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Ultrasound waves and living tissues

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS ? Low Intensity Pulsed Ultrasound Stimulation

LIPUS stimulates bone healing :

Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000,

Hemery et al. 2011, ...)

FDA approval since 1994

Commercial device : Exogen R©
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Bone Tissue

How is cortical bone tissue organized?

Multiscale and two-level porosity :

Havers-Volkmann network (HV) and

lacuno-canalicular network (LCN)

Bone cells : osteocytes

Multiphasic (solid bone matrix, interstitial fluid

and water)

Mechanotransduction

Fluid shear stress on osteocyte

→ bone remodelling

Cowin et al. 1991, Klein-Nulend et al. 1995
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Hypothesis and aims

Hypothesis : US excitation at meso-scale level induces fluid shear stress on

osteocytes at micro-scale level

Locks :

Multiscale phenomena to understand and analyze

Multiphysics : acoustics, fluid and structure

Coupling multiscale and multiphysics
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Models

Cortical bone = double-level porous medium

vascular porosity (HV) : Havers and Volkman canals (Ø≃ 100 µm)

lacuno-canalicular network (LCN) : lacunae (Ø≃ 10 µm) + canaliculi (Ø< 1 µm)

Biphasic medium Model : ModBone

poroelastic bone matrix (PMB)

anisotropic solid (Scheiner et al. 2015) + LCN
→ equivalent medium (Biot’s model)

HV pores = fluid phase
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FE simulation

2D and 3D coupling between acoustics and fluid and fluid-solid interaction

Software : Comsol Multiphysics

ModBone (2D) : US stimulation at the mesoscale

HV from CT scan images (22.5 µm)

Time-dependent problem

Weak form of wave propagation in poroelastic medium

(Nguyen et al. 2010)

△xbone ≈ 0.7 mm, △xwater ≈ 0.4 mm and △t≈ 0.1µs

→ 40h to simulate a single cycle propagation.
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Results and Discussion : ModBone

Acoustic pressure and IFluid pressure (Pa)

t = 4 µs t = 20 µs

IFluid pressure (IFluid P) difference induced by US stimulation on 1 cycle

Max|IFluid Pperiosteum − IFluid Pendosteum| ≈ 15000 Pa

→ IFluid P gradient = 5 Pa/µm

IFluid P gradient ≈ 30 Pa /µm (Anderson et al. 2005, Verbruggen et al. 2012, 2014)

→ 6-times lower than previous studies considering physiological mechanical loading.

Fluid shear stress on osteocyte ?
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FE simulation

ModOst (3D) :

Fluid Structure Interaction Model (one-way coupling)

◮ input parameters : IFluid P gradient from ModBone : 5 Pa/µm
◮ output parameters : fluid shear stress on osteocyte : τ

IFluid domain : newtonian,
ρ=997 kg/m3 ,
µ=885× 10−4 kg.m−1 .s−1

Solid domain : linear elastic,
ECM : E=16.6 GPa, ν=0.38 ;

osteocyte : E=4.47 kPa, ν=0.3
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Results and Discussion : ModOst

Fluid shear stress on osteocyte

(cell body and processes)

τmax ≈ 0.8 Pa

Shear stress patterns obviously related to simple

symmetrical geometry and boundary conditions

Theoretical shear stress interval for osteocyte

activation : 0.8-3 Pa (Weinbaum et al. 1994)

Shear stress levels in agreement with literature

and consistent patterns with higher values on

processes than on cell body (Anderson et al. 2005,

Verbruggen et al. 2014)
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Conclusion and Perspectives

First preliminary study to understand how LIPUS could act on bone healing

2-scale model with multi-physics coupling
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Conclusion and Perspectives

t = 4 µs

IFluid pressure gradient ≈ 5 Pa/µm

Fluid shear stress on osteocyte

(cell body and processes)

τmax ≈ 0.8 Pa

Thank you for your attention.

Any questions?
cecile.baron@univ-amu.fr

carine.guivier@univ-amu.fr
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Poroelastic bone properties

Transverse isotropic extralacunar matrix
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(Scheiner et al. 2015)

Mass density : ρ=1.9 g/cm3

Isotropic LCN permeability : 2.2×10−22 m2 (Smith et al. 2002, Cowin et al. 2009)

Other Biot’s parameters from NGuyen et al. 2016
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