

ULTRASONIC MECHANOTRANSDUCTION IN BONE REPAIR USING A COMPUTATIONAL MODEL

Carine Guivier-Curien (IRPHE, Marseille, France), Cécile Baron (ISM, Marseille, France),

Collaboration: Hieu N'Guyen, Salah Naili (MSME, Créteil, France)

TRASOUND (US) WAVES: DIAGNOSIS AND CARE

- LIPUS stimulates bone healing (Duarte 1983, Heckman 1994, Hemery 2011,...)
- FDA approval since 1994. Commercial device: Exogen

How do mechanical effects operate on bone healing? Still an open question! (Claes 2017, Padilla 2016)

Hypothesis: fluid shear stress on bone cells

ONE, LIVING TISSUE

Cortical bone

Tissue-scale vascular porosity (Ø 100μm)

Cellular scale

Lacuno-canalicular network (LCN) porosity (\emptyset 10µm)

Canaliculus Lacuna (space) Osteocyte

Osteocytes: Cells immersed in an interstitial fluid

Pilots of bone healing mechanosensors = **osteocytes**

Living tissue able to adapt to mechanical environment Bone mechanotransduction under physiological loading (*Cowin* 1991, *Weinbaum* 1994, *Klein Nulend* 1995)

UULTI-SCALE AND MULTI-PHYSICS MODEL

Hypothesis: US excitation at meso-scale level induces fluid shear stress on osteocytes at micro-scale level

A computational model is developed to investigate the question

- A 2D biphasic medium model
- vascular porosity is geometrically reconstructed from μCT images (pixel size: 22.5μm)
- poroelastic medium (bone matrix and LCN) (Biot's model)
- Surrounding fluid = water

Wave equation in poroelastic medium (Nguyen et al. 2010)

$$\nabla \cdot \boldsymbol{\sigma} = \rho \, \ddot{\boldsymbol{u}}_s + \rho_f \ddot{\boldsymbol{w}} \,,$$
$$-\nabla p = \rho_f \, \ddot{\boldsymbol{u}}_s + \mu \, \boldsymbol{k}^{-1} \, \dot{\boldsymbol{w}} + \boldsymbol{b} \, \ddot{\boldsymbol{w}}$$

- p : fluid pressure in pores
- u_s : displacement of solide
- ρ : mixture density
- $\sigma \ :$ total stress tensor
- $\boldsymbol{\mu}\,:$ fluid viscosity

- $\rho_{\rm f}$: fluid mass density
- w : relative displacement between fluid and solid k: anisotropic permeability tensor
- b= (ρ_f / \emptyset) a , with \emptyset porosity and a tortuosity tensor

MULTI-SCALE AND MULTI-PHYSICS MODEL

Boundary conditions Continuity of pressure and stress fields Open pore conditions

Acoustic Stimulation: adapted from Exogen Transducer: 20mm Pressure: 67 kPa US frequency: 1MHz

Pulse frequency: 1kHz

20% duty cycle

MULTI-SCALE AND MULTI-PHYSICS MODEL

Question: How to calculate shear stress on osteoctyes and which value of permeability for LCN?

Wide range of values in literature: $10^{-25} - 10^{-17} m^2$ (*Cardoso et al. 2013*)

PBM= poroelastic bone matrix ECM= extra cellular matrix VP= vascular porosity US=Ultrasound Stimulation LCN= lacuno-canalicular network

MECHANICAL SHEAR STRESS ON OSTEOCYTES

In Kozeny-Carman Theory:

Poiseuille flow in a network of aligned cylindrical tubes

$$k_{\rm KC} = \phi R_i^2 / 8 = 1.56 \times 10^{-17} \text{m}^2$$
$$\tau_{\rm KC} = \frac{R_i \mu |\boldsymbol{v}_{\rm Darcy}|}{2k_{\rm KC}}$$

MECHANICAL SHEAR STRESS ON OSTEOCYTES

0.6 nm

Wang and Tarbell (1995): fluid flow in an annulus through a network of transverse fibers (GAG fibers)

Permeability from Smit et al. (2002): from experimental and numerical results

$$\tau_{\rm WT} = \frac{\mu |\boldsymbol{v}_{\rm Darcy}|}{\sqrt{k_{\rm S}}}$$
$$k_{\rm S} = 2.2 \times 10^{-22} {\rm m}^2$$

RESULTS

Wall shear stress patterns during 10 pulse cycles (=10ms)

- Homogeneous pattern in poroelastic medium
- Local peak of stress near vascular pores and endosteum

intensity

time

RESULTS

- Moving average on 1µs (=1period of US signal) for 6 points in the domain (before and after endosteum in the US trajectory) for both wall shear stress calculations
- $\tau_{kc} \approx 10^2 \text{ Pa}$

 $\tau_{\rm wt} \approx 10^{-1} \, \text{Pa}$

 \rightarrow Kozeny-Carman model seems not to be adapted ? Since activation of osteocytes is found at a level of 0.8 to 3 Pa for a physiological loading (*Weinbaum et al.* 1994)

ESULTS/DISCUSSION

Results on 10 cycles for 12 selected points in the domain

Values of $\tau_{_{WT}}$

- No cumulative effect over 10 cycles
- Model: 10ms versus Exogen: 20min of treatment a day during several weeks
 ... far from clinical stimulation? Biological experimental study is developed

ESULTS/DISCUSSION

 τ_{WT}

Results on 10 cycles for 12 selected points in the domain

Averaged values per cycle

Values smaller than range reported in literature (0.8 to 3 Pa)

shear stress range for osteocyte activation under physiological load (f=1-10Hz) (*Weinbaum et al. 1994*)

Lower limit of the range of physiological values

BUT: Pulse frequency and US loading frequency are 10^{3-6} higher than this of Weinbaum et al. 1994 Bacabac et al. 2004 : high frequency and low-amplitude is equivalent to low frequency and high amplitude \rightarrow importance of rate of shear stress

ONCLUSIONS & PERSPECTIVES

A model to better understand US mechanical effect in bone healing by LIPUS

Values of shear stress to activate osteocytes \leftrightarrow LCN \neq aligned tubes (too simplistic?) Potential role of GAG fibers in mechanotransduction (*Han et al. 2004, Barra et al. 2010*)

Perspectives:

- Acoustic parameters to explore in order to better understand the influence of each one and thus to better care
- Local high shear stress on pores and endosteum: role/action of lining cells in LIPUS?

The bone remodeling process

ULTRASONIC MECHANOTRANSDUCTION IN BONE REPAIR USING A COMPUTATIONAL MODEL

Thank for your attention

Any questions?

carine.guivier@univ-amu.fr, cecile.baron@univ-amu.fr

RESULTS

- 3 cycles of 1ms simulated for both cases. Wall shear stress levels in LCN
- Local peak of stress near pores and endosteum

