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Abstract

Long-wavelength onset of the fundamental branches is described for a free anisotropic plate with arbitrary through-plate
variation of material properties. Main attention is given to the flexural branch. Closed-form expressions for the leading-order
dispersion coefficient of the velocity and displacement are derived for a generic case and exemplified for the various types of
either continuous, or discrete, or periodic inhomogeneity and for the monoclinic symmetry. The relevance of the static averaging
is examined in detail. The bounds for the slope of the flexural velocity branch are established. The upper fundamental branches
are considered for the case when these are uncoupled inplane and shear horizontal ones.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Acoustic-wave propagation in anisotropic transversely (vertically) stratified plates is closely involved with struc-
tural dynamics and non-destructive evaluation/testing of composites and, more recently, of functionally graded
materials, which have broad area of applications[1–5]. Ultrasonics methods and NDE/NDT experiments are often
carried out at relatively low frequency and deal with the onset of the fundamental dispersion branches. In this context,
in general, and for efficient handling of the inverse problem in particular, it is helpful to know explicit analytical
approximations of the long-wave dispersion. Such estimates are naturally tied in with the homogenization concept,
see[6–8]. The objective of this paper is to obtain and simplify, insomuch as possible, the leading-order dispersion
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coefficient at the onset of fundamental branches, to exemplify it for various types of inhomogeneity, and to relate
its exact evaluation to the static averaging perspective.

Analytically straightforward access to the long-wave expansion of the fundamental velocity branches is provided
by the sextic (state-vector) approach for plates. Its overview and the relevant bibliography for homogeneous and
inhomogeneous plates is given in[9–11]. We shall therefore confine to the basic frame that suffices for the problem
on hand (Section2). Readily available explicit evaluation of the leading-order dispersion coefficient is yet obscured
by multiple integrals. The flexural branch, however, allows a substantial simplification and detailed analysis even
if anisotropy is arbitrary (Section3). The upper fundamental branches are treated for the case of inplane/shear
horizontal (SH) uncoupling, which allows relatively simple formulas for the SH fundamental branch (Section4). A
numerical example dealing with the set of fundamental branches in a continuously inhomogeneous plate is supplied
(Section5), followed by the conclusions (Section6).

The basic algebraic notations used below are as follows: the superscript ‘T’ means transpose;⊗ is the dyadic
product;I and I (6) are the 3×3 and 6×6 identity matrices;T is the 6×6 matrix with zero diagonal and identity
off-diagonal 3×3 blocks.

2. Background

2.1. Framework of the problem

Consider an infinite plate with traction-free faces aty = ±H (the plate thickness is 2H), which consists of
an arbitrary anisotropic and transversely inhomogeneous material with densityρ(y) and elasticity tensorc(y).
Inhomogeneity may be either continuous, or discrete—implying a stack ofn homogeneous layers, each with a
thickness 2Hj and constantρ(j) andc(j) (j = 1,2, . . . , n), or else it may combine ranges of continuous and discrete
variation. Denote the unit vector along an arbitrary axisX in the plane of plate faces bym, and the unit vector
along the axisYorthogonal to the faces byn. Seeking the plane-wave solutions∼ exp[ik(x − vt)] of the equation
of motion leads, by way of the sextic formalism, to the system of six first-order ordinary differential equations with
the matrix of coefficientsQ(y). Its Stroh form, well-fitted with the long-wave expansion, is

Q = ik

(
N1 N2

N3 − ρv2I NT
1

)
; N1 = −(nn)−1(nm),N2 = −(nn)−1, N3 = (mm) − (mn)(nn)−1(nm), (1)

where (ab) ≡ aicijklbl for a,b = m or n, and the componentscijkl of c(y) may be defined in a base{X1, X2, X3}
of any orientation with respect toX, Y. The matricant solution referred to the plate faces, otherwise termed the
propagator through the plate, is evaluated by the Peano expansion of the multiplicative integral ofQ(y) [12],

M (H,−H) =
ˆ∫ H

−H

[I (6) + Q(y) dy] = I (6) +
∫ H

−H

Q(y) dy +
∫ H

−H

∫ y

−H

Q(y)Q(y1) dy dy1 + · · ·

= I (6) +
∞∑
m=1

[P(m)(v2)](2ikH)m.

(2)

Eq. (2) embraces the case of discrete inhomogeneity, whenM (H,−H) =∏1
j=n exp(2HjQ

(j)
constant) and thus the

multiple integrals of the Peano expansion reduce to multiple sums. The matrix coefficientsP(m) of the power series
in (2) are the integrals or sums written, respectively, via the dimensionless variables

ς = y

H
, hj = Hj

H
; (3)

which are used hereafter, while keeping the same notation for a function ofy andς (e.g.Q(y) ⇒ Q(ς)).
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The term of(2) with a single integral ofQ implies the so-called static averaging, which will be denoted below
for either continuous or discrete inhomogeneity by

〈· · ·〉 =




1

2

∫ 1

−1
· · · (ς) dς

n∑
j=1

· · ·(j) hj
. (4)

For instance, the left off-diagonal block of〈Q〉 brings about〈ρ〉 and〈N3〉. The theory of the Stroh formalism[13]
tells us that the symmetric matrixN3 has a null vectorn and is positive definite in the subspace orthogonal ton,
hence the same is true for〈N3〉:

N3(ς)n = 0, [N3(ς) − ηα(ς)I ]eα(ς) = 0 (orN(j)
3 n = 0, [N(j)

3 − η(j)
α I ]e(j)

α = 0);

〈N3〉n = 0, [〈N3〉 − η̄αI ]ēα = 0 (α = 2,3),
(5)

whereηα(ς) and η̄α > 0; the (unit) vectorseα(ς) form an orthogonal triad withn and so dōeα. Note that ¯ηα is
certainly not an average ofηα(ς) unless, due to the symmetry,eα(ς) is constant and thus coincides withēα. That is,
η̄α = 〈ηα〉 if and only if eα(ς) = ēα for anyς (or e(j)

α = ēα for any j).
The boundary condition of traction-free plate faces demands vanishing determinant of the left off-diagonal block

M3 of M (H,−H) and defines the displacement polarization aty = −H as the null vector ofM3. Inserting(2) into
the dispersion equation detM3 = 0 enables explicit recursive finding of, in principle, any number of coefficients in
the power-series expansions for the dispersion dependence of the three fundamental velocity branches. The series
straighten if the viscosity is absent or is non-dispersive, for then the squared velocityv2

α(k),α = 1,2,3, expands into
even powers of 2kH . It is clear that the limiting (zero-order) values atk = 0 are determined by the eigenspectrum(5)
of 〈N3〉: the velocities arev01 = 0,v0α = √

η̄α/〈ρ〉 and the polarizations are parallel ton andēα. The perturbation-
theory procedure for obtaining the leading-order dispersion terms is the same as for homogeneous plates[9] to
within the Peano expansion in place of the exponential ofQ. By this means the onset of the fundamental velocity
branches is described as follows:

〈ρ〉v2
1 = (2kH)2


−n · P(3)

3 (0)n +
∑
α=2,3

1

η̄α
(ēα · P(2)

3 (0)n)(n · P(2)
3 (0)ēα)


 ; (6)

〈ρ〉v2
α = η̄α − (2kH)2

[
ēα · P(3)

3 (v2
0α)ēα + 1

η̄α
(ēα · P(2)

3 (v2
0α)n)(n · P(2)

3 (v2
0α)ēα)

+ 1

η̄α − η̄β
(ēα · P(2)

3 (v2
0α)ēβ)(ēβ · P(2)

3 (v2
0α)ēα)

]
, α, β = 2,3 (α �= β), (7)

whereP(m)
3 , the left off-diagonal blocks ofP(m) in (2), are

P(2)
3 (v2) = 1

22

∫ 1

−1

∫ ς

−1
[N3(v2, ς)N1(ς1) + NT

1(ς)N3(v2, ς1)] dς dς1;

P(3)
3 (v2) = 1

23

∫ 1

−1

∫ ς

−1

∫ ς1

−1
[N3(v2, ς)N1(ς1)N1(ς2) + NT

1(ς)N3(v2, ς1)N1(ς2)

+N3(v2, ς)N2(ς1)N3(v2, ς2) + NT
1(ς)NT

1(ς1)N3(v2, ς2)] dς dς1 dς2,

(8)

with N3(v2, ς) = N3(ς) − ρ(ς)v2I .
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The purpose of the following consideration is simplification and analysis of the leading-order dispersion co-
efficients, encompassed by(6)–(8). The case of (non-dispersive) viscosity, admitted above, is not pursued. The
higher order coefficients grow lengthy and therefore will be presented only for the case of SH0 fundamental
branch.

2.2. Preliminary remarks

Let us accentuate in advance some evident, yet noteworthy points of the upcoming derivations. Firstly, it is
reminded that Eqs.(6)–(8) represent truncated series (in powers of 2kH) of the exact solution for the funda-
mental wave velocity and thus we are dealing with anexactvalue of the leading-order dispersion coefficient.
Secondly, it is noted that adhering to the long-wave approximation does not indeed restrict the impact of inho-
mogeneity, i.e. the condition 2kH � 1 does not imply weak inhomogeneity∆ ∼ 2HN′/〈N〉 � 1 (whereN′ is a
‘typical value’ of derivative iny) and so the coefficients of the series, including the leading-order one, may be
anyhow strongly affected by the variation of material properties through the plate. Thirdly, treating the long-wave
range, it is natural to establish a link to the concept of statically homogenized, or ‘effective’ medium, which is
defined as the non-dispersive homogeneous material with the density〈ρ〉 and elasticity tensorceff(�= 〈c〉) inferred
from the statically averaged matrix〈N〉. Obviously, the zero-order term of the series is supplied by statically
averaged properties of an inhomogeneous plate, which are inserted into the formula for a homogeneous plate
(i.e. ρv2

0α = 0, η̄2(ς), η̄3(ς) with eigenvalues of〈N3〉 in place of that ofN3 = constant). Equally evident is that
the same course of action – using ‘homogeneous formulas’ with statically averaged parameters – would be incor-
rect for exact evaluation of the leading-order dispersion coefficients. Indeed, their calculation, according to(7),
involves the matricant expansion(2) up to the (2kH)3-order, whereas the static averaging is equivalent to trun-
cating this series by the linear term in 2kH . At the same time it is clear that the static averaging can certainly
provide an approximation if the inhomogeneity is weak (∆ � 1) and also if its variation within the plate is de-
scribed by, loosely speaking, a rapidly oscillating function with a slowly changing envelope, in particular if it
is the case of a periodic plate with large enough number of periods (the reservation concerning the SH0 branch
is in order, see Section4). Barring those plain setups, the question in general is what is the relation, if any, be-
tween the true value of the leading-order dispersion coefficient and the static averaging benchmark. Regarding
the flexural branch, we shall see that the bound(s) for former value can be expressed via the latter, and that the
difference between these two can be used for a qualitative insight into the local features of certain types of the
inhomogeneity profile. To this end it is noted, that, whereas the static averaging involves only the integral in-
homogeneity, calculation of the true dispersion coefficient deals with the momentums of elastic inhomogeneity
profile.

3. Flexural branch

3.1. Arbitrary anisotropy

Denote the leading-order coefficient in the expansion(6) by χ and the slope of the flexural branchv1(k) at its
origin point byκ (separate notations will prove handy), so that the truncated dispersion relation reads

〈ρ〉v2
1(k) = χ(2kH)2 or v1(k) = 2κkH (orv1(ω) =

√
2κωH), whereκ =

√
χ

〈ρ〉 . (9)

Due to(5) and the identityN1(ς)n = −m following from (1), the double and triple integrals(8) in (6) reduce to
single integrals, involving contractions of the Stroh matrix blockN3(ς) with the wave normalm and the eigenvectors
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ēα of 〈N3〉. Introduce the auxiliary notations{
g(ς) = m · N3(ς)m

fα(ς) = m · N3(ς)ēα
,

{
g(j) = m · N(j)

3 m

f
(j)
α = m · N(j)

3 ēα
,

{
〈g〉 = m · 〈N3〉m
〈f 〉α = m · 〈N3〉ēα

, (10)

for which we note the identity

g(ς) =
∑
α=2,3

〈fα〉
η̄α

fα(ς), g(j) =
∑
α=2,3

〈fα〉
η̄α

f (j)
α , (11)

ensuing from(5). For an arbitraryc(ς) andρ(ς),

χ = 1

8

∫ 1

−1
ς2g(ς) dς −

∑
α=2,3

1

16η̄α

(∫ 1

−1
ςfα(ς) dς

)2

. (12)

If desirable, Eq.(12)may be presented as a sum of double integrals:

χ =
∑
α=2,3

1

16η̄α


∫ 1

−1
fα(ς) dς

∫ 1

−1
ς2fα(ς) dς −

(∫ 1

−1
ςfα(ς) dς

)2



=
∑
α=2,3

1

16η̄α

[∫ 1

−1

∫ ς

−1
(ς − ς1)2fα(ς)fα(ς1) dς dς1

]
,

(13)

where
∫ 1
−1

∫ ς
−1 = 1

2

∫ 1
−1

∫ 1
−1, and

∑
α=2,3 η̄

−1
α fα(ς)fα(ς1) = m · N3(ς)JN3(ς1)mwith J =∑α=2,3 η̄

−1
α ēα ⊗ ēα be-

ing the pseudo-inverse of〈N3〉. For a discretely inhomogeneous plate consisting ofnhomogeneous layers, Eq.(12)
may be re-written as

χ =
n∑

j=1

g(j)hj

(
S2
j + h2

j

12

)
−
∑
α=2,3

1

η̄α


 n∑

j=1

f (j)
α hjSj




2

, (14)

with Sj = −1
2(1 + hj) +∑j

i=1 hi, which in the case of equidistant layers (hj = 1/n) is simply Sj = (2j − n −
1)/2n (using(11)enables further manipulation with(14)).

Let us relate the exact coefficientχ and slopeκ = √
χ/〈ρ〉, following from (12), to the ‘would-be’ estimate

χ(avrg) = 〈g〉
12

, κ(avrg) =
√

χ(avrg)

〈ρ〉 , (15)

which is obtained by inserting the statically averaged〈ρ〉 and〈N3〉 into the corresponding formula for a homogeneous
platev(hom)

1 = 2kH
√
g/12ρ [9] (see(12)with constantρ, g, fα). By (12), (0<)χ < 3χ(avrg) and so

(0 <)κ <
√

3κ(avrg), (16)

i.e. the flexural branch slopeκ in a plate with an arbitrary profile of inhomogeneity is limited from above by√
3κ(avrg). The upper bound (limit), implying an infinitely stiff and infinitely thin coating, is certainly not reachable.
Now consider the case of a periodically inhomogeneous plate, consisting of, say,N periodsT = 2H/N within

[−H,H ]. For clarity, we resume the variabley: e.g.g(y) = m · N3(y)m (see(10)) and 〈· · ·〉 = 1
T

∫ T
0 · · · (y) dy.
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Eq.(12) referred to the periodic setting may be arranged into the form

χ = χ(avrg) + 1

N2


−χ(avrg) + 1

T 3


∫ T

0
y2g(y) dy −

∑
α=2,3

1

T η̄α

(∫ T

0
yfα(y) dy

)2



 , (17)

where the terms enclosed in brackets admit modification similarly to(13). By (17), the difference between the
true value of the coefficientχ and the static averaging benchmarkχ(avrg) is proportional toN−2. More specifically,
its magnitude is of the order of (∆T/N)2 (not sign-definite though), where∆T ∼ TN′

3/〈N3〉 or ∆T ∼ (N(m)
3 −

N(1)
3 )/〈N3〉 is the measure of variation ofN3(y) through a unit cell, continuously inhomogeneous or consisting ofm

homogeneous layers, respectively. Thus, if the number of periods in a plate is large enough to make (∆T/N)2 � 1,
then the coefficientχ and the slopeκ of the flexural branch can be approximated by means of static averaging.
For example, let the unit cell consist of two layers with the thickness-to-period ratioτ1 = 2H1/T = h1N and
τ2 = 1 − τ1, so thatχ(avrg) = 1

12(g(1)τ1 + g(2)τ2). In this case, Eq.(17)yields

χ = χ(avrg) − τ1τ2

4N2


τ1τ2

∑
α=2,3

(f (1)
α − f

(2)
α )2

η̄α
+ 2

3
(τ1 − τ2)(g(1) − g(2))


 . (18)

It is clear that the condition for validating the static averaging approximation with respect to strictly periodic
inhomogeneity can be appropriately generalized for the inhomogeneity profiles, which are rapidly oscillating but
with little variation of the envelope (the former feature on its own is certainly not sufficient).

Note in conclusion the formula for the flexural displacement with the leading-order dispersion term:

A1(ς) = C


n − ikH


mς −

∑
α=2,3

ēα
2η̄α

∫ 1

−1
ςfα(ς) dς




 , (19)

whereC is a normalization constant. It is seen that inhomogeneity entails the ‘out-of-plane’ component (parallel to
m × n), unless it vanishes due to the appropriate material symmetry (see Section3.2) or to the evenness offα(ς).

3.2. Symmetric and antisymmetric profiles of inhomogeneity

For a generic profile of elastic inhomogeneity, the departure offα(ς) from its mean value may be decomposed
into two parts, even and odd with respect to the midplane:

fα(ς) = 〈fα〉 + θα(ς), θα(ς) = θ(even)
α (ς) + θ(odd)

α (ς),

θ(even)
α (ς) = 1

2
[θα(ς) + θα(−ς)] = θ(even)

α (−ς),

θ(odd)
α (ς) = 1

2
[θα(ς) − θα(−ς)] = −θ(odd)

α (−ς),

(20)

which enables writing Eq.(12) in the equivalent form as

χ = χ(avrg) +
∑
α=2,3

1

4η̄α


〈fα〉

∫ 1

0
ς2θ(even)

α (ς) dς −
(∫ 1

0
ςθ(odd)

α (ς) dς

)2

 . (21)

We shall examine the cases, whenθα(ς) = θ
(even)
α (ς) (symmetric profile) andθα(ς) = θ

(odd)
α (ς) (antisymmetric

profile).
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3.2.1. Symmetric profile
Suppose that the plate is subject to the same processing on both sides, so that the variation of its elastic properties

is even with respect to the midplane and hence

fα(ς) = fα(−ς)(⇒ g(ς) = g(−ς)). (22)

Then, the second integral in(12)vanishes and, with reference to(15),

χ = 1

4

∫ 1

0
ς2g(ς) dς = χ(avrg) + 1

4

∫ 1

0

(
ς2 − 1

3

)
g(ς) dς, (23)

which also follows from(21)with θ
(odd)
α = 0 due to

∑
α=2,3

1

η̄α
〈fα〉
∫ 1

0
ς2θ(even)

α (ς) dς =
∫ 1

0
ς2[g(ς) − 〈g〉] dς =

∫ 1

0

(
ς2 − 1

3

)
g(ς) dς.

It is seen that the slopeκ = √
χ/〈ρ〉 being higher or lower than its static averaging benchmarkκ(avrg) =

√
χ(avrg)/〈ρ〉

suggests that the plate is markedly stiffer near the faces than in the middle or vice versa, respectively. Let us further
assume that the (even) functiong(ς) is monotonic throughout the face-midplane range,

signg′(ς) ≷ 0 forς ∈ [−1,0] ⇔ signg′(ς) ≶ 0 forς ∈ [0,1], (24)

which is also a practically common situation. Integrating(23)2 by parts and applying the mean-value theorem
enables us to specify(16) for the case on hand as follows:

κ(avrg) ≤ κ <
√

3κ(avrg), if g(ς) monotonically decreases towards the midplane;

(0 <)κ ≤ κ(avrg), if g(ς) monotonically increases towards the midplane,
(25)

where equality holds if and only ifg(ς) = constant through the plate. The same statement applies to the discretely
inhomogeneous plates, whose layers are stacked in a way even with respect to the midplane (when the second sum
in (14) is zero). Thus, gaugingκ relatively toκ(avrg) can reveal certain features of the inhomogeneity profile.

To fix the ideas, consider a simple model of the symmetric profile, namely, a sandwich structure with the same
homogeneous skin layers and a homogeneous core layer. Let us label their material parameters by the superscripts
j = 1,2, namely,g(1), ρ(1)(= g(3), ρ(3)) for the skin layers andg(2), ρ(2) for the core layer. The dimensionless
thickness of each skin layer and of the core layer relatively to the aggregate plate thickness (see(3)) is h1 and
h2 = 1 − 2h1, respectively. Invoking(12) and (15)yields

κ =
√

2g(1)h1(4h2
1 − 6h1 + 3) + g(2)(1 − 2h1)3

12[2h1(ρ1 − ρ2) + ρ2]
, κ(avrg) =

√
2h1(g(1) − g(2)) + g(2)

12[2h1(ρ1 − ρ2) + ρ2]
. (26)

Plottingκ andκ(avrg) as functions ofh1 represents their dependence on the sandwich composition, in other words,
on the shape of (discrete) inhomogeneity profile.Fig. 1 shows the curvesκ(h1) andκ(avrg)(h1) for the materials
listed in Table 1. (Without loss of generality and for illuminating the chief points, the numerical illustrations
involve symmetric media satisfyingg(j) = η

(j)
3 , see(32) and (34)below.) Each plot (a–c) inFig. 1 is referred to

a pair of materials and displays the curves for two different sandwich structures, which correspond to interchan-
ging the given materials as substancesj = 1,2 for the skin and core layers. Obviously, the valuesκ(0) =

√
1
12g

(2)

andκ( 1
2) =

√
1
12g

(1) at the edge pointsh1 = 0, 1
2 imply the homogeneous limits, for which the whole plate consists

of the core (j = 2) and of the skin (j = 1) material, respectively. By(26), sign(κ − κ(avrg)) = sign(g(1) − g(2)) and
thus, in accordance with(25), κ(avrg) < κ <

√
3κ(avrg) for anyh1 �= 0, 1

2 if the skin layers are stiffer, andκ < κ(avrg)

if otherwise.
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Fig. 1. The flexural branch slopeκ (solid lines) and the static averaging benchmarkκ(avrg) (dashed lines) as functions of the dimensionless
thicknessh1 of the skin layer in the sandwich structures made of cross-ply laminae (a); steel and aluminium (b); tungsten and aluminium (c). The
material properties are listed inTable 1. For each pair of materials, the bold and thin lines correspond, respectively, to the ‘fast’–‘slow’–‘fast’
and ‘slow’–‘fast’–‘slow’ compositions of a sandwich (where ‘fast’ or ‘slow’ is understood in the sense of larger or lesser slope of the flexural
branch in a homogeneous plate of each of the materials). The inset to (a) shows the flexural branchv1 in the homogeneous plate of the ‘slow’
material (this branch slope is given byκ(0) = κ90◦ ) and in the sandwich with ‘fast’ skin layers, occupying 0.1 of the sandwich thickness each
(this branch slope isκ(0.1), which is compared toκ(avrg)(0.1)).

It is noted that varying relative thicknesses of the constituent layers changes the average density and thus brings
the density distribution into play. In this regard, another aspect highlighted byFig. 1 is a striking difference in the
shape of curvesκ(h1) for the two basically alternative options of choosing a pair of materials for a sandwich structure:
when one of the materials is stiffer and lighter than the other, so thatg(1) ≷ g(2), ρ(1) ≶ ρ(2) (case (i)); when one of
the materials is stiffer and heavier than the other, i.e.g(1) ≷ g(2), ρ(1) ≷ ρ(2) (case (ii)). The dependenceκ(avrg)(h1)
is always monotonic for the both cases, whereasκ(h1) is monotonic in the case (i) (Fig. 1a) and is most likely
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Table 1
Properties of the materials involved inFigs. 1 and 3: the densityρ (g/cm3); the elastic constantscIJ (GPa) forX1//m, X2//n; the stiffness
coefficientg = η3 (GPa); the slope of the flexural velocity branchκ = √

η3/12ρ (mm/�s), see(33) and (35)

ρ c11 c12 c22 η3 κ

Aluminium, Al 2.7 107.8 54.9 = c11 77.72 1.546
Steel 7.932 281.75 113.16 = c11 236.31 1.576
Tungsten, W 19.3 564.9 295.85 = c11 409.93 1.330
Lamina [81] 1.6

0◦-orientation 143.2 7.5 15.8 139.65 2.697
90◦-orientation 15.8 8.2 = c11 11.54 0.775

to have an extremum in the case (ii) (Fig. 1b and c). The point here is that, by contrast toκ(avrg) =
√
χ(avrg)/〈ρ〉,

the flexural branch slopeκ = √
χ/〈ρ〉 is determined by the second-ordermomentumof the even stiffness profile

(see(23)1) along with theaverageof the density profile. The case (i) allows one material to be much ‘faster’ than the
other, in the sense of markedly different flexural branch slopes for the homogeneous plates of each of the materials
j = 1,2. The contribution of momentum enhances the effect of relatively thin coating on the long-wave velocity
of the flexural wave, accordingly to the through-plate distribution of the displacement field(19). For instance,Fig.
1a, engaging cross-plied laminae with strong elastic anisotropy (ρ is constant), shows that depositing the ‘fast’ skin
layers, whose thickness is only 0.1 of the aggregate plate thickness, increases the flexural branch slopeκ by more
than 2.5 times, while the static averaging benchmarkκ(avrg) gives about 30% less than that. In turn, the case (ii)
allows a pair of materials with quite different stiffnesses and densities to have similar values for the long-wave
‘homogeneous’ flexural velocity, which is wheng(1)/ρ(1) is close tog(2)/ρ(2). Given that, the functionκ(h1) is
not monotonic and has one extremum within the intervalh1 ∈ (0, 1

2). The difference between the curvesκ(h1) and
κ(avrg)(h1) in Fig. 1b and c pinpoints the aforementioned dissimilarity of how the stiffness and density distributions
affect the flexural branch slopeκ in an inhomogeneous plate.Fig. 1b exemplifies a sandwich structure, which is made
of the materials with almost the same long-wave flexural velocity each (κ(0) ≈ κ( 1

2), henceκ(avrg)(h1) ≈ constant),
however, the velocity for the sandwich can be notably higher or lower than for the homogeneous plate of either of
these materials.Fig. 1c demonstrates another interesting possibility within the case (ii). Here one of the materials
is stiffer and at the same time ‘slower’ than the other material. As a result, according to(25), using the former
‘slow’ material as a coating for latter ‘fast’ one (henceg(1) > g(2), κ(0) < κ( 1

2)) yet makes the flexural velocity in
the sandwich to be higher than in the homogeneous plate of the ‘fast’ core material (and vice versa for the inverse
composition)—that is contrary to the case (i) (cf.Fig. 1a).

3.2.2. Antisymmetric profile
Another basic pattern of elastic inhomogeneity is its antisymmetric profile, in the sense that the departure of

fα(ς) (and hence ofg(ς)) from the mean value is odd with respect to the midplane:

fα(ς) − 〈fα〉 = −[fα(−ς) − 〈fα〉] = θ(odd)
α (ς), (27)

see(20). Under this condition, by(21),

χ = χ(avrg) −
∑
α=2,3

1

4η̄α

[∫ 1

0
ςθ(odd)

α (ς) dς

]2

(< χ(avrg)), (28)

and thusκ < κ(avrg). Moreover, if, in addition to(27), fα(ς) ≥ 0 for anyς ∈ [−1,1], which holds typically and is
always the case for the monoclinic setting(32) (see Section3.3), thenχ > 1

4χ
(avrg) and so

1

2
κ(avrg) < κ < κ(avrg). (29)
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Fig. 2. The ratioκ/κ(avrg) as a function of the control parametera governing the antisymmetric profile shape(30) with a fixeda0 = 2/3. The
profile shapes are charted in the inset.

The lower bound1
2κ

(avrg) is not approachable practically, for, it describes a theoretical limit whenθ
(odd)
α (ς) is equal

to 〈fα〉 for one-half of the plate and to−〈fα〉 for the other half, which simply implies a homogeneous plate that is
twice thinner than the given one and has the slopeκ(avrg).

For exemplifying dependence on a variable shape of antisymmetric profile, it is pertinent to consider the case of
continuous inhomogeneity, which may be viewed as a result of increasing external impact that has ‘inverse signs’
on the opposite plate faces. Suppose that this impact changes the antisymmetric profiles of stiffness and (possibly)
density inhomogeneity without changing the mean, i.e.χ(avrg), 〈ρ〉 andκ(avrg) stay constant. The model example,
displayed inFig. 2, assumes the medium satisfying(32)and the stiffness profile described by

η3(ς) = 〈η3〉[1 + a0 tanh(aς)], (30)

so that(28)yields

κ = κ(avrg)

√√√√1 − 3

[∫ 1

0
a0ς tanh(aς) dς

]2

. (31)

3.3. Simplification due to the vertical plane of material symmetry

Consider a monoclinic plate with the symmetry planem, which is either parallel to the sagittal plane (m,n)
or orthogonal to the wave normalm. Then,m and t = m × n are the eigenvectors ofN3(ς) at anyς and hence
of 〈N3〉, so thatm · N3(ς)t = m · 〈N3〉t = 0 and the eigenvalues ¯ηα of 〈N3〉 are equal to the statical average〈ηα〉
of the eigenvaluesηα(ς) of N3(ς), see(5). Let, say,t = e2(ς) = ē2, m = e3(ς) = ē3. Thus, incorporating discrete
inhomogeneity as well,

f2(ς) = 0, f3(ς) = g(ς) = η3(ς)

f
(j)
2 = 0, f (j)

3 = g(j) = η
(j)
3

, η̄3 = 〈η3〉 = 〈g〉, (32)
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whereη3(ς) or η(j)
3 is

η3 =



c11 − c22c

2
16 − 2c12c16c26 + c2

12c66

c22c66 − c2
26

, if m is parallel tom,

c11 − c22c
2
14 − 2c12c14c24 + c2

12c44

c22c44 − c2
24

, if m is orthogonal tom,

(33)

given that the elastic coefficientscIJ (ς) or c(j)
IJ are referred to the coordinate axesX1, X2, X3 parallel tom,n, t,

respectively. Evidently, Eq.(33) reduces to

η3 =
{
c11 − c2

12/c22, if the plate is orthorhombic,

4ρv2
t (1 − v2

t /v
2
l ), if (m,n) is the plane of isotropy,

(34)

vl,t being the longitudinal and transverse bulk-wave velocities.
Once(32)holds true, Eqs.(12) and (13)can be simplified as

χ = 1

8

∫ 1

−1
ς2η3(ς) dς − 1

16〈η3〉

(∫ 1

−1
ςη3(ς) dς

)2

= 1

16〈η3〉
∫ 1

−1

∫ ς

−1
(ς − ς1)2η3(ς)η3(ς1) dς dς1. (35)

Eq.(14), describing discretely inhomogeneous plate, reduces to

χ = 1

〈η3〉
n∑

j=1

j−1∑
k=1

η
(j)
3 η

(k)
3 hjhk(Sj − Sk)

2 + 1

12

n∑
j=1

η
(j)
3 h3

j , (36)

which specifies for equidistant layers (hj = 1/n, 〈η3〉 = 1
n

∑n
j=1 η

(j)
3 ) as

χ = 1

n4〈η3〉
n∑

j=1

j−1∑
k=1

η
(j)
3 η

(k)
3 (j − k)2 + 1

12n2 〈η3〉. (37)

Note that the first term on the right-hand sides of(36) and (37)is asymptotically independent ofn, whereas the
second term decreases asn−2 with growingn. Eq.(17) for a periodic plate becomes

χ = χ(avrg) + 1

N2

[
−χ(avrg) + 1

T 4

∫ T

0

∫ y

0
(y1 − y)2η3(y)η3(y1) dy dy1

]
. (38)

Consider in some detail the particular case of a stack ofN identical monoclinic bilayers satisfying(32). The latter
casts Eq.(18) into the form

χ = χ(avrg) − τ1τ2

4N2 (η(1)
3 − η

(2)
3 )

[
τ1τ2

η
(1)
3 − η

(2)
3

〈η3〉 + 2

3
(τ1 − τ2)

]
, (39)

whereχ(avrg) = 1
12(η(1)

3 τ1 + η
(2)
3 τ2) and τ2 = 1 − τ1. Let us label parameters of the stiffer and softer layer by

superscripts (1) and (2), so thatη
(1)
3 > η

(2)
3 (it does not matter indeed which of them is upper or lower in a periodic

stack). If the stiffer layer is thicker than the softer layer:τ1 > τ2, then, by virtue of(39), χ < χ(avrg) and so the
flexural branch slopeκ is always lower than the static averaging benchmarkκ(avrg), tending to it rapidly with growing
N. If the stiffer layer is thinner:τ1 < τ2, thenκ may be either less or greater thanκ(avrg) depending on the certain
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balance between the thicknesses and the elastic parameters of the layers. It is set by the sign of the term in brackets
in (39)and reads as follows:

κ > κ(avrg) ⇔ τ1 < 1/B, κ < κ(avrg) ⇔ τ1 > 1/B, (40)

where

B = 1 + 1

4

[
b − 1 +

√
(b − 1)2 + 16b

]
(> 2), with b ≡ η

(1)
3 /η

(2)
3 (> 1). (41)

The threshold between the two opposite trends(40) is whenτ1 = 1/B(< 0.5). Then,χ = χ(avrg) and so the slopeκ
stays equal toκ(avrg) regardless ofN.

Fig. 3. The flexural branch slopeκ vs. the dimensionless thicknessτ1 of the stiffer layer in a bilayered cell for the plate containing one cell (bold
solid line), two cells and three cells (thin solid lines). The reference static averaging curveκ(avrg)(τ1) is plotted by dashed line. The bilayered
cell is made of cross-ply laminae (a); steel and aluminium (b); tungsten and aluminium (c), characterized inTable 1.
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Fig. 3 shows the curvesκ(τ1) andκ(avrg)(τ1) for a plate with one, two and three bilayers (N = 1,2,3). The
exemplified materials are the same as used inFig. 1 for representing the cases (i) and (ii) defined in Section3.2.
The reference curveκ(avrg)(τ1) is always monotonic. The curveκ(τ1), for anyN, coincides withκ(avrg)(τ1) at the
edge pointsτ1 = 0,1, which correspond to the homogeneous limits, and intersectsκ(avrg)(τ1) at τ1 = 1/B. Hence,
κ(τ1) may not have an extremum ifκ(avrg)(τ1) is steep enough, which is when one of the layers is markedly ‘faster’
than the other (case (i),Fig. 3a), whereasκ(τ1) has maximum atτ1 < 1/B and minimum atτ1 > 1/B, if κ(avrg)(τ1)
is flat enough (case (ii),Fig. 3b and c).

4. S0 and SH0 branches

The leading-order dispersion of the upper fundamental branches*vα(k) = vα(k) − v0α ∼ (2kH)2 or*vα(ω) ∼
(2ωH/v0α)2 (α = 2,3) is somewhat less significant than that of the flexural branchv1(k). Departure ofvα(k) from
v0α at 2kH � 1 is little, because the dispersion is quadratic and its coefficient is usually small. For inhomogeneous
plates and general anisotropy, the coefficient of quadratic dispersion(7)can barely be simplified—it admits reducing
triple integration to double only, and at the expense of sprawling terms. Certainly more tractable and actually more
interesting is the specific case of the SH0 fundamental branch, whose dispersion is stipulated solely by the plate
inhomogeneity. In view of these considerations, let us assume that the sagittal plane (m,n) coincides with a symmetry
plane. One of the upper fundamental branches is the SH0 branch polarized alongt = m × n. The conventional label
S0 (S for ‘symmetric’) is used for the other branch, in understanding though that it has attributes of a symmetric
branch if and only if the horizontal symmetry plane, presumed in Section4.1, is complemented by the symmetry
(evenness) of inhomogeneity profile (see[10]). Keeping the notationt = e2(ς) = ē2 as in Section3.2 specifies
numbering of the branchesvα(k) asv2 = vSH0 andv3 = vS0. In the subsequent formulas, the tensorc is referred to
the same base as in(33) (X1, X2, X3 parallel tom,n, t, respectively).

4.1. S0 branch

For an orthorhombic inhomogeneous plate with symmetry planes parallel to the boundary (whenēα ·
P(2)

3 (v0α)ēβ = 0, α, β = 2,3 in (7)) and to the sagittal plane, theS0 velocity truncated at the leading-order dis-
persion term is defined by

〈ρ〉v2
S0

= 〈η3〉 − (2kH)2
1

8



∫ 1

−1

[∫ ς

−1
(ς − ς1)D(ς1) dς1 −

∫ 1

ς

(ς − ς1)B(ς1) dς1

]
C(ς) dς

+
∫ 1

−1

[∫ ς

−1
B(ς1) dς1

]2

c−1
66 (ς) dς + 〈η3〉

2

[∫ 1

−1
C(ς) dς

]2

− 1

2〈η3〉

[∫ 1

−1
ςD(ς) dς

]2

 , (42)

where

D(ς) = B − 〈η3〉C, B(ς) = η3 − 〈η3〉 ρ

〈ρ〉 (〈B〉 = 0), C(ς) = c12

c22
, η3(ς) = c11 − c2

12

c22
(43)

with ρ(ς) andcIJ (ς). If the plate is periodic (hence〈· · ·〉 = 1
T

∫ T
0 · · · dy), then with growing numberNof unit cells

(42) tends at a rate∼ N−2 to the static averaging approximation

〈ρ〉v(avrg)2
S0

= 〈η3〉
[

1 − (2kH)2
1

12

〈
c12

c22

〉2
]
, (44)

which is the exact formula for an ‘effective’ homogeneous plate with the Stroh matrix〈N〉, see[9].
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For a simple case of a plate, consisting of two equidistant homogeneous layers (h1 = h2 = 1
2), it follows

〈ρ〉v2
S0

= 〈η3〉 − (2kH)2
1

3 × 26

{
5〈η3〉

(
C(1)2 + 6

5
C(1)C(2) + C(2)2

)
− 4

(
ρ(2)

〈ρ〉 η
(1)
3 − ρ(1)

〈ρ〉 η
(2)
3

)

×
[
C(1) − C(2) +

(
ρ(2)

〈ρ〉 η
(1)
3 − ρ(1)

〈ρ〉 η
(2)
3

)(
3

〈η3〉 − 2

c
(1)
66

− 2

c
(2)
66

)]}
. (45)

4.2. SH0 branch

Uncoupling of the SH motion due to the sagittal plane being a symmetry plane means that the SH waves are
described by the 2× 2 matricant (see, e.g.[14]). Vanishing of its left off-diagonal component gives the dispersion
equation for the SH velocity branches in the form

〈µ〉 − 〈ρ〉v2 +
∞∑
m=1

[p(2m+1)(v2)](2kH)2m = 0, (46)

whereµ = c55 − c2
45/c44 and

p(2m+1)(v2) = 1

22m+1

∫ 1

−1

∫ ς

−1
· · ·
∫ ς2m−1

−1
[µ(ς) − ρ(ς)v2]c−1

44 (ς1)[µ(ς2) − ρ(ς2)v2]

× · · · c−1
44 (ς2m−1)[µ(ς2m) − ρ(ς2m)v2] dς dς1 · · · dς2m. (47)

The fundamental SH0 branchvSH0 satisfies the series expansion

〈ρ〉v2
SH0

= 〈µ〉 +
∞∑
m=1

xm(2kH)2m, (48)

whose coefficients can be found recursively from(46)with (47). For instance,

x1 = − 1

23

∫ 1

−1

∫ ς

−1

∫ ς1

−1
∆(ς)c−1

44 (ς1)∆(ς2) dς dς1 dς2 = − 1

23

∫ 1

−1
c−1

44 (ς)

[∫ ς

−1
∆(ς1) dς1

]2

dς(< 0);

x2 = 1

25

∫ 1

−1
· · ·
∫ ς3

−1
∆(ς)c−1

44 (ς1)∆(ς2)c−1
44 (ς3)∆(ς4) dς · · · dς4

− x1
1

23

∫ 1

−1

∫ ς

−1

∫ ς1

−1
[ρ(ς)c−1

44 (ς1)∆(ς2) + ∆(ς)c−1
44 (ς1)ρ(ς2)] dς dς1 dς2; etc.,

(49)

where∆(ς) = µ(ς) − 〈µ〉ρ(ς)/〈ρ〉 (so 〈∆〉 = 0). Obviously, the dispersion of the SH0 branch encapsulates its
departure from the static averaging, for, this branch is non-dispersive in a homogeneous plate.

A remarkable trait of the SH0 branch in a periodic plate with an arbitrary (monoclinic) continuously or discretely
inhomogeneous unit cell is that this branch, along with a certain family of the upper SH branches, is independent
of the numberN of periodsT. It is merely a consequence of the 2× 2 dimension of the ‘SH matricant’ (denote it,
say, byw = {wij}) and of the simple fact that an off-diagonal componentij of arbitrary power of a 2× 2 matrix is
proportional to the sameij th component of the matrix itself. Therefore, the dispersion equation [wN (T,0)]21 = 0
factors out the equationw21(T,0) = 0, and so the spectrumvSH(kT ) for a plate with any numberNof unit cells with
a fixed periodT includesN-independent family of branches (incorporating the fundamental, SH0 branch), which is
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Fig. 4. The example explained in Section5. Solid lines represent the exact numerical calculation; dotted lines show the analytical evaluation
for the flexural branch slope (Eq.(35)) and for the leading-order dispersion of theS0 (Eq. (42)) and the SH0 (Eq. (49)1) branches. The inset
displays the profiles of material properties variation, see(50).

the intact spectrum for a single traction-free unit cell. Each of these branches corresponds to the Floquet mode with
a complex wavenumber.

5. Numerical example

Fig. 4shows numerically calculated fundamental branches within the long-wave domain and their leading-order
analytical approximations for the orthorhombic inhomogeneous plate with the elastic coefficients and density chosen
as follows:

c11 = 100× f1(ς), c12 = 50× f1(ς), c66 = 40× f1(ς), c22 = 75× f2(ς),

c44 = 10× f3(ς), c55 = 35× f4(ς) [all in GPa]; ρ = 8 × f5(ς) g/cm3. (50)

The functionsf1,...,5(ς), containing ranges of continuous variation (linear, cosine, exponential, Gaussian), constant
plateaus and a stepwise discontinuity, are displayed in the inset toFig. 4. The profiles are intentionally made up
to be rather peculiar, merely for illustrating the potential of analytical and numerical means in handling arbitrary
transverse inhomogeneity (see also[15]).

6. Conclusions

The coefficients of leading-order dispersion at the origin of the fundamental branches in a transversely inhomo-
geneous anisotropic plate have been studied. The most tractable is the flexural branch. The linear slopeκ of the
flexural velocity branchv1(k) in a plate of unrestricted anisotropy is given by the simple formula with only single
integrals of bilinear forms of the Stroh’s matrix block, allowing further sizable simplification in the presence of a
vertical plane of material symmetry parallel or orthogonal to the wave normal. The role of the static averaging has
been elucidated. Given a generic inhomogeneity profile and arbitrary anisotropy, the upper limiting bound forκ

is
√

3 times the static averaging benchmarkκ(avrg). If the profile of inhomogeneity is symmetric or antisymmetric
with respect to the midplane, both the upper and the lower bounds forκ can be further specified in terms ofκ(avrg).
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A qualitative insight into some local features of the profile can be gained from comparingκ andκ(avrg). This aspect
is exemplified in detail for sandwich and bilayered structures. For the fundamental branches in periodic inhomoge-
neous plates, it is verified that the departure of the leading-order dispersion coefficients from the static averaging
approximation is scaled by (∆T/N)2, where∆T is a measure of variation of the material properties through one
period andN is the number of periods in a plate. In this context, the exception is the fundamental branch of shear
horizontal waves (SH0 branch), which is altogether independent of the number of unit cells in any periodic plate
regardless of the unit cell properties.

The results obtained for the fundamental branches in a traction-free plate can be engaged for other settings.
For instance, the onset of the lowest real branch in a fluid-loaded inhomogeneous plate is related to the leading-
order term for the flexural branch of this plate free of traction in the same way as in the case of homogeneity:
v

(immersed)
1 = v

(free)
1 /

√
1 + ρf/〈ρ〉kH , wherev(free)

1 = 2κkH andρf is the fluid density. Another application, which
is readily on hand, is concerned with the flexural modes propagating along the tip of a slender wedge, see[16]. Within
the geometrical-acoustics approach, velocities of these wedge modes are expressed via the long-wave velocity of
the plate flexural wave and thus can be estimated for a transversely inhomogeneous wedge.
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