, ω). The expres-

sions of the displacement and the pressure in the fluids (see Eqs. (3), (4) and (5), so that the

one of the displacement and traction fields in the solid plate (see Eq. (19), are substituted

in the transformed interface conditions. Setting η(0) = (α1, α2)
T exp ı(k1x1−ωt), where the

superscript .T designates the transpose operator, we obtain the following matrix equation:



ı ωs
(1)
3 cf1 1 0 0

−ı ωρf1cf1 0 1 0

0 P1 P2 −ı ωs
(2)
3 cf2 exp (ı ωs

(2)
3 d)

0 P3 P4 −ı ωρf2cf2 exp (ı ωs
(2)
3 d)







R̂

α1

α2

T̂




=




ı ωs
(1)
3 cf1

ı ωρf1cf1

0

0




, (21)

where s(n) = k(n)/ω is the slowness-vector in the fluid fn (n = 1 or 2). The quantities R̂

and T̂ are respectively the reflection and transmission coefficients expressed in the Fourier

domain: R̂ = R̂(k1, x3; t) and T̂ = T̂ (k1, x3; t). The two first lines of system (21) express

the boundary conditions at the first interface (x3 = 0) and the two last lines those at the

second interface (x3 = d) introducing the Fourier transform of the expressions (3), (4) and

(5) in the following relations:

η(0)−

ı ωû

(1)
3R

−p̂R




x3=0

=


ı ωû

(1)
3I

−p̂I




x3=0

,


P1 P2

P3 P4


 η(0)−


ıωû

(2)
3T

−p̂T




x3=d

=


0

0


 , (22)

where û
(1)
3R

, û
(1)
3I

and û
(2)
3T

are the components along x3-axis of û
(1)
R , û

(1)
I and û

(2)
T vectors re-

spectively. Note the equality between the quantities u
(2)
3T

and u
(2)
3 where this last is defined

in Eq. (9).

11
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d. Expression of the reflection and transmission coefficients. From (21), we deduce the

analytical expressions of the reflection and transmission complex coefficients:

R̂(s1, x3; ω) =
(P3 − P1Z2 + P4Z1 − P2Z1Z2)

(P3 − P1Z2 − P4Z1 + P2Z1Z2)
,

(23)

T̂ (s1, x3; ω) = −2Z2(ρf1cf1/ρf2cf2)(P1P4 − P2P3)

(P3 − P1Z2 − P4Z1 + P2Z1Z2)
exp(−ı ωs

(2)
3 d),

with Zn = ρfn/
√

1/c2
fn
− s2

1 (for n = 1 or 2).

IV. VALIDATION OF THE METHOD

The aim of this section is to check that the Peano expansion of the matricant is well-

adapted to study fluid-loaded waveguides. We take into account the fluid-structure interac-

tion in different configurations of homogeneous plates comparing the results obtained from

the numerical implementation of the Peano expansion of the matricant to results taken from

the literature.

The numerical evaluation of P1, P2, P3 and P4 requires us to truncate the Peano series

and to numerically calculate the integrals. Thus, the error can be estimated and controlled

(Baron, 2005). We retained 70 terms in the series and evaluate the integrals over 100

points using the Simpson’s rule (fourth-order integration method). These choices ensure the

convergence of the solution and the accuracy of the results for a reasonable computation

time (never exceeding few minutes on a desktop computer). The expressions (23) give the

frequency spectrum (modulus and phase) of the reflection coefficient for different incidences

(s1 varies from zero –normal incidence– to 1/cf1 corresponding to the critical incidence in

the fluid f1). A lot of works detailed the relationship between the poles and the zeros of the

reflection coefficient and the leaky Lamb waves dispersion curves (Chimenti and Rokhlin,

1990; Deschamps and Poncelet, 2000).

The results of sub-section IVA compare the dispersion curves obtained by seeking the

poles of the reflection coefficient (23) and the results taken from the literature or from

closed-form solution.

12
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A. Validation for a homogeneous and isotropic or anisotropic fluid-loaded plate

The method is tested by plotting the dispersion curves (variation of the phase velocity

versus frequency-thickness product) for an isotropic aluminium plate immersed in water.

The data in the paper of Chimenti and Rokhlin (1990) are used. The results obtained (not

shown) by the present method are in perfect agreement with the results presented by them

(Chimenti and Rokhlin, 1990).

As mentioned by Chimenti and Rokhlin (1990), there are few differences between the

zeros loci and the poles loci for a plate immersed in a fluid whose the mass density is lower

than the plate mass density. As underlined by several authors, fluid-load does have just a

weak influence on guided wave travelling in the plate immersed in water.

Taking into account the anisotropy does not change the scheme for the numerical

solution of wave equation with the matricant. We consider a transverse isotropic plate

immersed in water (ρf = 1 g.cm−3, cf = 1.485 mm.µs−1) whose properties are reported in

Tab. I. For that configuration, Nayfeh and Chimenti (1989) developed a method to obtain

an analytical expression of the reflection coefficient. By using the data from this paper, the

results obtained (see Fig. 1) with the present method are in perfect agreement with theirs.

The curves presented in Fig. 1.a and Fig. 1.b are superimposed and need to be presented

separately.

B. Validation for a asymmetrically loaded homogeneous isotropic plate (f1 6= f2)

The formalism presented here to solve the wave equation in an unidirectionally graded

medium presents two main advantages: without changing the scheme to obtain the numer-

ical solution we can take into account i) an asymmetric loading and ii) the unidirectional

continuous heterogeneity.

The mechanical behavior of the plate is different for symmetric and asymmetric loadings.

For example, in the symmetric loading case, there is a unique critical frequency and a unique

phase velocity value vϕ in the plate, which corresponds to the propagation velocity in the

fluid (vϕ = cf1 = cf2), for which the displacements and the stresses at the interfaces are

quasi-null; whereas in the asymmetric loading (f1 6= f2), there are two critical frequencies
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and two values of the phase velocity in the plate for which the structure does not respond

(Dickey et al., 1995). The validation is done on an isotropic aluminium plate with the

following properties: ρ = 2.79 g.cm−3 ; the longitudinal and transverse waves velocities are

respectively vL = 6.38 mm.µs−1 and vT = 3.10 mm.µs−1. The characteristic properties of

the fluid f1 correspond to those of water (see sub-section IVA); the characteristic properties

of the fluid f2 correspond to glycerine: ρf2 = 1.26 g.cm−3 and cf2 = 1.920 mm.µs−1. This

configuration is the same as the one studied by Franklin et al. (2001). The modulus of the

reflection coefficient versus the incident angle is plotted in the Fig. 2 for a fixed frequency-

thickness product (f × d = 4.7 MHz.mm).

This figure shows the perfect agreement between our results and the ones presented by

Franklin et al. (2001).

V. RELEVANCY OF THE METHOD FOR ULTRASOUND CHARACTERIZATION OF

CORTICAL BONE

Cortical bone is a kind of hard tissue found at the edges of long bones and supports

most of the load of the body. Several studies demonstrated the heterogeneous nature of

the cortical bone, particularly they show evidence the gradual variation of the volumetric

porosity (ratio between pores and total volume) along the cortical thickness. Yet, the

porosity is intrinsically linked to the macroscopic mechanical behavior of the cortical bone

(Baron et al., 2007). Therefore, the continuous variation of porosity induces a continuous

variation of material properties. Taking into account the gradient should prove itself to be

essential in the context of diagnosis and therapeutic monitoring of osteoporosis. Indeed, the

gradient characterization would allow to assess geometrical (cortex thickness) and material

(elastic coefficients variation) information, which are fundamental parameters to evaluate

the bone fragility. For several years, the quantitative ultrasonography (by axial and

transverse transmissions) proved itself to be an alternative hopeful technique to evaluate

the fracture risk (Marin et al., 2006). However, the inter-individual and inter-site variations

of bone mechanical properties make the standardization of the protocol of fracture risk

evaluation by ultrasound very delicate.

The focus is set on a configuration closed to the axial transmission device for in vivo
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conditions. In this context, the relevancy of studying the lateral wave propagation has been

demonstrated (Bossy et al., 2004a,b; Camus et al., 2000). As a consequence all the reflection

coefficient presented in this paper were calculated for an incident angle corresponding to the

grazing-angle for longitudinal waves (critical angle of longitudinal waves propagation in the

plate at the first interface (x3 = 0)).

The surrounding media in the in vivo configuration of ultrasound characterization of

cortical bone are the muscle for the upper fluid f1 (cf1 = 1.54 mm.µs and ρf1 = 1.07 g.cm−3)

and the marrow for the lower fluid f2 (cf2 = 1.45 mm.µs and ρf2 = 0.9 g.cm−3) (Burlew

et al., 1980; Hill et al., 1986). We are interested in the influence of the continuous gradient of

the mechanical properties on the ultrasonic response in the configuration of in vivo cortical

bone characterization.

A. Determination of a realistic range of variation of elastic bone properties

In order to define numerical values for a realistic value of the gradient of the different

material properties, it is necessary to determine the limiting values reached by each elastic

property. Our approach consists in considering in vitro measurements published in Dong

and Guo (2004) and performed in 18 samples. It is assumed that these limiting values

for elastic properties are relevant for physiologic ranges of variations. Furthermore, the

elastic coefficients of the stiffness tensor are constrained to fully verify the thermodynamical

conditions of stability (see Appendix).

We assume that cortical bone is transverse isotropic. Transverse isotropy has been shown

experimentally by different authors (Dong and Guo, 2004; Reilly and Burnstein, 1974; Rho,

1996) to be a realistic approximation of cortical bone degree of anisotropy.

Dong and Guo (2004) measured the homogenized bone properties by performing tensile

and torsional tests with a mechanical testing system on 18 different human femoral bone

specimens. The authors measured the values of the longitudinal and transverse Young’s

moduli (EL and ET respectively) as well as the values of the longitudinal shear modulus GL.

From these measurements and by assuming constant values of Poisson’s ratio, the values of

the different components of the stiffness tensor corresponding to the values of EL, ET and

GL measured in Dong and Guo (2004) were obtained following the relationships given in

Appendix.
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The value of the longitudinal Poisson’s ratio νL is taken equal to 0.37 for all computations

because it corresponds to the average value found in Dong and Guo (2004). The value of the

transverse Poisson’s ratio νT is taken equal to 0.45 following Eqs. (A.3) of Appendix. The

values of the stiffness coefficients corresponding to the mean values of the bone mechanical

properties are referred to as ‘reference’ set of parameters in what follows. The maximum

and minimum values of the stiffness coefficients are obtained by considering respectively

the maximum and minimum values of EL and ET within the range of variation measured

in Dong and Guo (2004), which is a simple way to obtain a realistic range of variation

for the stiffness coefficients in cortical bone. Furthermore, the elastic properties deduced

from the approach reported above were constrained to verify the thermodynamical stability

conditions given in the Appendix by Eqs. (A.4).

We choose a mean value of mass density ρ equal to 1.722 g.cm−3, following the value

taken in Macocco et al. (2006). This value is chosen for the reference mass density. In order

to derive a realistic range of variation for mass density, we assume that the reference value

is given by a porosity of 7%, which correspond approximately to the mean porosity at the

radius (Baron et al., 2007). The porosity was assumed to vary between 3 and 15% (Bousson

et al., 2001; Dong and Guo, 2004) and a rule of mixture leads to the range of variation of

mass density.

B. Modeling a gradient of material property

The impact of a controlled gradient vector δ of any investigated material property S on

the response of the structure studied is assessed. The scalar S corresponds to one of the

stiffness coefficients cij of C or to mass density ρ. In each set of simulations, all the material

properties are constant and equal to their reference value while S is subjected to the defined

gradient.

The gradient vector δ = gradS = δ x3 is assumed to be independent of x1 in all cases,

where x3 is an unit vector along x3-axis and grad is the gradient operator acting on a scalar

field. The quantity δ is always taken positive because the porosity is known to be higher

in the endosteal part than in the periosteal part of the bone. Moreover, only the simple

situation of affine spatial variations of S is considered, corresponding to a constant value

of δ. This affine spatial variation of S is chosen because the actual physiological spatial
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dependence of S remains unknown. Two different affine spatial dependencies of the studied

material property are considered and are illustrated in Fig. 3. Associated gradient δ will be

referred to as type 1 or 2.

Type 1. The gradient of type 1 is such that the physical property S takes the same value

SM at the upper interface x3 = 0 of the solid plate for all values of the gradient δ. The

quantity S(x3) is therefore given by:

S(x3) = SM + δ × x3, (24)

where SM is given by the maximal value of the material property S considered. The maximal

value δM of δ is chosen so that S(d) is equal to Sm, where Sm is given by the minimal value

of S. The gradient δM is given by:

δM =
(Sm − SM)

d
. (25)

Type 2. The gradient of type 2 is such that the physical property S takes the same value

at the middle x3 = d/2 of the solid plate for all values of gradient δ. Furthermore, the mean

value of the property S is identical for all δ. The quantity S(x3) is given by:

S(x3) =
(Sm + SM)

2
+ δ × (x3 − d

2
). (26)

The maximal value of δ is also given by Eq. (25), so that all values of S(x3) are again

always comprised between Sm and SM . Again, the maximal value δM of δ is given by

Eq. (25).

Gradient of type 2 leads for all magnitudes of δ to a constant value of the spatial average

of the gradient.

For both types of spatial variations, five different values of δ regularly distributed

between 0 and δM are arbitrarily considered in the thickness.

Table II recalls the maximum, minimum and mean measured values of EL, ET and GL

as given by Dong and Guo (2004). Table II also shows the maximum, minimum and mean

values of the 4 components (c11, c13, c33 and c55) of the stiffness tensor C affecting wave

propagation derived from Eqs. (A.3) of Appendix.

In Table III, the minimal and maximal values of each variable corresponding to the

realistic range of variation obtained i) by considering the reference values of Table II and
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ii) by verifying that the thermodynamical stability conditions are fulfilled. Values resulting

from the stability conditions are marked with an asterisk.

In the simulations, the values of SM and Sm are those reported in Table III.

C. Results et discussion

First of all, the method allows to investigate the influence of the fluids on the ultrasonic

response. In the case of the characterization of cortical bone, the two fluids f1 and f2 are

different which correspond to an asymetrical loading (see sub-section IVB): the fluid f1

has been considered as muscle (cf1 = 1 540 m.s−1 and ρf1 = 1.07 g.cm−3) and fluid f2 as

marrow (cf2 = 1 450 m.s−1 and ρf2 = 0.9 g.cm−3). The properties of these two fluids are

very closed to those of water. The frequency spectrum of the reflection coefficient modulus

has been plotted for the in vivo configuration and compared with the result obtained for a

cortical bone plate immersed in water for the ten profiles of mechanical properties (Figure

not shown). For homogeneous plates as for linearly graded plates, the two curves are very

closed however the modulus of the reflection coefficient at null-frequency is not null and the

minimum values are greater than for water but obtained for the same frequency-thickness

products. Thats is why, all the following results have been calculated for a cortical bone

plate immerged in water.

The reflection coefficient calculated with the Peano series of the matricant is sensitive

to the variation of the properties gradient. As we consider that the osteoporosis entails

a trabecularization of cortical bone from the endosteal side, the characterization of the

gradient of the properties between the endosteal and periosteal regions may be an element

of the diagnosis of the osteoporosis progress and of the therapeutic follow-up.

It is known that the gradient of the properties along the cortical thickness is due to

the continuous variation of the porosity growing progressively from the periosteal to the

endosteal regions. From previous work, we know that the porosity influence all the stiffness

coefficients (Baron et al., 2007). The frequency spectrum of the reflection coefficient has

been plotted for the ten profiles presented on Fig. 3 applied to all the stiffness coefficients

implied (c11, c13, c33 and c55 and to the mass density ρ) (see Table III). The reflection
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coefficients have been calculated at an incident angle corresponding to the grazing-angle

(critical angle for the longitudinal waves in the bone plate). For the two types of gradients,

differences appear between all the gradients and the homogeneized plates (corresponding to

the maximum value for Type 1 and to the average value for Type 2) particularly on the

location of the extrema values of the reflection coefficient modulus (see Fig. 4).

The increase of the gradient of properties shifts the minimum and maximum values for-

ward high frequency-thickness products. However, the results (see Fig. 4) put on evidence

that the behavior of the reflection coefficient modulus is sensibly the same for frequency-

thickness products between 0 and 1.5 MHz.mm. Beyond this value, the behavior is clearly

different. At sufficiently high frequency, the wavelength is smaller and more sensitive to

the affine variation of the material properties. It is noteworthy that for a heterogeneous

waveguide, the minima of the reflection coefficient magnitude do not reach zero (except for

null frequency) but end at a finite value and the changes in phase (not shown) are not so

rapid, which means that total transmission does not take place in this situation.

The influence of the variation of each parameter (stiffness coefficients) on the frequency

spectrum of the reflection coefficient has been investigated. This analysis has been lead

for an incidence angle corresponding to the longitudinal waves critical angle in the plate at

x3 = 0. This incidence corresponds to the generation and the propagation of the lateral

wave.

It appears that each of them has an impact on the reflection wave, but the leading term

is c11. The frequency spectrum of the reflection coefficient for a varying c11 in an affine way

is very closed to the frequency spectrum of the reflection coefficient obtained for the affine

variation of all the material properties (cij and ρ) and is the most different to the results

from homogeneized plates (average value or maximum value) compared to the frequency

spectrum calculated for the one-parameter variation of the other elastic parameters (c13, c33

and c55 and ρ) (see Fig. 5). It is noteworthy that c11 is the stiffness coefficient associated

with the axial direction and determining the speed of the lateral wave. So, it seems that

the lateral wave would be the indicator of the c11 gradient. It is important to note that for

homogeneized plates (extremum value or average) the frequency spectrum of the reflection

coefficient is really different from that of the plate with continuously varying properties. We

infer that the approximation by an homogeneous plate of cortical bone and all the more so

for the osteoporotic cortical bone (for which the gradient would be greater) may induce bad
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interpretation of the ultrasonic response.

The authors do not know any results in the literature about the measurement of

the variation of the porosity within the cortical thickness. The assumption of a affine

gradient is a first step, others gradients may be investigated and the method presented in

this article would be applied in the same way for non-affine gradients (Shuvalov et al., 2005).

VI. CONCLUSION AND PERSPECTIVES

The sextic plate formalism has been employed for analyzing the leaky Lamb waves in

anisotropic heterogeneous plates immersed in fluids. This formalism and especially the

polynomial form of the solution (see Eq. (15)) presents several analytical and numerical

advantages. First, the low-frequency asymptotics are naturally assessed evaluating only

two or three terms in the series (Shuvalov et al., 2005). The information thus collected

are of major interest in the analysis of the elastic behavior of waveguides (Baron et al.,

2008). Secondly, the polynomial-form makes the numerical evaluation of the solution faster.

Indeed, the polynomial coefficients are independent of the frequency, so they are calculated

for a fixed slowness value and stored. When the frequency varies, there is no need to re-

calculate the polynomial coefficients, it comes to a polynomial evaluation whose coefficients

are perfectly known, which is time-saving.

The Peano series of the matricant is a method which keeps the continuity of the profiles

and so, the authenticity of the problem. One of the key points for methods based on

multilayered media to deal with FGM is to relevantly discretize the properties profiles.

The choice of the dicretization may lead to some errors especially in the evaluation of the

resonances.

This elegant mathematical tool is also very adaptative to different physical problems. In

the case studied –a fluid-loaded plane waveguide– the anisotropy, the heterogeneity (contin-

uous or discontinuous variation of properties) and the asymmetric fluid-loading are taken

into account without changing the resolution scheme.

Further work needs to be done to relate the results presented in this paper to dispersion

curves and propagation of transient and heterogeneous waves in a fluid-loaded continuously

heterogeneous waveguide.
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Furthermore, from this study, the transient response of a fluid-loaded plate is considered.

The frequency spectrum of the reflection coefficient is calculated for incidences between the

normal and critical incidences for compression waves in the fluid f1. Thus, the plate transfer

function is calculated in the Fourier domain (x1-wavenumber, frequency): R̂(k1, x3; ω). A

double inverse Fourier transform on (k1, ω) is applied on R̂(k1, x3; ω) to transform into

the space-time domain; the temporal signals can be obtained at different points along the

propagation x3-axis: R(x1, x3; t).

Lastly, the formalism presented here is well-adapted to deal with wave propagation in

anisotropic tubes with radial property gradients (Shuvalov, 2003). The wave equation keeps

the same form as Eq. (12), the state vector is expressed from the displacement and trac-

tion components in the cylindrical basis and the matrix Q depends on the radial position

r (Q = Q(r)). In cylindrical homogeneous structures, taking into account an anisotropy

more important than transverse isotropy is fussy because there is no analytical solution

to the “classical” wave equation (second-order differential equation). The Stroh’s formalism

(hamiltonian formulation of the wave equation) (Stroh, 1962), upon which the Peano expan-

sion of the matricant is based, is a promising alternative solution which allows to consider

altogether the geometry (cylinder), the anisotropy and the heterogeneity (radial property

gradients) of a structure.

Appendix: THERMODYNAMICS STABILITY CONDITIONS AND STIFFNESS

COEFFICIENTS

The Hooke’s law is written under the form σij = Cijk` εk` for (i, j, k, ` = 1, ..., 3), where σ

is the stress-tensor, ε is the strain-tensor and C is the fourth-order stiffness-tensor. In the

transversely isotropic case, with (x2,x3) as isotropic plane, the stiffness-tensor is expressed

as a stiffness matrix (using Voigt’s notation):

C =




c11 c13 c13 0 0 0

c13 c33 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c55




. (A.1)
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We introduce the matrix S, the inverse of the matrix C. It is expressed by:

S =




1/EL −νL/EL −νL/EL 0 0 0

−νL/EL 1/ET −νT /ET 0 0 0

−νL/EL −νT /ET 1/ET 0 0 0

0 0 0 1/GT 0 0

0 0 0 0 1/GL 0

0 0 0 0 0 1/GL




. (A.2)

with EL,T , the longitudinal (L) and transverse (T) Young’s moduli ; νL,T , the longitudinal (L)

and transverse (T) Poisson’s ratios; and GL,T , the longitudinal (L) and transverse (T) shear

moduli. By inverting (A.1) and identifying it with (A.2), we obtain the following relations:

EL =
c11c33 − 2c2

13 + c11c23

c33 + c23

, νL =
c13

c33 + c23

,

ET =
c11(c

2
33 − c2

23) + 2c2
13(c23 − c33)

c11c33 − c2
13

, νT =
c11c23 − c2

13

c11c33 − c2
13

, (A.3)

GT = c44, GL = c55.

Knowing the stiffness coefficients values, we can verify if the thermodynamical stability

conditions are satisfied:

EL > 0, ET > 0, −1 < νT < 1,
(1− νT )

2

EL

ET

− ν2
L > 0, GL > 0. (A.4)
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Table I. Elastic properties of transversely isotropic plate (with c23 = c22 − 2c44).

ρ c11 c22 = c33 c12 = c13 c44 c66 = c55

(g.cm−3) (GPa) (GPa) (GPa) (GPa) (GPa)

1.85 23.05 15.1 8.7 3.25 4.7
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Table II. Mean value, maximum and minimum values of the homogenized longitudinal and transver-

sal Young modulus, of the four elastic constants and of mass density affecting the ultrasonic prop-

agation in the framework of the model. These values are taken from Dong and Guo (2004).

Mechanical EL ET c11 c13 c33 c55 = GL ρ

quantity (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (g.cm−3)

Mean

value 16.6 9.5 23.1 8.7 15.1 4.7 1.722

(reference)

Minimum 13.4 6.5 17.6 5.1 9.1 3.3 1.66

Maximum 20.6 12.8 29.6 15.9 25.9 5.5 1.753
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Table III. The minimal and maximal values of each variable corresponding to the realistic range of

variation obtained i) by considering the reference values of Table II and ii) by verifying that the

thermodynamical stability conditions are fulfilled. Values resulting from the stability conditions

are marked with an asterisk.

Material c11 c13 c33 c55 = GL ρ

property S (GPa) (GPa) (GPa) (GPa) (g.cm−3)

Realistic

range [Sm, SM ] [17.6, 29.6] [5.1, 11.1∗] [11.8∗, 25.9] [3.3, 5.5] [1.66, 1.753]

(reference)
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2 Response to the referee 1 on the MS# 08-05934

This question has been treated in details in a previous paper (A.L. Shuvalov, O. Pon-
celet, M. Deschamps, C. Baron, Long-wavelength dispersion of acoustic waves in trans-
versely inhomogeneous anisotropic plates, Wave Motion 42 (2005), pp. 367-382). We
have added some sentences in section IV to summarize the main results of this paper.

2. Only 1 original result is presented (subsection IV.B.2), the other ones are comparison with
the literature.

From the section IV, the paper has been reorganized. In the revised version, the
section IV is devoted to the validation of the method while as the section V presents
the applications of the method as original results. We focus on the effect of a spatial
gradient of material properties (mass density and stiffness coefficients) of cortical bone
on its ultrasonic response obtained with an axial transmission device in the in vivo
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3. Section IV.C does not provide any significant results; it is only general considerations. If the
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Reviewer #1 (Tables/Figures Adequate):
I think that figures must be enhanced. Figure 1 is not necessary. The comparison of figure 2a.

and 2.b is not easy.
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to keep the former presentation and add a comment in the text to explain their choice.

Reviewer #1 (Concise):
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The section IV has been reorganized. See item 2 above.

Reviewer #1 (Remarks):
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porated in the revised version.
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• Page 5 section III: Avoid italics for the origin O of the frame.

The change has been made accordingly to the referee’s suggestion.

• Page 5 section III: the structure is "A" two dimensional one.
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• Page 7. first line: put a hat on R and T to be coherent with the following of the paper (or
avoid the hat in the following).
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• Page 8, line 4. normal stress instead of normal stresses.
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• Page 10 ref on Peano series.
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explained (non triviality of eq. (16) and a sentence on sigma13).
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• Page 10 eq. 18 a prime on a second eta vector would be appreciated to avoid ambiguity.
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• Page 11 subsection d. there is a > at first line.

The change has been made accordingly to the referee’s suggestion.
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• Page 12 explicit the choice of the number of terms in the expansion and in the choice of the
number of integration points.

We added the following sentence: “These choices ensure the convergence of the solution
and the accuracy of the results for a reasonable computation time (never exceeding
few minutes on the desktop computer)”.

• page 12 A. second paragraph first line: few differenceS.

The change has been made accordingly to the referee’s suggestion.

• page 12 A. last but one line: develloped.

The change has been made accordingly to the referee’s suggestion.

• page 13. properties of water are explained page 12.

The change has been made accordingly to the referee’s suggestion.

Hopefully, no significant points seem to have been ignored, so far as we know. We hope
that this corrected version provides an answer at each of your comments.

Yours sincerely,

Salah NAILI,
for the authors.
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Dear Referee,

Thank you for the opportunity you gave us to revise our paper entitled “Propagation
of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to
ultrasound characterization” by C. Baron and S. Naili. Please accept this enclosed revised
version for reconsideration and publication in Journal of the Acoustical Society of America.

We thank you for your helpful remarks which have allowed to improve the manuscript.

In response to the referees’s suggestions and comments, we have revised our manuscript
the best we could.

In what follows you will find a point-by-point response to your comments, referred to
their number (your comments are reproduced in small print for your convenience).

Reviewer #2 (Good Scientific Quality):
Continuous variations have been treated before, at least by Willis as a model for very rough

surfaces about 15 years ago. Anyway, the idea of integrating the Stroh form of the equations is
a straightforward one, and I’d be surprised if it hadn’t been treated before. On the other hand,
when evaluating the integrals numerically, these authors are effectively discretizing their properties
through the thickness of the material. (They are using Simpson’s rule, which amounts to replac-
ing the exact property variation with a piecewise quadratic approximation.) Certainly, however,
considering continuous property variations is not the norm in the field.

One reason that piecewise constant variations continues to be the norm in the field, however, is
the problem of stability which is not addressed by these authors. At high (High in this case means
high enough that there are strongly evanescent wave modes in the field.) frequencies, the propagator
matrix formulation is known to lead to numerical instabilities, and even a formally exact solution
turns out to be practically worthless. In that regime, something needs to be done to address the
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numerical instability. The usual remedies require piecewise uniform material properties. At lower
frequencies, nearly any old thing will work ok.

We agree with the referee’s comment. There is still a stability problem at high frequencies,
but not more than in more classical methods derived from Thomson Haskell. One of the
advantages of the method presented in this paper is to provide an analytical exact solution,
calculated approximately and so to be able to estimate the accuracy of the results (the errors
come from the truncation of the series and from the numerical evaluation of the integrals),
which cannot be done for the Thomson-Haskell method which provides an exact solution to
an approximated problem.

Moreover, to evaluate the matricant on a greater distance, it would be necessary to in-
crease the truncation order, which would extend the computation time and induce numerical
instabilities (this second point is much more important), due to the excessive dimensions of
the multiple integrals. Here, it is better to limit the spatial extent of the computation by
breaking the study interval into smaller segments, then calculate the matricants for each of
these subintervals, and finally use the composition formula:

M(d, 0) = M(d, d1)M(d1, 0).

This approach yields a more accurate evaluation of the global matricant on the whole
study interval. Thus, for each specific matricant, the truncation order remains reasonable,
ensuring the stability and accuracy of the numerical computation. But, in our sense it is not
the key point in this paper.

Reviewer #2 (Good Scientific Quality):
In summary, this approach is reasonable. It is novel, but not groundbreaking. It suffers from

stability limitations that are not considered or described by the authors. For the primary application
motivating this work, NDE of bone, the approach is reasonable.

Therefore, I’d recommend a slight reshaping of the manuscript, placing more emphasis on the
intended application, and less emphasis on the "method" as a general purpose method. I’d suggest
formulating the manuscript as “Here’s the application we want to consider – this is the approach
we’re choosing to solve this problem.”

We agree with the referee’s comment. From the section IV, the paper has been reor-
ganized. In the revised version, the section IV is devoted to the validation of the method
while as the section V presents the applications of the method as original results. In the
sub-section V.B, we focus on the effect of a spatial gradient of material properties (mass
density and stiffness coefficients) of cortical bone on its ultrasonic response obtained with
an axial transmission device in the in vivo configuration.

Hopefully, no significant points seem to have been ignored, so far as we know. We hope
that this corrected version provides an answer at each of your comments.

Yours sincerely, Salah NAILI,

for the authors.
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