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Résumé :

L’os cortical de l’enfant est peu étudié du fait de la rareté des échantillonsdisponibles.

L’une des méthodes les plus prometteuses pour obtenir des informations sur le com-

portement mécanique de l’os enfant non pathologique repose sur la préparation et

la caractérisation ultrasonore d’échantillons de faibles dimensions issus de déchets

chirurgicaux. Dans cette étude, des cubes de 2 mm de côté ont été usinés à partir

d’échantillons de fibulae enfants et adultes. Les 6 cœfficients de rigidité diagonaux

(Cii) ont été évalués par mesure de vitesse d’ondes de volume de compression et de

cisaillement selon les 3 directions de l’espace, à 5 MHz. Le comportement anisotrope

des échantillons testés correspond à une isotropie transverse, le plan perpendiculaire

à l’axe de l’os pouvant être considéré comme isotrope.

Abstract :

Child cortical bone tissue is rarely studied because of the difficulty of obtaining sam-

ples. Yet the preparation and ultrasonic characterization of the small samples available,

while challenging, is one of the most promising ways of obtaining information on the

mechanical behavior of non-pathological children’s bone. We investigated children’s

cortical bone obtained from chirurgical waste. Stiffness cœfficients were evaluated via

an ultrasonic method. We observe a transverse isotropy with the plane perpendicular

to the bone axis as an isotropic plane for adults and children. Stiffness cœfficients were

highly correlated with age in children.

Mots clefs : os cortical enfant, ultrasons, anisotropie

1 Introduction
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Cortical bone is an anisotropic medium because of its highly oriented, mineralized

collagen fibril structure, and the literature on adults contains different assumptions re-

garding the type of anisotropy of the cortical bone structure. Some authors assume

that cortical bone can be considered as transverse isotropic (five independent elastic

coefficients)[1, 2, 3], meaning that bone elastic properties are similar in the transverse

directions (radial and tangential) but are different in the axial direction. Others have

made the more general assumption of orthotropy (with three perpendicular planes of

symmetry) [4, 5, 6], where nine elastic coefficients are needed to fully characterize the

medium. Little reference data is available on young bone mechanical behavior, espe-

cially on children’s cortical bone. Most of these studies were conducted on only a few

samples, because of the scarcity of specimens for laboratory testing. Moreover, the

representativeness of these samples is questionable, since they are largely associated

with child pathologies. The notion of anisotropy, particularly transverse isotropy or or-

thotropy, has rarely been investigated [7]. Here, we report measurements of ultrasonic

wave velocities (compressional and shear) in the three orthogonal bone axes (axial, ra-

dial and tangential) to obtain the diagonal elements of the stiffness matrix (Cii). To

our knowledge, this study is the first to provide numerous stiffness coefficients on non-

pathologic pediatric cortical bone. The major objective of this study is to obtain stiffness

coefficients of children’s cortical bone samples, and to gain insight into the anisotropic

Hooke’s law. Values from children were compared with those from elderly cortical bone

samples.

2 Material and Methods

2.1 Samples preparation

15 fibula and 7 femur samples from 21 children (1-18 years old, mean age: 9.7±5.8

years old) were extracted from surgical waste during lower limb lengthening surgery

performed in Marseille, France. Fibula samples were extracted from the lower 1/3 of

the bone. The selected population was composed of walking children not on drugs

disturbing their bone metabolism. 16 fibula samples from 16 elderly patients (50-95

years old, mean age: 76.2 ± 13.5 years old) were extracted from the same anatomic

location, but from cadavers at Inserm U1033 and UMR-T 9406 Ifsttar/UCBL (Lyon,

France) bone bank. The fresh material was frozen and stored, the child bone at -80°C

and the adult bone at -20°C. The samples were slowly thawed and then cut with a water-

cooled low-speed diamond saw (Buehler Isomet 4000, Buehler, Lake Bluff, IL, USA)

into cubic parallelepipeds (dimensions: 2× 2× 2mm3; mean= 1.96± 0.56mm). The

faces of the specimens were oriented according to the radial (axis 1), tangential (axis 2)

and axial (axis 3) directions defined by the anatomic shape of the bone diaphysis. The

greatest challenge here was the very small size of the surgical waste bone (less than 1

cm in the axial axis), with the radial thickness of the sample imposed by the cortical

thickness taken. The second difficulty was cutting samples this small with parallel faces.
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This necessitated an enhancedprotocol for the cutting. The mass density (ρ, g/cm3) was

measured with a micrometric balance equipped with a density kit (Voyager 610, Ohaus

Corporation, FlorhamPark, NJ, USA, measurement uncertainty of 0.001 g/cm3) and the

dimensions were measured with a digital caliper (Absolute digimatik solar, Mitutoyo,

Kanagawa, Japan, measurement error of 0.03 mm).

2.2 Ultrasonics measurements

In this study, we considered cortical human bone as an elastic unlimited medium (the

wavelength is smaller than the transverse dimension of the sample). The more general

assumption of orthotropy is made for the anisotropic behaviour of the samples. Then,

the stiffness matrix C is defined by 9 independent coefficients. Because of the smallness

of the samples, we only measured the velocities of pure compressional and shear waves

propagating along the three principal axes, which gave us the diagonal elements of the

stiffness matrix Cii|1≤i≤6. Two mountings, one for compressional waves and the other

for shear waves, were used. For both compressional and shear waves, we assumed a

non-dispersive medium and we determined the wave velocity V using a comparison

method.

• Compressional wave velocity

The ultrasonic bench consisted of two transducers (VP1093, center frequency

5MHz, CTS Valpey Corporation, Hopkinton, MA) facing each other with their

axes aligned and operating in transmission mode. The whole device was im-

mersed in water. First, a reference measurement was made in water without sam-

ple. The bone sample to be tested was then placed over a gelatin block (agar)

to keep it aligned between the transducers. The entire protocol was validated on

bovine bone samples. We obtained Vradial = 3375 ± 65 m/s, Vtangential =

3637± 91 m/s and Vaxial = 3999± 31 m/s, in agreement with the literature.

• Shear wave velocity

Measurements were made with two transverse wave transducers (Panametrics

V156, 5MHz, Inc., Waltham, MA) facing each other with their axes aligned and

operating in transmission mode. First, a reference measurement was made in a 5

mm thick aluminum sample. The bone samples to be tested were then placed in

contact between the transducers.

2.3 Statistical analysis

Statistical analysis was performed using the SPSS program (SPSS Statistics 22,

IBM, USA). The Shapiro–Wilk test was used to evaluate the normality of the distribu-

tion. A Pearson correlation was performed for normal distribution and a Spearman cor-

relation was performed for non-normal distribution. The significance level is p < 0.05.
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The Wilcoxon rank-sum test was used to determine the difference between C11 and C22

and between C44 and C55.

3. Results

Mean values calculated for Cii are presented in Table I for the fibula samples. The

elastic coefficients for adult fibulae are quite similar to those from the literature for femur

and tibiae. Values from the children’s bone, are lower than those from the adults.

Child Adult

(GPa) (GPa)

C11 16.5±2.7 17.7±2.9

C22 15.85 ±3.24 17.7±5.3

C33 24.0±5.15 28.0±3.7

C44 4.17±0.8 4.7±0.5

C55 4.05±0.75 4.7±0.6

C66 3.1±0.37 3.6±0.7

Table 1: Mean values of the diagonal stiffness coefficients (fibula samples).

For fibula samples, no significant difference was found between C11 and C22 and

between C44 and C55, for either adult or child bone (p> 0.5), which confirms transverse

isotropy with

C33 > C22 = C11 > C44 = C55 > C66.

A significant correlation was found in the children’s bone (fibula and femur samples)

between all the stiffness coefficients and age (R> 0.56, p< 0.01). In the elderly adult

bone, we only found a negative correlation between C33 and age (R= −0.63, p< 0.01).

Depending on age range, the linear interpolation slope changes from positive to nega-

tive. In the children’s bone, we obtained a positive value (R= 0.694, p< 0.01) whereas

in the elderly adult bone, we obtained a negative value (R= −0.634, p= 0.08).

3. Discussion

The method we used is based on measuring compressional and shear ultrasonic

bulk wave velocities (BWV) propagating along various directions of a bone specimen

[8]. While this method is widely used, it has major drawbacks related to specimen size

and geometry. With a range frequency of 1-2.5 MHz, the specimen must typically be

larger than a few millimeters. This is because measured wave velocities must be linked

to bulk waves, which propagate when the wavelength is smaller than the dimension of

the specimen [4]. In this study, samples were machined from fibulae whose cortical

thickness was below 3 mm. By improving the cutting process so as to avoid any lack
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of parallelism, we finally obtained specimens of approximately 2 × 2 × 2 mm3. For

both compressional and shear wave velocity measurements, we used a frequency of 5

MHz to achieve a wavelength greater than bone tissue heterogeneities (< a few hundred

microns) and smaller than the specimen dimensions. Another limitation of this study

was that only elastic constants for the main diagonal of the stiffness tensor could be

evaluated. It takes one or several 45◦ oblique cuts to retrieve all non-diagonal terms

of the stiffness tensor, which was not possible with our specimen size. The longitu-

dinal stiffness cœfficients (C11, C22 and C33) generally found for adult cortical bone

with the ultrasonic method range between 16.8 GPa and 31.7 GPa [4, 6, 9]. However,

these values were for femur or tibia bone; to our knowledge, no values for the fibula

are available. These results on adult fibulae therefore contribute a new batch of data

and allow us to compare adults’ and children’s values for the same bone from the same

anatomic location. The results on children’s bone enrich the literature concerning the

mechanical properties of children’s bone. Our findings show that stiffness cœfficients

increase with age up to puberty, when they appear to reach adult values. The evolu-

tion of C33 with age shows a linear regression by age group, positive in the children

and negative in the adults in accordance with an in vivo study by Drozdzowska et al.

[10]. The aim of this study was to analyze the anisotropic behavior of our samples. The

results for all specimens show transverse isotropy for both adult and child bone at the

location tested. Anisotropy in cortical bone can be explained by multiple factors. Bone

material properties depend on microscopic-scale components such as hydroxyapatite

crystals and collagen [11, 12, 13, 14], and their layout, as confirmed experimentally

in a study showing that ultrasonic velocity is influenced by changes in organic matrix

[15]. Katz et al. [16] argued that orthotropic versus transversely isotropic symmetry

was dependent on whether the tissue exhibited a predominately laminar or Haversian

microstructure, respectively. According to Baumann et al. [17], transverse isotropy is

governed primarily by apatite crystal orientations while orthotropy is governed primar-

ily by intracortical porosity. While our study did not investigate any of these factors,

further exploration would enrich our knowledge of the anisotropy of bone.

4. Conclusion

In conclusion, this study contributes a new set of ultrasonic wave velocities and

elasticity values for children’s cortical bone, providing insights into the evolution of

stiffness cœfficients with age. Moreover, it offers the first complete analysis of stiffness

cœfficients in the three orthogonal bone axes in children, giving some indication of how

bone anisotropy is related to age. Future perspectives include studying the effect of the

structure and composition of bone on its mechanical behavior.
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