US/osteocyte interaction

Cécile Baron

Aix-Marseille Université, CNRS, ISM UMR 7287, Marseille France

December 1st, 2016

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen [®]

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS ? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen ®

What mechanisms are responsible?

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS ? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen [®]

What mechanisms are responsible? Thermal effects and Mechanical effects

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS ? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen [®]

What mechanisms are responsible? Thermal effects and Mechanical effects

But how?

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS ? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen ®

What mechanisms are responsible? Thermal effects and Mechanical effects

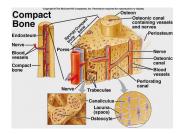
But how?

Open question ! (Claes et al. 2007, Padilla et al. 2014)

UltraSounds (US) interact with living tissues : destroy (HIFU) and repair (LIPUS)

What is LIPUS ? Low Intensity Pulsed Ultrasound Stimulation LIPUS stimulates bone healing :

- Large literature (Duarte 1983, Pilla et al. 1990, Heckman et al. 1994, Takikawa et al. 2000, Hemery et al. 2011, ...)
- FDA approval since 1994
- Commercial device : Exogen [®]

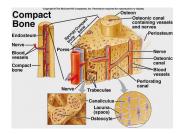

What mechanisms are responsible? Thermal effects and Mechanical effects

But how?

Open question ! (Claes et al. 2007, Padilla et al. 2014)

Bone Tissue

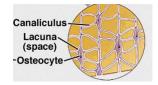
How is cortical bone tissue organized?

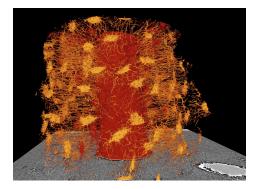

- Multiscale and two-level porosity : Havers-Volkmann network (HV) and lacuno-canalicular network (LCN)
- Bone cells : osteocytes
- Multiphasic (solid bone matrix, interstitial fluid and water)

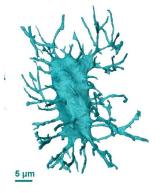
Mechanotransduction

Fluid shear stress on osteocyte → bone remodelling Cowin et al. 1991, Klein-Nulend et al. 199

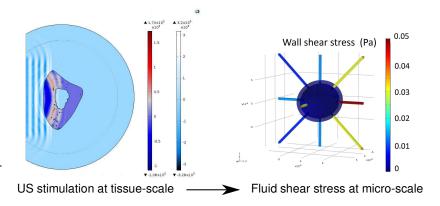
Bone Tissue


How is cortical bone tissue organized?


- Multiscale and two-level porosity : Havers-Volkmann network (HV) and lacuno-canalicular network (LCN)
- Bone cells : osteocytes
- Multiphasic (solid bone matrix, interstitial fluid and water)


Mechanotransduction

Fluid shear stress on osteocyte \rightarrow bone remodelling Cowin et al. 1991, Klein-Nulend et al. 1995


Lacuno-canalicular network and osteocyte ... (en vrai !)

Images from Creatis, Lyon

ESB 2016 : Two-scale numerical model

Baron, Guivier Curien, Nguyen and Naili, ESB 2016

US/Osteocyte interaction How does the osteocyte sense the US stimulation ?

Numerical

How to model healing stages ? Tissue properties : geometry, material, structure ?

Experimental

Numerical

- How to model healing stages ? Tissue properties : geometry, material, structure ?
- LCN network and osteocyte shape

Experimental

Numerical

- How to model healing stages ? Tissue properties : geometry, material, structure ?
- LCN network and osteocyte shape
- Time scales : healing process vs US stimulation

Experimental

Numerical

- How to model healing stages ? Tissue properties : geometry, material, structure ?
- LCN network and osteocyte shape
- Time scales : healing process vs US stimulation

► ...

Experimental

In vivo : animal model

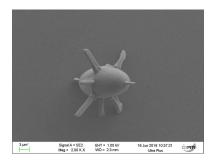
Numerical

- How to model healing stages ? Tissue properties : geometry, material, structure ?
- LCN network and osteocyte shape
- Time scales : healing process vs US stimulation

<u>►</u> ...

- Experimental
 - In vivo : animal model
 - In vitro : Bio reactor ? type of cells ? environment structure ? Measurements of what and how ?


Numerical


- How to model healing stages ? Tissue properties : geometry, material, structure ?
- LCN network and osteocyte shape
- Time scales : healing process vs US stimulation

► ...

- Experimental
 - In vivo : animal model
 - In vitro : Bio reactor ? type of cells ? environment structure ? Measurements of what and how ?

Some hints to mimic the LCN

Olivier Stephan, LiPhy, Grenoble

- Liphy (Grenoble) : High resolution (1-3 μ m) but low Young's modulus (E<1 GPa)
- Mateis (Lyon) : Lower resolution (100 μm) but high Young's modulus (E>100 GPa)

How to couple both techniques? Other techniques? Sensors inside?

Which measurements?

- Bone intrinsic properties : LCN permeability
- US stimuation effects
 - fluid flow velocity : 10 to 50 µm/s
 - fluid pressure in the LCN : 0.01 to 3 Pa (Weinbaum 1994)
 - pore fluid pressure relaxation time : 10 ms to 10 s (sensor response ?)
 - F fluid shear stress on osteocyte processes membrane (pericellular annulus \approx 0.1 μ m) : 0.8 to 3 Pa under physiological loading (*Weinbaum 1994*)

but what about US stimulation?

• 3D cell-culture in realistic environment :

In addition, new micropatterning techniques have made it possible to seed bone cells in individual wells in a manner that allows them to form an interconnected network with narrow channels that simulate canaliculi in vivo (Guo et al. 2006, You et al. 2008). Such a network is clearly a more realistic model of the lacunar-canalicular system, and **future studies analyzing the effects of FSS on osteocytes grown in these connected networks will help to identify the cellular pathways in mechanotransduction**'

Fritton and Weinbaum, 2009

US load vs physiological load (walk) : influence of the frequency