How to understand the effects of LIPUS on bone healing? A multiscale computational investigation

Cécile Baron¹, Carine Guivier-Curien², Vu-Hieu Nguyen³, Salah Naili³

¹ Aix-Marseille Université, CNRS, ISM UMR 7287, Marseille France
² Aix-Marseille Université, CNRS, Ecole Centrale, IRPHE UMR 7342, Marseille France
³ Université Paris Est, MSME UMR 8208 CNRS, Créteil France

July 13, 2016

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen ^(B)

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS ? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen ®

What mechanisms are responsible?

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS ? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen [®]

What mechanisms are responsible? Thermal effects and Mechanical effects

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS ? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen [®]

What mechanisms are responsible? Thermal effects and Mechanical effects

But how?

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS ? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen ®

What mechanisms are responsible? Thermal effects and Mechanical effects

But how?

Open question ! (Claes et al. 2007, Padilla et al. 2014)

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS ? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen [®]

What mechanisms are responsible? Thermal effects and Mechanical effects

But how?

Open question ! (Claes et al. 2007, Padilla et al. 2014)

Bone Tissue

How is cortical bone tissue organized?

- Multiscale and two-level porosity : Havers-Volkmann network (HV) and lacuno-canalicular network (LCN)
- Bone cells : osteocytes
- Multiphasic (solid bone matrix, interstitial fluid and water)

Mechanotransduction

Fluid shear stress on osteocyte → bone remodelling Cowin et al. 1991, Klein-Nulend et al. 19

How is cortical bone tissue organized?

- Multiscale and two-level porosity : Havers-Volkmann network (HV) and lacuno-canalicular network (LCN)
- Bone cells : osteocytes
- Multiphasic (solid bone matrix, interstitial fluid and water)

Mechanotransduction

Fluid shear stress on osteocyte \rightarrow bone remodelling Cowin et al. 1991, Klein-Nulend et al. 1995

Hypothesis : US excitation at meso-scale level induces fluid shear stress on osteocytes at micro-scale level

Locks :

- Multiscale phenomena to understand and analyze
- Multiphysics : acoustics, fluid and structure
- Coupling multiscale and multiphysics

Hypothesis : US excitation at meso-scale level induces fluid shear stress on osteocytes at micro-scale level

Locks :

- Multiscale phenomena to understand and analyze
- Multiphysics : acoustics, fluid and structure
- Coupling multiscale and multiphysics

Development of **relevant models** to understand LIPUS mechanisms in a first preliminary study

Hypothesis : US excitation at meso-scale level induces fluid shear stress on osteocytes at micro-scale level

Locks :

- Multiscale phenomena to understand and analyze
- Multiphysics : acoustics, fluid and structure
- Coupling multiscale and multiphysics

Development of relevant models to understand LIPUS mechanisms in a first preliminary study

Models

Cortical bone = double-level porous medium

- vascular porosity (HV) : Havers and Volkman canals ($\emptyset \simeq 100 \ \mu m$)
- lacuno-canalicular network (LCN) : lacunae (\emptyset \simeq 10 μ m) + canaliculi (\emptyset < 1 μ m)

Biphasic medium Model : ModBone

 poroelastic bone matrix (PMB) anisotropic solid (Scheiner et al. 2015) + LCN → equivalent medium (Biot's model)

HV pores = fluid phase

Models

Cortical bone = double-level porous medium

- vascular porosity (HV) : Havers and Volkman canals ($\emptyset \simeq 100 \ \mu m$)
- lacuno-canalicular network (LCN) : lacunae ($\emptyset \simeq$ 10 μ m) + canaliculi (\emptyset < 1 μ m)

Biphasic medium Model : ModBone

- poroelastic bone matrix (PMB)
 anisotropic solid (Scheiner et al. 2015) + LCN
 → equivalent medium (Biot's model)
 - HV pores = fluid phase

water US PMB HV

Osteocyte Model : ModOst

- Osteocyte cell (solid phase)
- Interstitial Fluid (IFluid) (fluid phase)
- Extracellular matrix, ECM (solid phase)

Models

Cortical bone = double-level porous medium

- vascular porosity (HV) : Havers and Volkman canals ($\emptyset \simeq 100 \ \mu m$)
- lacuno-canalicular network (LCN) : lacunae ($\emptyset \simeq$ 10 μ m) + canaliculi (\emptyset < 1 μ m)

Biphasic medium Model : ModBone

- poroelastic bone matrix (PMB) anisotropic solid (*Scheiner et al. 2015*) + LCN → equivalent medium (Biot's model)
 - HV pores = fluid phase

Osteocyte Model : ModOst

- Osteocyte cell (solid phase)
- Interstitial Fluid (IFluid) (fluid phase)
- Extracellular matrix, ECM (solid phase)

FE simulation

2D and 3D coupling between acoustics and fluid and fluid-solid interaction <u>Software</u> : Comsol Multiphysics

• ModBone (2D) : US stimulation at the mesoscale HV from CT scan images (22.5 μ m) Time-dependent problem Weak form of wave propagation in poroelastic medium (Nguyen et al. 2010) $\Delta x_{bone} \approx 0.7$ mm, $\Delta x_{water} \approx 0.4$ mm and $\Delta t \approx 0.1 \mu s$ \rightarrow 40h to simulate a single cycle propagation.

Baron, Guivier-Curien et al

FE simulation

2D and 3D coupling between acoustics and fluid and fluid-solid interaction <u>Software</u> : Comsol Multiphysics

 ModBone (2D) : US stimulation at the mesoscale HV from CT scan images (22.5 μm) Time-dependent problem
 Weak form of wave propagation in poroelastic medium (Nguyen et al. 2010)

$$\label{eq:xbone} \begin{split} & \bigtriangleup x_{bone} \approx 0.7 \text{ mm}, \ \bigtriangleup x_{water} \approx 0.4 \text{ mm} \text{ and } \bigtriangleup t \approx 0.1 \mu s \\ & \rightarrow 40 \text{h to simulate a single cycle propagation.} \end{split}$$

Input parameters :

US stimulation parameters (from Exogen device)

f=1MHz, pressure=2kPa, duty cycle=20%, pulse duration=1ms, Øtransducer=10mm surrounding fluid properties = water

bone material properties = anisotropic poroelasticity (Scheiner et al. 2015, Goulet et al. 2008, Nguyen et al. 2010, Cowin et al. 2009)

output parameter : IFluid pressure gradient

FE simulation

2D and 3D coupling between acoustics and fluid and fluid-solid interaction <u>Software</u> : Comsol Multiphysics

 \rightarrow 40h to simulate a single cycle propagation.

input parameters :

US stimulation parameters (from Exogen device)

f=1MHz, pressure=2kPa, duty cycle=20%, pulse duration=1ms, Øtransducer=10mm surrounding fluid properties = water

bone material properties = anisotropic poroelasticity (Scheiner et al. 2015, Goulet et al. 2008, Nguyen et al. 2010, Cowin et al. 2009)

output parameter : IFluid pressure gradient

Results and Discussion : ModBone

IFluid pressure (IFluid P) difference induced by US stimulation on 1 cycle

Max IFluid $P_{periosteum}$ – IFluid $P_{endosteum}$ \approx 15000 Pa

 \rightarrow IFluid P gradient = 5 Pa/ μ m

• IFluid P gradient \approx 30 Pa /µm (Anderson et al. 2005, Verbruggen et al. 2012, 2014) \rightarrow 6-times lower than previous studies considering physiological mechanical loadin

Fluid shear stress on osteocyte ?

Baron, Guivier-Curien et al.

Results and Discussion : ModBone

IFluid pressure (IFluid P) difference induced by US stimulation on 1 cycle

 $Max | IFluid P_{periosteum} - IFluid P_{endosteum} | \approx 15000 \text{ Pa}$

 \rightarrow IFluid P gradient = 5 Pa/ μ m

IFluid P gradient ≈ 30 Pa /μm (Anderson et al. 2005, Verbruggen et al. 2012, 2014)

ightarrow 6-times lower than previous studies considering physiological mechanical loading.

Fluid shear stress on osteocyte ?

Baron, Guivier-Curien et al.

ModOst (3D) :

FE simulation

Fluid Structure Interaction Model (one-way coupling)

- input parameters : IFluid P gradient from ModBone : 5 Pa/μm
- output parameters : fluid shear stress on osteocyte : τ

IFluid domain : newtonian, ρ =997 kg/m³, μ =885× 10⁻⁴ kg.m⁻¹.s⁻¹

Solid domain : linear elastic, ECM : *E*=16.6 GPa, *v*=0.38 ; osteocyte : *E*=4.47 kPa, *v*=0.3

Results and Discussion : ModOst

Fluid shear stress on osteocyte (cell body and processes) $\tau_{max} \approx 0.8 \text{ Pa}$

- Shear stress patterns obviously related to simple symmetrical geometry and boundary conditions
- Theoretical shear stress interval for osteocyte activation : 0.8-3 Pa (Weinbaum et al. 1994)
- Shear stress levels in agreement with literature and consistent patterns with higher values on processes than on cell body (Anderson et al. 2005, Verbruggen et al. 2014)

Results and Discussion : ModOst

Fluid shear stress on osteocyte (cell body and processes) $\tau_{max} \approx 0.8 \text{ Pa}$

- Shear stress patterns obviously related to simple symmetrical geometry and boundary conditions
- Theoretical shear stress interval for osteocyte activation : 0.8-3 Pa (Weinbaum et al. 1994)
- Shear stress levels in agreement with literature and consistent patterns with higher values on processes than on cell body (Anderson et al. 2005, Verbruggen et al. 2014)

First preliminary study to understand how LIPUS could act on bone healing

2-scale model with multi-physics coupling

• First preliminary study to understand how LIPUS could act on bone healing

2-scale model with multi-physics coupling

- Fluid shear stress ~ the lower bound of prediction interval
 - LCN permeability 2.2× 10⁻²² (Cowin et al. 2009)
 - treatment duration (15 min) vs 1 cycle (1 ms) : cumulative effect to investigate
 - stimulation frequency : US = high frequency stimulation

- First preliminary study to understand how LIPUS could act on bone healing
- 2-scale model with multi-physics coupling
- Fluid shear stress \approx the lower bound of prediction interval
 - ▶ LCN permeability 2.2× 10⁻²² (Cowin et al. 2009)
 - treatment duration (15 min) vs 1 cycle (1 ms) : cumulative effect to investigate
 - stimulation frequency : US = high frequency stimulation

Is fluid shear stress the only relevant parameter? What about *fluid drag forces* and strain amplification phenomenum? (Han et al. 2004, You et al. 2001)

- First preliminary study to understand how LIPUS could act on bone healing
- 2-scale model with multi-physics coupling
- Fluid shear stress \approx the lower bound of prediction interval
 - ▶ LCN permeability 2.2× 10⁻²² (Cowin et al. 2009)
 - treatment duration (15 min) vs 1 cycle (1 ms) : cumulative effect to investigate
 - stimulation frequency : US = high frequency stimulation

Is fluid shear stress the only relevant parameter? What about *fluid drag forces* and strain amplification phenomenum? (Han et al. 2004, You et al. 2001)

On-going 3D modelling

ModBone :

permeability of endosteum, mechanical properties of healing tissue and US parameters

ModOst :

3D osteocyte network, pericellular space and oscillatory interstitial fluid

- First preliminary study to understand how LIPUS could act on bone healing
- 2-scale model with multi-physics coupling
- Fluid shear stress \approx the lower bound of prediction interval
 - LCN permeability 2.2×10^{-22} (Cowin et al. 2009)
 - treatment duration (15 min) vs 1 cycle (1 ms) : cumulative effect to investigate
 - stimulation frequency : US = high frequency stimulation

Is fluid shear stress the only relevant parameter? What about *fluid drag forces* and strain amplification phenomenum? *(Han et al. 2004, You et al. 2001)*

On-going 3D modelling

ModBone :

permeability of endosteum, mechanical properties of healing tissue and US parameters

ModOst :

3D osteocyte network, pericellular space and oscillatory interstitial fluid

 $t = 4 \mu s$

IFluid pressure gradient \approx 5 Pa/ μ m

Thank you for your attention. Any questions?

cecile.baron@univ-amu.fr carine.guivier@univ-amu.fr

Baron, Guivier-Curien et al.

US and bone healing

Transverse isotropic extralacunar matrix

1	22.88	8.93	10.14	0	0	0 \	
1	8.93	22.88	10.14	0	0	0	(GPa)
	10.14	10.14	29.60	0	0	0	
	0	0	0	14.72	0	0	
I	0	0	0	0	14.72	0	
	0	0	0	0	0	13.96 /	

⁽Scheiner et al. 2015)

Mass density : ρ =1.9 g/cm³ Isotropic LCN permeability : 2.2 × 10⁻²² m² (*Smith et al. 2002, Cowin et al. 2009*) Other Biot's parameters from *NGuyen et al. 2016*

Mesh

