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Ultrasound waves and living tissues

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS ? Low Intensity Pulsed Ultrasound Stimulation

LIPUS stimulates bone healing :

Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000,

Hemery et al. 2011, ...)

FDA approval since 1994

Commercial device : Exogen R©
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Baron, Guivier-Curien et al. US and bone New Orleans, Decembre 7th , 2017 2 / 14



Ultrasound waves and living tissues

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS ? Low Intensity Pulsed Ultrasound Stimulation

LIPUS stimulates bone healing :

Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000,

Hemery et al. 2011, ...)

FDA approval since 1994

Commercial device : Exogen R©

What mechanisms are responsible?

Thermal effects and Mechanical effects > mechanotransduction

But how ?

Open question !
(Claes et al. 2007, Padilla et al. 2014)

Baron, Guivier-Curien et al. US and bone New Orleans, Decembre 7th , 2017 2 / 14



Bone Tissue

How is cortical bone tissue organized?

Multiscale porosity :
◮ vascular porosity (HV) :

Havers and Volkman canals (Ø≃ 100 µm)

◮ lacuno-canalicular network (LCN) :
lacunae (Ø≃ 10 µm) + canaliculi (Ø< 1 µm)

◮ collagen-hydroxyapatite porosity (Ø≃ 10 nm)
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Hypothesis and aims

Hypothesis : US excitation at meso-scale level induces fluid shear stress on osteocytes

at micro-scale level

Locks :

Multiscale phenomena to understand and analyze

Multiphysics : acoustics, fluid and structure (poroelasticity)
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Model

Biphasic medium 2D-model + US

Vascular pores (HV) = fluid phase ≈ water

HV pores reconstructed from binarized µCT images (22.5 µm)

RX image

Poroelastic bone matrix (PBM)

anisotropic solid (Scheiner et al. 2015) + LCN full of IFluid → equivalent medium (Biot’s model)
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FE simulation

Interaction between ultrasound waves and double-porosity medium in water

Software : Comsol Multiphysics

Time-dependent problem

⇒ Weak form of wave equation in poroelastic medium
+ boundary conditions (Nguyen et al. 2010)

△x ≤ λ/5, and △t = 0.1µs (CFL)
→ 24h to simulate a single cycle propagation.

water

PBM

HV

US
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+ boundary conditions (Nguyen et al. 2010)

△x ≤ λ/5, and △t = 0.1µs (CFL)
→ 24h to simulate a single cycle propagation.

water

PBM

HV

US

Input parameters :
◮ fluids properties = water
◮ bone material properties = anisotropic poroelasticity

(Scheiner et al. 2015, Goulet et al. 2008, Nguyen et al. 2010, Cowin et al. 2009)
◮ US stimulation parameters from Exogen device

Output parameter :

◮ IFluid shear stress : τ =
µ‖ẇ‖√

k
(Goulet et al. 2008)

τ : wall shear stress (Pa)
µ : dynamic IFluid viscosity (Pa.s)
ẇ : IFluid velocity relative to the solid (m/s)
k : LCN permeability (m2)
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Results

Wave propagation :

t = 5 µs t = 20 µs
ps (Pa) p (Pa) ps (Pa) p (Pa)

p : fluid pressure
ps : IFluid pressure
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Results

3 models :

true geometry and vascular pores

true geometry without vascular pores

smoothed geometry without vascular pores
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Results

IFluid shear stress and fluid acoustic pressure maps at 200 µs

(Pa)
p

(Pa)

(Pa)(Pa) (Pa)p (Pa) p (Pa) p (Pa)
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Results

IFluid shear stress and fluid acoustic pressure maps at 1 ms

 τ
(Pa)

 p
(Pa)

τ (Pa)τ (Pa) τ (Pa) p (Pa)p (Pa)p (Pa)

influence of the geometry

influence of the vascular pores (Goulet et al. 2008)

IFluid shear stress localized around medullar canal and vascular pores
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Results

IFluid shear stress 1cycle-average

• Average IFluid shear stress : [0.4 - 1.2] Pa

• Prediction interval of osteocyte activation under physiological loading : [0.3 - 8] Pa

(Weinbaum et al. 1994)
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Conclusion and Perspectives

2-scale numerical model to investigate the mechanical effects of LIPUS on osteocytes.

⇒ IFluid shear stress level locally in the range of the prediction interval ([0.8-3] Pa) given in
literature for physiological loading (Weinbaum et al. 1994)

⇒ IFluid shear stress concentrated around medullar canal and vascular pores

⇒ Influence of the geometry and of the vascular pores

Poroelastic model and US

LCN permeability 2.2× 10−22 m2 (Cowin et al. 2009)

treatment duration (15 min) vs 1 cycle (1 ms) : cumulative effect to investigate

healing tissues

stimulation frequency higher than physiological loading (1 - 100 Hz)

loading direction

pulsed ultrasound : 2 frequencies ⇒ repetition frequency and signal frequency

pulse duration = 1 ms vs signal period = 1 µs
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Hypothesis and aims

Hypothesis : US excitation at meso-scale level induces fluid shear stress on

osteocytes at micro-scale level

⇒inspired from physiological load mechanisms
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Hypothesis and aims

Hypothesis : US excitation at meso-scale level induces fluid shear stress on

osteocytes at micro-scale level

⇒inspired from physiological load mechanisms

Questions :

fluid shear stress ?

osteocytes ?

Other physical phenomena :

Microstreaming ?

Force radiation?

Piezoelectricity?

vascular porosity :

osteoblasts / lining cells ?
(Kwon et al. 2010, 2012)

→ LIPUS on culture cells : cells = osteoblasts

(Doan et al. 1999, Gleizal et al. 2010, Puts et al. 2016)

[1-100] Hz

?
?

LIPUS
>1 MHz
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Thank you for your attention.

Any questions (or answers)?

C�

cecile.baron@univ-amu.fr

carine.guivier@univ-amu.fr
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Models

Osteocyte Model

IFluid domain : ρ=997 kg/m3 , µ=885× 10−4 kg.m−1 .s−1

ECM : E=16.6 GPa, ν=0.38
osteocyte : E=4.47 kPa, ν=0.3

input parameter :
IFluid P gradient : 30 Pa/µm

output parameter :
fluid shear stress on osteocyte : τ

6



Limitations of the study

a realistic model of the bone callus ?

t = 6 µs

Pa Pa

t = 20 µs

×104×104×104 ×105



Conclusion and Perspectives

2-scale numerical model to investigate the mechanical effects of LIPUS on osteocytes.

Osteocyte process model

Zoom on the osteocyte process into
the canaliculi

→ GAG fibers → strain amplification

You et al. 2001



Conclusion and Perspectives

2-scale numerical model to investigate the mechanical effects of LIPUS on osteocytes.

Osteocyte process model

Zoom on the osteocyte process into
the canaliculi

→ GAG fibers → strain amplification

You et al. 2001

Drag forces Fd

Fs=2πaLτ ≈ 16.10−12N ⇒ Fd ≈ 330.10−12N

a = 0.22 µm : process radius ; L = 20 µm : process length.





Equations

Wave propagation in the anisotropic poroelastic matrix (from Nguyen et al. 2012)

boundary conditions : pressure and stress fields continuity + open pore condition

(continuity of the normal relative velocity between fluid and solid)



Poroelastic cortical bone properties

Transverse isotropic extralacunar matrix





22.88 10.14 0

10.14 29.60 0

0 0 6.98



 (GPa)

(Scheiner et al. 2015)

Mass density : ρ=1.9 g/cm3

Isotropic LCN permeability : 2.2×10−22 m2 (Smith et al. 2002, Cowin et al. 2009)

Other Biot’s parameters from NGuyen et al. 2016

φ=5%, α1=0.11, α2=0.15, M = 35.6 GPa.



Poroelastic healing tissues properties

4 weeks_ Isotropic solid matrix

Granular tissue





2.502 2.5 0

2.5 2.502 0

0 0 0.001



 (GPa)

φ=90%

α1=0.98

α2=0.96
M = 2.2 MPa

ρ= 1.01 g/cm2

Cartilage





5.98 5.3 0

5.3 5.98 0

0 0 0.34



 (GPa)

φ=80%

α1=0.98

α2=0.96

M = 2.4 MPa

ρ= 1.04 g/cm2

Woven bone





17.1 12.9 0

12.9 17.1 0

0 0 2.1



 (GPa)

φ=50%

α1=0.976

α2=0.955

M = 2.55 MPa
ρ= 1.25 g/cm2


