Bone repair and ultrasound stimulation: an insight into the interaction of LIPUS with the bone through a multiscale computational study

Cécile Baron¹, Carine Guivier-Curien², Vu-Hieu Nguyen³, Salah Naili³

¹Aix-Marseille Université, CNRS, ISM UMR 7287, Marseille France
²Aix-Marseille Université, CNRS, Ecole Centrale, IRPHE UMR 7342, Marseille France
³Université Paris Est, MSME UMR 8208 CNRS, Créteil France

New Orleans, Decembre 7th, 2017

174th Meeting of the Acoustical Society of America

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen [®]

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen ®

What mechanisms are responsible?

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen ®

What mechanisms are responsible? Thermal effects and Mechanical effects

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS ? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen ®

What mechanisms are responsible? Thermal effects and Mechanical effects

> mechanotransduction

But how ? Open question ! (Claes et al. 2007, Padilla et al. 2014

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen ®

What mechanisms are responsible? Thermal effects and Mechanical effects

> mechanotransduction

But how?

Open question!

(Claes et al. 2007, Padilla et al. 2014)

How is cortical bone tissue organized?

- Multiscale porosity :
 - vascular porosity (HV) : Havers and Volkman canals (Ø~ 100 μm)
 - lacuno-canalicular network (LCN) : lacunae (Ø~ 10 μm) + canaliculi (Ø< 1 μm)
 - collagen-hydroxyapatite porosity (Ø~ 10 nm)

How is cortical bone tissue organized?

Multiscale porosity :

- vascular porosity (HV) : Havers and Volkman canals (Ø
 ^Δ 100 μm)
- lacuno-canalicular network (LCN) : lacunae (Ø~ 10 μm) + canaliculi (Ø< 1 μm)
- ► collagen-hydroxyapatite porosity (Ø~ 10 nm)

Bone cells : osteoblasts, osteoclasts and osteocytes

How is cortical bone tissue organized?

- Multiscale porosity :
 - vascular porosity (HV) : Havers and Volkman canals (Ø
 ^Δ 100 μm)
 - lacuno-canalicular network (LCN) : lacunae (Ø~ 10 μm) + canaliculi (Ø< 1 μm)
 - ► collagen-hydroxyapatite porosity (Ø~ 10 nm)
- Bone cells : osteoblasts, osteoclasts and osteocytes

How is cortical bone tissue organized?

- Multiscale porosity :
 - vascular porosity (HV) : Havers and Volkman canals (Ø~ 100 μm)
 - lacuno-canalicular network (LCN) : lacunae (Ø~ 10 μm) + canaliculi (Ø< 1 μm)</p>
 - ► collagen-hydroxyapatite porosity (Ø~ 10 nm)
- Bone cells : osteoblasts, osteoclasts and osteocytes

How is cortical bone tissue organized?

- Multiscale porosity :
 - vascular porosity (HV) : Havers and Volkman canals (Ø≃ 100 μm)
 - lacuno-canalicular network (LCN) : lacunae (Ø~ 10 μm) + canaliculi (Ø< 1 μm)</p>
 - ► collagen-hydroxyapatite porosity (Ø~ 10 nm)
- Bone cells : osteoblasts, osteoclasts and osteocytes

Bone mechanotransduction under physiological loading

(Cowin et al. 1991, Weinbaum et al. 1994, Klein-Nulend et al. 1995, etc.)

Interstitial fluid (IFluid) shear stress on **osteocytes** ⇒ bone remodellir

How is cortical bone tissue organized?

- Multiscale porosity :
 - vascular porosity (HV) : Havers and Volkman canals (Ø≃ 100 μm)
 - lacuno-canalicular network (LCN) : lacunae (Ø~ 10 μm) + canaliculi (Ø< 1 μm)</p>
 - ► collagen-hydroxyapatite porosity (Ø~ 10 nm)

Bone cells : osteoblasts, osteoclasts and osteocytes

Bone mechanotransduction under physiological loading

(Cowin et al. 1991, Weinbaum et al. 1994, Klein-Nulend et al. 1995, etc.)

Interstitial fluid (IFluid) shear stress on osteocytes

 \Rightarrow bone remodelling

Cortical bone = double-porosity medium

How is cortical bone tissue organized?

- Multiscale porosity :
 - vascular porosity (HV) : Havers and Volkman canals (Ø
 ^Δ 100 μm)
 - lacuno-canalicular network (LCN) : lacunae (Ø~ 10 μm) + canaliculi (Ø< 1 μm)</p>
 - ► collagen-hydroxyapatite porosity (Ø~ 10 nm)

Bone cells : osteoblasts, osteoclasts and osteocytes

Bone mechanotransduction under physiological loading

(Cowin et al. 1991, Weinbaum et al. 1994, Klein-Nulend et al. 1995, etc.)

Interstitial fluid (IFluid) shear stress on osteocytes

 \Rightarrow bone remodelling

Canaliculus Lacuna (space) -Osteocyte

Cortical bone = double-porosity medium

<u>Hypothesis</u> : US excitation at meso-scale level induces fluid shear stress on osteocytes at micro-scale level

Locks :

- Multiscale phenomena to understand and analyze
- Multiphysics : acoustics, fluid and structure (poroelasticity)

<u>Hypothesis</u> : US excitation at meso-scale level induces fluid shear stress on osteocytes at micro-scale level

Locks :

- Multiscale phenomena to understand and analyze
- Multiphysics : acoustics, fluid and structure (poroelasticity)

Aim :

Development of a relevant FE model to investigate LIPUS mechanisms

<u>Hypothesis</u> : US excitation at meso-scale level induces fluid shear stress on osteocytes at micro-scale level

Locks :

- Multiscale phenomena to understand and analyze
- Multiphysics : acoustics, fluid and structure (poroelasticity)

Aim :

Development of a relevant FE model to investigate LIPUS mechanisms

Biphasic medium 2D-model + US

Vascular pores (HV) = fluid phase ≈ water
 HV pores reconstructed from binarized μCT images (22.5 μm)

RX image

- Poroelastic bone matrix (PBM)
 - anisotropic solid (Scheiner et al. 2015) + LCN full of IFluid \rightarrow equivalent medium (Biot's model)

Biphasic medium 2D-model + US

 Vascular pores (HV) = fluid phase ≈ water HV pores reconstructed from binarized μCT images (22.5 μm)

● Poroelastic bone matrix (PBM) anisotropic solid (Scheiner et al. 2015) + LCN full of IFluid → equivalent medium (Biot's model)

● Surrounding soft tissue = fluid phase ≈ water

Biphasic medium 2D-model + US

 Vascular pores (HV) = fluid phase ≈ water HV pores reconstructed from binarized μCT images (22.5 μm)

- Poroelastic bone matrix (PBM) anisotropic solid (Scheiner et al. 2015) + LCN full of IFluid → equivalent medium (Biot's model)
- Surrounding soft tissue = fluid phase \approx water
- Interfaces porous solid / fluid domains : Boundary conditions
 - continuity of pressure and stress fields
 - open pore conditions (interstitial fluid velocity = fluid velocity)

Biphasic medium 2D-model + US

 Vascular pores (HV) = fluid phase ≈ water HV pores reconstructed from binarized μCT images (22.5 μm)

- Poroelastic bone matrix (PBM) anisotropic solid (Scheiner et al. 2015) + LCN full of IFluid → equivalent medium (Biot's model)
- Surrounding soft tissue = fluid phase \approx water
- Interfaces porous solid / fluid domains : Boundary conditions
 - continuity of pressure and stress fields
 - open pore conditions (interstitial fluid velocity = fluid velocity)

+ Ultrasound stimulation (US) from Exogen device f = 1 MHz, pressure = 67 kPa, Øtransducer = 20 mm, duty cycle = 20%, pulse duration = 1 ms

Biphasic medium 2D-model + US

 Vascular pores (HV) = fluid phase ≈ water HV pores reconstructed from binarized μCT images (22.5 μm)

- Poroelastic bone matrix (PBM) anisotropic solid (Scheiner et al. 2015) + LCN full of IFluid → equivalent medium (Biot's model)
- Surrounding soft tissue = fluid phase \approx water
- Interfaces porous solid / fluid domains : Boundary conditions
 - continuity of pressure and stress fields
 - open pore conditions (interstitial fluid velocity = fluid velocity)
- + Ultrasound stimulation (US) from Exogen device f = 1 MHz, pressure = 67 kPa, Øtransducer = 20 mm, duty cycle = 20%, pulse duration = 1 ms

FE simulation

Interaction between ultrasound waves and double-porosity medium in water

Software : Comsol Multiphysics

- Time-dependent problem
 - ⇒ Weak form of wave equation in poroelastic medium + boundary conditions (*Nguyen et al.* 2010) $\Delta x \le \lambda/5$, and $\Delta t = 0.1 \mu s$ (CFL) → 24h to simulate a single cycle propagation.

FE simulation

Interaction between ultrasound waves and double-porosity medium in water

Software : Comsol Multiphysics

• Time-dependent problem

⇒ Weak form of wave equation in poroelastic medium+ boundary conditions (Nguyen et al. 2010)

 $riangle x \leq \lambda/5$, and $riangle t = 0.1 \mu s$ (CFL)

 \rightarrow 24h to simulate a single cycle propagation.

Input parameters :

- fluids properties = water
- bone material properties = anisotropic poroelasticity (Scheiner et al. 2015, Goulet et al. 2008, Nguyen et al. 2010, Cowin et al. 2009)
- US stimulation parameters from Exogen device
- Output parameter :
 - ► IFluid shear stress : $\tau = \frac{\mu ||1}{\sqrt{}}$ (Goulet et al. 2008)

- τ : wall shear stress (Pa)
- μ : dynamic IFluid viscosity (Pa.s)
- \dot{w} : IFluid velocity relative to the solid (m/s
- k : LCN permeability (m²)

Baron, Guivier-Curien et al

US and bone

FE simulation

Interaction between ultrasound waves and double-porosity medium in water

Software : Comsol Multiphysics

• Time-dependent problem

 \Rightarrow Weak form of wave equation in poroelastic medium

+ boundary conditions (Nguyen et al. 2010)

 $riangle x \leq \lambda/5$, and $riangle t = 0.1 \mu s$ (CFL)

 \rightarrow 24h to simulate a single cycle propagation.

Input parameters :

- fluids properties = water
- bone material properties = anisotropic poroelasticity (Scheiner et al. 2015, Goulet et al. 2008, Nguyen et al. 2010, Cowin et al. 2009)
- US stimulation parameters from Exogen device
- Output parameter :
 - ► IFluid shear stress : $\tau = \frac{\mu || \dot{w} ||}{\sqrt{k}}$ (Goulet et al. 2008)

- τ : wall shear stress (Pa)
- μ : dynamic IFluid viscosity (Pa.s)
- \dot{w} : IFluid velocity relative to the solid (m/s)
- k : LCN permeability (m²)

Wave propagation :

p : fluid pressure ps : IFluid pressure

Baron, Guivier-Curien et al.

- true geometry and vascular pores
- true geometry without vascular pores
- smoothed geometry without vascular pores

- true geometry and vascular pores
- true geometry without vascular pores
- smoothed geometry without vascular pores

- true geometry and vascular pores
- true geometry without vascular pores
- smoothed geometry without vascular pores

- true geometry and vascular pores
- true geometry without vascular pores
- smoothed geometry without vascular pores

IFluid shear stress and fluid acoustic pressure maps at 200 μ s

IFluid shear stress and fluid acoustic pressure maps at 1 ms

influence of the geometry

- Influence of the vascular pores (Goulet et al. 2008)
- IFluid shear stress localized around medullar canal and vascular pores

IFluid shear stress and fluid acoustic pressure maps at 1 ms

- influence of the geometry
- influence of the vascular pores (Goulet et al. 2008)
- IFluid shear stress localized around medullar canal and vascular pores

Average IFluid shear stress : [0.4 - 1.2] Pa

• Prediction interval of osteocyte activation under physiological loading : [0.3 - 8] Pa

(Weinbaum et al. 1994)

2-scale numerical model to investigate the mechanical effects of LIPUS on osteocytes.

 \Rightarrow IFluid shear stress level locally in the range of the prediction interval ([0.8-3] Pa) given in literature for physiological loading (*Weinbaum et al. 1994*)

- \Rightarrow IFluid shear stress concentrated around medullar canal and vascular pores
- \Rightarrow Influence of the geometry and of the vascular pores

Poroelastic model and US

- LCN permeability 2.2× 10⁻²² m² (Cowin et al. 2009)
- treatment duration (15 min) vs 1 cycle (1 ms) : cumulative effect to investigate
- healing tissues
- stimulation frequency higher than physiological loading (1 100 Hz)
- Ioading direction
- pulsed ultrasound : 2 frequencies \Rightarrow repetition frequency and signal frequency pulse duration = 1 ms vs signal period = 1 μ s

2-scale numerical model to investigate the mechanical effects of LIPUS on osteocytes.

 \Rightarrow IFluid shear stress level locally in the range of the prediction interval ([0.8-3] Pa) given in literature for physiological loading (*Weinbaum et al. 1994*)

- \Rightarrow IFluid shear stress concentrated around medullar canal and vascular pores
- \Rightarrow Influence of the geometry and of the vascular pores

Poroelastic model and US

- LCN permeability 2.2× 10⁻²² m² (Cowin et al. 2009)
- treatment duration (15 min) vs 1 cycle (1 ms) : cumulative effect to investigate
- healing tissues
- stimulation frequency higher than physiological loading (1 100 Hz)
- Ioading direction
- pulsed ultrasound : 2 frequencies \Rightarrow repetition frequency and signal frequency pulse duration = 1 ms **vs** signal period = 1 μ s

 \Rightarrow relaxation time of the LCN porosity pprox **1 ms** \Rightarrow relaxation time for the vascular porosity pprox **1** μ :

12/14

New Orleans, Decembre 7th, 2017

2-scale numerical model to investigate the mechanical effects of LIPUS on osteocytes.

 \Rightarrow IFluid shear stress level locally in the range of the prediction interval ([0.8-3] Pa) given in literature for physiological loading (*Weinbaum et al. 1994*)

- \Rightarrow IFluid shear stress concentrated around medullar canal and vascular pores
- \Rightarrow Influence of the geometry and of the vascular pores

Poroelastic model and US

- LCN permeability 2.2× 10⁻²² m² (Cowin et al. 2009)
- treatment duration (15 min) vs 1 cycle (1 ms) : cumulative effect to investigate
- healing tissues
- stimulation frequency higher than physiological loading (1 100 Hz)
- Ioading direction
- pulsed ultrasound : 2 frequencies \Rightarrow repetition frequency and signal frequency pulse duration = 1 ms vs signal period = 1 μ s
 - \Rightarrow relaxation time of the LCN porosity \approx 1 ms
 - \Rightarrow relaxation time for the vascular porosity \approx 1 μ s

Hypothesis and aims

<u>Hypothesis</u> : US excitation at meso-scale level induces fluid shear stress on osteocytes at micro-scale level

 \Rightarrow inspired from physiological load mechanisms

Hypothesis and aims

<u>Hypothesis</u> : US excitation at meso-scale level induces **fluid shear stress** on **osteocytes** at micro-scale level

⇒inspired from physiological load mechanisms

Hypothesis and aims

Hypothesis : US excitation at meso-scale level induces fluid shear stress on osteocytes at micro-scale level

⇒inspired from physiological load mechanisms

Questions :

- Iluid shear stress?
- osteocytes ?

Other physical phenomena :

- Microstreaming? Force radiation? **Piezoelectricity?**
- vascular porosity : osteoblasts / lining cells ? (Kwon et al. 2010, 2012)

→ LIPUS on culture cells : cells = osteoblasts (Doan et al. 1999, Gleizal et al. 2010, Puts et al. 2016)

Thank you for your attention.

Any questions (or answers)?

cecile.baron@univ-amu.fr carine.guivier@univ-amu.fr

Baron, Guivier-Curien et al.

Osteocyte Model

IFluid domain : ρ =997 kg/m³, μ =885× 10⁻⁴ kg.m⁻¹.s⁻¹ ECM : *E*=16.6 GPa, ν =0.38 osteocyte : *E*=4.47 kPa, ν =0.3

Limitations of the study

• a realistic model of the bone callus?

2-scale numerical model to investigate the mechanical effects of LIPUS on osteocytes.

Osteocyte process model

- Zoom on the osteocyte process into the canaliculi
 - \rightarrow GAG fibers \rightarrow strain amplification

You et al. 2001

2-scale numerical model to investigate the mechanical effects of LIPUS on osteocytes.

Osteocyte process model

- Zoom on the osteocyte process into the canaliculi
 - \rightarrow GAG fibers \rightarrow strain amplification

You et al. 2001

$\label{eq:Fs} \begin{array}{l} \mbox{Drag forces } F_d \\ F_s = 2\pi a L \tau \approx 16.10^{-12} N \Rightarrow F_d \approx 330.10^{-12} N \end{array}$

a = 0.22 μ m : process radius ; L = 20 μ m : process length.

Wave propagation in the anisotropic poroelastic matrix (from Nguyen et al. 2012)

The constitutive equations for the anisotropic linear poroelastic material are given by

$$\boldsymbol{\sigma} = \mathbb{C} : \boldsymbol{\epsilon} - \boldsymbol{\alpha} \ \boldsymbol{p} \,, \tag{7}$$

$$-\frac{1}{M}p = \nabla \cdot \boldsymbol{w} + \boldsymbol{\alpha} : \boldsymbol{\epsilon} , \qquad (8)$$

where $\mathbb{C}(x)$ is the elasticity fourth-order tensor of drained porous material; α , which is a symmetric second-order tensor, is the Biot effective tensor; M is the Biot scalar modulus; $\epsilon(x,t)$ is the infinitesimal strain tensor, which is defined as the symmetric part of ∇u^s . $w = \phi(u^f - u^s)$

 boundary conditions : pressure and stress fields continuity + open pore condition (continuity of the normal relative velocity between fluid and solid) Transverse isotropic extralacunar matrix

$$\begin{pmatrix} 22.88 & 10.14 & 0 \\ 10.14 & 29.60 & 0 \\ 0 & 0 & 6.98 \end{pmatrix} (GPa)$$

(Scheiner et al. 2015)

Mass density : ρ =1.9 g/cm³ Isotropic LCN permeability : 2.2×10^{-22} m² (*Smith et al. 2002, Cowin et al. 2009*) Other Biot's parameters from *NGuyen et al. 2016* ϕ =5%, α_1 =0.11, α_2 =0.15, M = 35.6 GPa.

Poroelastic healing tissues properties

4 weeks_ Isotropic solid matrix

Granular tissue

$$\begin{pmatrix} 2.502 & 2.5 & 0 \\ 2.5 & 2.502 & 0 \\ 0 & 0 & 0.001 \end{pmatrix} (GPa)$$

Cartilage

$$\left(\begin{array}{cccc} 5.98 & 5.3 & 0 \\ 5.3 & 5.98 & 0 \\ 0 & 0 & 0.34 \end{array}\right) (\text{GPa})$$

Woven bone

$$\left(\begin{array}{rrrr} 17.1 & 12.9 & 0\\ 12.9 & 17.1 & 0\\ 0 & 0 & 2.1 \end{array}\right) (GPa)$$

$$\phi = 90\%$$

 $\alpha_1 = 0.98$
 $\alpha_2 = 0.96$
M = 2.2 MPa
 $\rho = 1.01 \text{ g/cm}^2$

 $\phi = 80\%$ $\alpha_1 = 0.98$ $\alpha_2 = 0.96$ M = 2.4 MPa $\rho = 1.04 \text{ g/cm}^2$

 $\phi = 50\%$ $\alpha_1 = 0.976$ $\alpha_2 = 0.955$ M = 2.55 MPa $\rho = 1.25 \text{ g/cm}^2$