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Abstract

Long-wavelength onset of the fundamental branches is described for a free anisotropic plate with arbitrary through-plate
variation of material properties. Main attention is given to the flexural branch. Closed-form expressions for the leading-order
dispersion coefficient of the velocity and displacement are derived for a generic case and exemplified for the various types of
either continuous, or discrete, or periodic inhomogeneity and for the monoclinic symmetry. The relevance of the static averaging
is examined in detail. The bounds for the slope of the flexural velocity branch are established. The upper fundamental branches
are considered for the case when these are uncoupled inplane and shear horizontal ones.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Acoustic-wave propagation in anisotropic transversely (vertically) stratified plates is closely involved with struc-
tural dynamics and non-destructive evaluation/testing of composites and, more recently, of functionally graded
materials, which have broad area of applicatifins]. Ultrasonics methods and NDE/NDT experiments are often
carried out at relatively low frequency and deal with the onset of the fundamental dispersion branches. In this context,
in general, and for efficient handling of the inverse problem in particular, it is helpful to know explicit analytical
approximations of the long-wave dispersion. Such estimates are naturally tied in with the homogenization concept,
see[6-8]. The objective of this paper is to obtain and simplify, insomuch as possible, the leading-order dispersion
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coefficient at the onset of fundamental branches, to exemplify it for various types of inhomogeneity, and to relate
its exact evaluation to the static averaging perspective.

Analytically straightforward access to the long-wave expansion of the fundamental velocity branches is provided
by the sextic (state-vector) approach for plates. Its overview and the relevant bibliography for homogeneous and
inhomogeneous plates is given[#+-11]. We shall therefore confine to the basic frame that suffices for the problem
on hand (Sectiog). Readily available explicit evaluation of the leading-order dispersion coefficient is yet obscured
by multiple integrals. The flexural branch, however, allows a substantial simplification and detailed analysis even
if anisotropy is arbitrary (SectioB). The upper fundamental branches are treated for the case of inplane/shear
horizontal (SH) uncoupling, which allows relatively simple formulas for the SH fundamental branch (SHc#on
numerical example dealing with the set of fundamental branches in a continuously inhomogeneous plate is suppliec
(Sectionb), followed by the conclusions (Secti@.

The basic algebraic notations used below are as follows: the superscript ‘T’ means tragspotee dyadic
product;l andl ) are the X3 and 6<6 identity matricesT is the 6x6 matrix with zero diagonal and identity
off-diagonal 3«3 blocks.

2. Background
2.1. Framework of the problem

Consider an infinite plate with traction-free facesyat +H (the plate thickness isf2), which consists of
an arbitrary anisotropic and transversely inhomogeneous material with defgjtand elasticity tensoc(y).
Inhomogeneity may be either continuous, or discrete—implying a stackh@imogeneous layers, each with a
thickness 2/; and constanp’) andc? (j = 1,2, ..., n), or else it may combine ranges of continuous and discrete
variation. Denote the unit vector along an arbitrary axis the plane of plate faces by, and the unit vector
along the axisr orthogonal to the faces hy. Seeking the plane-wave solutiotsexp[ik(x — vr)] of the equation
of motion leads, by way of the sextic formalism, to the system of six first-order ordinary differential equations with
the matrix of coefficient§(y). Its Stroh form, well-fitted with the long-wave expansion, is

Q =ik Noo Nz}, N1 = —(nn) " t(m), N2 = —(nn)™%, Nz = (mm) — (mn)(nn) "1(um), (1)
"N NT ) T 2T S ’

where @b) = a;c;jub; for a, b = m or n, and the components;; of c(y) may be defined in a bagé(1, X», X3}
of any orientation with respect 4, Y. The matricant solution referred to the plate faces, otherwise termed the
propagator through the plate, is evaluated by the Peano expansion of the multiplicative int€sgl[aP],

+H H H [y
Mt -t) = [ flg+Qudl=le+ [ Qdi+ [ [ QuQundrdy+-:
—-H —-H -HJ-H
%0 (2)
=l + > _[P™M@?)]QikH)".
m=1
Eq. (2) embraces the case of discrete inhomogeneity, WA¢H, —H) = H}:n exp(ZHngQnsta,Q and thus the

multiple integrals of the Peano expansion reduce to multiple sums. The matrix coeffiR{iehts the power series
in (2) are the integrals or sums written, respectively, via the dimensionless variables

s=g hi=—4 ©)

which are used hereafter, while keeping the same notation for a functicarafc (e.9.Q(y) = Q(¢)).
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The term of(2) with a single integral of) implies the so-called static averaging, which will be denoted below
for either continuous or discrete inhomogeneity by

1 1
Y RCLE
(=’ | @)

Z...(j)hj

=1

For instance, the left off-diagonal block ¢®) brings aboutp) and(N3). The theory of the Stroh formalisfi3]
tells us that the symmetric matriX¥s has a null vecton and is positive definite in the subspace orthogonat,to
hence the same is true f@X3):

Na(c)n =0, [Na(s) — na(c)l]ex(s) = 0 (orN$’n = 0, [N — ()11el= 0);

R (5)
(Ns)n =0, [(N3)—nellex =0  (¢=23),

wheren,(¢) andn, > 0O; the (unit) vectorg,(¢) form an orthogonal triad witim and so dce,. Note thaty, is
certainly not an average af,(<) unless, due to the symmetey,(¢) is constant and thus coincides wah That is,
e = (o) if and only if e,(¢) = &, for any¢ (or &) = e, for anyj).

The boundary condition of traction-free plate faces demands vanishing determinant of the left off-diagonal block
M3 of M (H, —H) and defines the displacement polarization at — H as the null vector oM 3. Inserting(2) into
the dispersion equation det3 = 0 enables explicit recursive finding of, in principle, any number of coefficients in
the power-series expansions for the dispersion dependence of the three fundamental velocity branches. The series
straighten if the viscosity is absent or is non-dispersive, for then the squared veﬁlz}tyx =1, 2, 3, expands into
even powers of H. Itis clear that the limiting (zero-order) valuesiat 0 are determined by the eigenspectii@n
of (N3): the velocities arep1 = 0, vo, = /77e/(0) and the polarizations are paralleli@nde,. The perturbation-
theory procedure for obtaining the leading-order dispersion terms is the same as for homogeneo[8] pates
within the Peano expansion in place of the exponenti& dBy this means the onset of the fundamental velocity
branches is described as follows:

p)vi:(zkH)Zl n-PYON+ Y = N PAo)n)(n - P(Z)(O)ea)] (6)
a=2,3"1%
(o2 = T = @AY & PRI + =@ PRI PR R)
+ﬁ @ PO ;8@ - PY ’(voa)ea)] 0. p=23(#p). (7)

whereP{"), the left off-diagonal blocks a®™) in (2), are

1
PP = 32 / / " INa(2, INa(s1) + N1 (5)N3(v?, s1)]dg d1;

8
P90 = 25 [ [ [ INs2, Nt + N2, ot ©

+ N3(v2, )N2(s1)N3(v?, 52) + NJ (6N (s1)N3(v2, 52)]ds dgy dso,

with N3(v?, ¢) = N3(s) — p(s)v?l



370 A.L. Shuvalov et al. / Wave Motion 42 (2005) 367-382

The purpose of the following consideration is simplification and analysis of the leading-order dispersion co-
efficients, encompassed 1§§)—(8) The case of (non-dispersive) viscosity, admitted above, is not pursued. The
higher order coefficients grow lengthy and therefore will be presented only for the caseydiiSthmental
branch.

2.2. Preliminary remarks

Let us accentuate in advance some evident, yet noteworthy points of the upcoming derivations. Firstly, it is
reminded that Eqs(6)—(8) represent truncated series (in powers dH2 of the exact solution for the funda-
mental wave velocity and thus we are dealing withexactvalue of the leading-order dispersion coefficient.
Secondly, it is noted that adhering to the long-wave approximation does not indeed restrict the impact of inho-
mogeneity, i.e. the conditionkf « 1 does not imply weak inhomogeneity ~ 2HN’/(N) « 1 (whereN’ is a
‘typical value’ of derivative iny) and so the coefficients of the series, including the leading-order one, may be
anyhow strongly affected by the variation of material properties through the plate. Thirdly, treating the long-wave
range, it is natural to establish a link to the concept of statically homogenized, or ‘effective’ medium, which is
defined as the non-dispersive homogeneous material with the dénmsand elasticity tensates (£ (c)) inferred
from the statically averaged matriN). Obviously, the zero-order term of the series is supplied by statically
averaged properties of an inhomogeneous plate, which are inserted into the formula for a homogeneous plate
(i.e. pv%a =0, n2(<), n3(c) with eigenvalues ofN3) in place of that ofN3 = constant). Equally evident is that
the same course of action — using ‘homogeneous formulas’ with statically averaged parameters — would be incor-
rect for exact evaluation of the leading-order dispersion coefficients. Indeed, their calculation, accof@ng to
involves the matricant expansid8) up to the (2 H)3-order, whereas the static averaging is equivalent to trun-
cating this series by the linear term ik/2. At the same time it is clear that the static averaging can certainly
provide an approximation if the inhomogeneity is weak<« 1) and also if its variation within the plate is de-
scribed by, loosely speaking, a rapidly oscillating function with a slowly changing envelope, in particular if it
is the case of a periodic plate with large enough number of periods (the reservation concerning tvarigH
is in order, see Sectiof). Barring those plain setups, the question in general is what is the relation, if any, be-
tween the true value of the leading-order dispersion coefficient and the static averaging benchmark. Regarding
the flexural branch, we shall see that the bound(s) for former value can be expressed via the latter, and that the
difference between these two can be used for a qualitative insight into the local features of certain types of the
inhomogeneity profile. To this end it is noted, that, whereas the static averaging involves only the integral in-
homogeneity, calculation of the true dispersion coefficient deals with the momentums of elastic inhomogeneity
profile.

3. Flexural branch
3.1. Arbitrary anisotropy

Denote the leading-order coefficient in the expang®rby x and the slope of the flexural branek(k) at its
origin point by« (separate notations will prove handy), so that the truncated dispersion relation reads

(p)v3(k) = x(2kH)? or wi(k) = 2ckH (orvi(w) = v2xwH), wherec = /%. (9)

Due to(5) and the identityN1(¢c)n = —m following from (1), the double and triple integra(8) in (6) reduce to
single integrals, involving contractions of the Stroh matrix bibigks) with the wave normai and the eigenvectors
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&, of (N3). Introduce the auxiliary notations

g(g) =m-N3(c)m g =m-Nym () =m- (Nz)m (10)
fo(s) =m - N3(s)& ’ D =m. N<f> <f>a—m (N3)&, ’
for which we note the identity
d=3 Yl =3 Yy 1)

=23 ¢ a=2,3 Na

ensuing from(5). For an arbitrane(c) andp(s),

1 2
-5/ e 3 = ( [ §fa(§)d§> . (12)

If desirable, Eq(12) may be presented as a sum of double integrals:

[ 1 1 2
1;7—“ /_1fa(§) d;/_l 62 fuls) ds — (/_1 §fo¢(§)d§> ]

1 [t ogs )
o | /_ 1 /_ (¢~ ) fulc) dgdg],

X:

(]

a=2,3
(13)

(]

a=2,3

wheref™, [5) = 4 [} [1), and3>,_p 57, ful€) fulsr) = M- Na(€)INs(cmwith J = 3, 5 7 18, © & be-
ing the pseudo-inverse d3). For a discretely inhomogeneous plate consistingl@dmogeneous layers, Ed.2)
may be re-written as

x=3 ¢ (s2+=L Z Z ;s (14)
, 12 N
j=1 a=2,3

with §; = —%(1+ hj)+ Z{zl h;, which in the case of equidistant layers; (= 1/n) is simply S; = (2j —n —

1)/2n (using(11) enables further manipulation witti4)).

Let us relate the exact coefficieptand slopec = +/x/(p), following from (12), to the ‘would-be’ estimate

(avrg) (g) (avg) _ x(@vrg)
12’ (o)

which is obtained by inserting the statically averag@dnd(N3) into the corresponding formula for a homogeneous
platev{™™ = 2kH . /g/125 [9] (see(12) with constanip, g, f.). By (12), (0 <)x < 3x@® and so

(15)

(0 <) < V/3c@vra) (16)

i.e. the flexural branch slope in a plate with an arbitrary profile of inhomogeneity is limited from above by
V3@19) The upper bound (limit), implying an infinitely stiff and infinitely thin coating, is certainly not reachable.
Now consider the case of a periodically inhomogeneous plate, consisting d payiodsT = 2H/N within

[—H, H]. For clarity, we resume the variabie e.g. g(y) = m - N3(y)m (see(10)) and (- --) = %for <+ (y) dy.
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Eq. (12) referred to the periodic setting may be arranged into the form

1 1|7, 1T 2
x= @4 8 e | [T2a - 5 ([anmw) | a7)

=23 1o

where the terms enclosed in brackets admit modification similard3 By (17), the difference between the
true value of the coefficient and the static averaging benchmaf®’"9 is proportional tav—2. More specifically,
its magnitude is of the order ofA(-/N)? (not sign-definite though), whera; ~ TN 3/(Ns) or Ag ~ (N(’”)

N(l))/ N3) is the measure of variation df3(y) through a unit cell, continuously inhomogeneous or consistimg of
homogeneous layers, respectively. Thus, if the number of periods in a plate is large enough td ffake ( 1,

then the coefficienfy and the slopa of the flexural branch can be approximated by means of static averaging.
For example, let the unit cell consist of two layers with the thickness-to-period ratio2H;/T = h1N and

72 = 1— 11, 50 thaty@'9) = L(¢Wry 4 ¢@1y). In this case, Eq17)yields

(awg) _ T172 () = 1) ®_ @
x=x®9— == 01 ) + (T1 —2)(g7 —g7) (18)
aN =23 o

It is clear that the condition for validating the static averaging approximation with respect to strictly periodic
inhomogeneity can be appropriately generalized for the inhomogeneity profiles, which are rapidly oscillating but
with little variation of the envelope (the former feature on its own is certainly not sufficient).

Note in conclusion the formula for the flexural displacement with the leading-order dispersion term:

Aie)=C n—ikH (mg— S 2 / sfulc)ds | | (19)

ot23

whereC is a normalization constant. It is seen that inhomogeneity entails the ‘out-of-plane’ component (parallel to
m x n), unless it vanishes due to the appropriate material symmetry (see S&&ionto the evenness gf,(c).

3.2. Symmetric and antisymmetric profiles of inhomogeneity

For a generic profile of elastic inhomogeneity, the departurg,6f) from its mean value may be decomposed
into two parts, even and odd with respect to the midplane:

fuS) = (fu) +0u(3),  Buls) = 0L ™<) + 6°99c),
1
657°™<) = S10a(s) + bu(—3)] = 65" ~c). (20)
1
609N) = 516u(<) — bul =) = —6L*N ).
which enables writing E(12) in the equivalent form as
1 1 2
K&+ Z / 26 s) ds — ( / 56%9c) dg) . (21)
o2 0

We shall examine the cases, whe(c) = 68°"(¢) (symmetric profile) andly (<) = 6°%Y(¢) (antisymmetric
profile).
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3.2.1. Symmetric profile
Suppose that the plate is subject to the same processing on both sides, so that the variation of its elastic properties
is even with respect to the midplane and hence

Ja(s) = fa(=5)(= 8(s) = g(—9)). (22)
Then, the second integral {2) vanishes and, with reference ({tb),
1t 1 [t 1
X=7 / ¢?g() dg = x@9 4 7 / (§2 - 3) 8(s)dg, (23)
0 0

which also follows from(21) with 6% = 0 due to

1 1 1 1 1
> = s /O %68V c) dg = /0 le(s) — (e)dg = /O (gz— 3) 2(s) de.

a=2,3 N

Itis seen that the slope= /x/{p) being higher or lower than its static averaging benchm&#9) = ./ x@9)/(p)
suggests that the plate is markedly stiffer near the faces than in the middle or vice versa, respectively. Let us further
assume that the (even) functig(y) is monotonic throughout the face-midplane range,

signg’(s) = Oforg € [-1, 0] & signg'(s) s Oforg € [0, 1], (24)

which is also a practically common situation. Integrat{@8), by parts and applying the mean-value theorem
enables us to specifiL6) for the case on hand as follows:

@19 < ¢ < /3(@19) if o() monotonically decreases towards the midplane;

25
(0 <)k < @19 if ¢(c) monotonically increases towards the midplane (23)

where equality holds if and only g(¢) = constant through the plate. The same statement applies to the discretely
inhomogeneous plates, whose layers are stacked in a way even with respect to the midplane (when the second sun
in (14)is zero). Thus, gaugingrelatively tox@9) can reveal certain features of the inhomogeneity profile.

To fix the ideas, consider a simple model of the symmetric profile, namely, a sandwich structure with the same
homogeneous skin layers and a homogeneous core layer. Let us label their material parameters by the superscript:
j=1,2, namely,g®, pM(= ¢g®, p@)) for the skin layers ang@, p@ for the core layer. The dimensionless
thickness of each skin layer and of the core layer relatively to the aggregate plate thickngS3) (seke; and
ho = 1 — 2h1, respectively. Invoking12) and (15)yields

_ \/ 2gWhy(4h% — 6h1 + 3) 4 g@(1 — 2h1)° (avig) _ \/ 2h1(gW — g@) 4 g@

(26)

B 12[2h1(p1 — p2) + P2 12[21(o1 — p2) + P2l

Plottingx and«@9 as functions of:; represents their dependence on the sandwich composition, in other words,
on the shape of (discrete) inhomogeneity profiigy. 1 shows the curves(h1) and«@9)(h,) for the materials

listed in Table 1 (Without loss of generality and for illuminating the chief points, the numerical illustrations
involve symmetric media satisfyingl) = ngj), see(32) and (34)elow.) Each plot (a—c) ifrig. 1is referred to

a pair of materials and displays the curves for two different sandwich structures, which correspond to interchan-
ging the given materials as substanges 1, 2 for the skin and core layers. Obviously, the valué® = ,/ %Zg(z)

and/c(%) = %28(1) at the edge points; = 0, % imply the homogeneous limits, for which the whole plate consists

of the core é = 2) and of the skin { = 1) material, respectively. B{26), signf — «@9)) = sign@?) — g@) and

thus, in accordance witf25), k@19 < « < /3@ for anyhy # 0, 1 if the skin layers are stiffer, and < «(@19)

if otherwise.
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Fig. 1. The flexural branch slope(solid lines) and the static averaging benchmef'® (dashed lines) as functions of the dimensionless
thicknesgr; of the skin layer in the sandwich structures made of cross-ply laminae (a); steel and aluminium (b); tungsten and aluminium (c). The
material properties are listed Table 1 For each pair of materials, the bold and thin lines correspond, respectively, to the ‘fast'—'slow'—‘fast’
and ‘slow'—‘fast'—'slow’ compositions of a sandwich (where ‘fast’ or ‘slow’ is understood in the sense of larger or lesser slope of the flexural
branch in a homogeneous plate of each of the materials). The inset to (a) shows the flexurabpmnice homogeneous plate of the ‘slow’
material (this branch slope is given bf{0) = xg¢-) and in the sandwich with ‘fast’ skin layers, occupying 0.1 of the sandwich thickness each

(this branch slope ig(0.1), which is compared te@9)(0.1)).

It is noted that varying relative thicknesses of the constituent layers changes the average density and thus bring:
the density distribution into play. In this regard, another aspect highlightétgbyl is a striking difference in the
shape of curves(h1) for the two basically alternative options of choosing a pair of materials for a sandwich structure:
when one of the materials is stiffer and lighter than the other, sgthat @, p@ < p@ (case (i)); when one of
the materials is stiffer and heavier than the otherg®.> ¢@, p(1) > (@) (case (ii)). The dependene&V9)(i,)
is always monotonic for the both cases, where@s) is monotonic in the case (iF(g. 1a) and is most likely
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Table 1
Properties of the materials involved Figs. 1 and 3the densityp (g/cn?); the elastic constanis; (GPa) forX1//m, X»//n; the stiffness
coefficientg = n3 (GPa); the slope of the flexural velocity branck= /n3/12p (mmius), seg33) and (35)

P c11 c12 €22 N3 K
Aluminium, Al 2.7 107.8 549 =c11 7772 1.546
Steel 7932 28175 11316 =c11 23631 1.576
Tungsten, W 138 5649 29585 =c11 40993 1.330
Lamina [§] 1.6
0°-orientation 142 75 15.8 13%5 2.697
90°-orientation 158 82 =c11 1154 0.775

to have an extremum in the case (iig. 1b and c). The point here is that, by contrast®™® = /x@19)/(p),

the flexural branch slope = /x/{p) is determined by the second-ordeomentunof the even stiffness profile
(seeg(23);) along with theaverageof the density profile. The case (i) allows one material to be much ‘faster’ than the
other, in the sense of markedly different flexural branch slopes for the homogeneous plates of each of the materials
j =1, 2. The contribution of momentum enhances the effect of relatively thin coating on the long-wave velocity
of the flexural wave, accordingly to the through-plate distribution of the displacemen(f®ld-or instancekig.

1a, engaging cross-plied laminae with strong elastic anisotres/donstant), shows that depositing the ‘fast’ skin
layers, whose thickness is only 0.1 of the aggregate plate thickness, increases the flexural brardbystopee

than 2.5 times, while the static averaging benchmd®k9 gives about 30% less than that. In turn, the case (ii)
allows a pair of materials with quite different stiffnesses and densities to have similar values for the long-wave
‘homogeneous’ flexural velocity, which is wheft)/p() is close togl@/p@. Given that, the functiom(h1) is

not monotonic and has one extremum within the inteiyat (0, %). The difference between the curvgai) and

«@19) (1) in Fig. 1b and ¢ pinpoints the aforementioned dissimilarity of how the stiffness and density distributions
affect the flexural branch slogen an inhomogeneous platéig. 1b exemplifies a sandwich structure, which is made

of the materials with almost the same long-wave flexural velocity eg€h & K(%), hencec®9)(,) ~ constant),
however, the velocity for the sandwich can be notably higher or lower than for the homogeneous plate of either of
these materialdzig. 1c demonstrates another interesting possibility within the case (ii). Here one of the materials
is stiffer and at the same time ‘slower’ than the other material. As a result, accord{2§)tasing the former

‘slow’ material as a coating for latter ‘fast’ one (heng® > ¢, «(0) < «(3)) yet makes the flexural velocity in

the sandwich to be higher than in the homogeneous plate of the ‘fast’ core material (and vice versa for the inverse
composition)—that is contrary to the case (i) (€ig. 1a).

3.2.2. Antisymmetric profile
Another basic pattern of elastic inhomogeneity is its antisymmetric profile, in the sense that the departure of
f«(<) (and hence 0f(¢)) from the mean value is odd with respect to the midplane:

Ful§) = (fu) = —[fal=5) = (fu] = 6°9%s), 27)
see(20). Under this condition, by21),

1

1 2
x=1®9= 3 o | [ dc| (< 1), (28)
@=2.3 4y 0

and thusc < @9, Moreover, if, in addition tq27), f.(c) > 0 for any¢ € [—1, 1], which holds typically and is
always the case for the monoclinic setti{@®) (see Sectio.3), theny > % x@9 and so

1
EK(an) < Kk < (@19, (29)



376 A.L. Shuvalov et al. / Wave Motion 42 (2005) 367-382

1 R I L O R A N L L T

n(/(n)

1.6 | a=rc0 —>

095 F 121

0.8

0.4

T T\7T
non
—h
o
wn

(avrg)

09 0 1 1 1 1 ¢ __

Kl K

n
-

085 - "

PIRSS [NTN TN NN YR [ S T U ST (I I I

0.8

a

Fig. 2. The ratiac/«@9 as a function of the control parametgoverning the antisymmetric profile shaf®9) with a fixedag = 2/3. The
profile shapes are charted in the inset.

The lower bound}fc(a‘”g) is not approachable practically, for, it describes a theoretical limit voéf’gﬂ)(g) is equal
to ( f,) for one-half of the plate and te( f,) for the other half, which simply implies a homogeneous plate that is
twice thinner than the given one and has the sidpé9).

For exemplifying dependence on a variable shape of antisymmetric profile, it is pertinent to consider the case of
continuous inhomogeneity, which may be viewed as a result of increasing external impact that has ‘inverse signs’
on the opposite plate faces. Suppose that this impact changes the antisymmetric profiles of stiffness and (possibly
density inhomogeneity without changing the mean, ¥®9), (p) and«(@9) stay constant. The model example,
displayed inFig. 2, assumes the medium satisfyi(®2) and the stiffness profile described by

n3(s) = (n3)[1 + aotanhgg)], (30)
so that(28) yields
1 2
k=,k@9 113 [/ apg tanh@g) d;] ) (31)
0

3.3. Simplification due to the vertical plane of material symmetry

Consider a monoclinic plate with the symmetry planewhich is either parallel to the sagittal plara,(n)
or orthogonal to the wave normail. Then,m andt = m x n are the eigenvectors ®3(s) at any¢ and hence
of (N3), so thatm - N3(¢)t = m - (N3)t = 0 and the eigenvalueg, of (N3) are equal to the statical avera@g)
of the eigenvalues,(¢) of N3(¢), see(5). Let, sayt = ex(¢) = &, m = e3(¢) = es3. Thus, incorporating discrete
inhomogeneity as well,

f2(s) =0, f3(s) = g(s) = n3(s)

: : . : . 3= (n3) =(g), (32)
fz(./) —0, fé") —gU) = ngj)
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wherens(c) or r;(’)

2 2
€22CTg — 2C12C16C26 + C1oC66 ., .
cqq — 22716 >——22 if mis parallel ton,
€22C66 — Cog
N3 = (33)

_ 220y~ 2e1p014024 + Choca , if mis orthogonal tan

C20c48 — €3

given that the elastic coefficientg,;(s) or c(’)

respectively. Evidently, Eq33) reduces to

are referred to the coordinate ax¥s, X», X3 parallel tom, n, t,

c11 — ¢2,/c22, ifthe plate is orthorhombic )
N3 =
4pv2(1 — v2/v?), if(m, n)is the plane of isotropy
vy being the longitudinal and transverse bulk-wave velocities.
Once(32) holds true, Eqg(12) and (13)an be simplified as
2
1 /1 ) 1 1 1
x=z [ Pmalerds - [ omtsrs | - (35)
81 16(n3) ( 1 16(n3)
Eq. (14), describing discretely inhomogeneous plate, reduces to
j-1 1 n )
— Z z n(gl)ﬂ(gk)h (S — SK)? + iE Z né’)/ﬁ, (36)
, 1k=1 j=1
which specifies for equidistant layers;(= 1/n, (n3) = 1 Z/ 1 n(’)) as
oS G W+%Wn (37)
=1 k=1

Note that the first term on the right-hand sideg2®8) and (37)is asymptotically independent of whereas the
second term decreasesias with growingn. Eq.(17)for a periodic plate becomes

1
e ae LB TR e B (@8)

Consider in some detail the particular case of a stadkidéntical monoclinic bilayers satisfyi(@2). The latter
casts Eq(18)into the form

W_,0 5

— g _ T2 (0) _(2) T3 =3 | “ 39
X=X an2 13 773)[717 ) +3n rz)], (39)

where x@9) = .1 (n(l)rl + 77 rz) and 7, = 1 — 11. Let us label parameters of the stiffer and softer layer by

superscripts (1) and (2), so thép > 71(32) (it does not matter indeed which of them is upper or lower in a periodic
stack). If the stiffer layer is thicker than the softer layer:> 1, then, by virtue 0f(39), x < @9 and so the
flexural branch slopeis always lower than the static averaging benchméﬁ‘ﬂg) tending to it rapidly with growing

N. If the stiffer layer is thinnerr; < 12, thenk may be either less or greater thed'9 depending on the certain
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balance between the thicknesses and the elastic parameters of the layers. It is set by the sign of the term in bracke
in (39) and reads as follows:

k> k@9 & 11 < 1/B, k < k@9 & 11 > 1/B, (40)
where
1
B=1+] [b 14— 12+ 16b} (> 2), withb = nD/nP(> 1). (41)

The threshold between the two opposite tref#f¥) is whenr; = 1/B(< 0.5). Then,x = 9 and so the slope
stays equal ta(®"9) regardless oN.

3 T T ! T 1.9 T T T T 1
o ]
1.8 F -
]
]
_ 1.7 .
-~ i ]
= Z 1
E E 1.6 x (N=3)
S S e N T X
e -~ Al st
H z 1
,< " 1.5 7]
X ¥ ]
1.4 J
r 1
r K (N=1) ]
05 - [ ]
13 T ]
0 PR [T I PO S TR 1 1.2 i T I | 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(@) i (b) 7
1.9 T T T T
w
=
E
E
% Ky
15
0.9 ! e ! !
0 0.2 0.4 0.6 0.8 1
(c) 2

Fig. 3. The flexural branch slopevs. the dimensionless thicknegsof the stiffer layer in a bilayered cell for the plate containing one cell (bold
solid line), two cells and three cells (thin solid lines). The reference static averagingié@f%¥r,) is plotted by dashed line. The bilayered
cell is made of cross-ply laminae (a); steel and aluminium (b); tungsten and aluminium (c), charactefatad ih
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Fig. 3 shows the curves(r1) and«@9)(z) for a plate with one, two and three bilayers & 1, 2, 3). The
exemplified materials are the same as usefign 1 for representing the cases (i) and (ii) defined in Sec8dh
The reference curve®9)(zy) is always monotonic. The curvgry), for anyN, coincides with«@9)(z,) at the
edge pointg1 = 0, 1, which correspond to the homogeneous limits, and inters&¥8)(,) att; = 1/B. Hence,
«(r1) may not have an extremumsif9)(z,) is steep enough, which is when one of the layers is markedly ‘faster’
than the other (case (ifig. 3a), whereas(r1) has maximum at; < 1/B and minimum aty > 1/B, if «(@9)(z;)
is flat enough (case (iif;ig. 3b and c).

4. $ and SHg branches

The leading-order dispersion of the upper fundamental branshg) = va(k) — voo ~ (2kH)? or Avg(w) ~
(2wH/voy)? (a = 2, 3) is somewhat less significant than that of the flexural bran¢t). Departure o, (k) from
voe at ZkH <« 1is little, because the dispersion is quadratic and its coefficient is usually small. For inhomogeneous
plates and general anisotropy, the coefficient of quadratic dispdigiocan barely be simplified—it admits reducing
triple integration to double only, and at the expense of sprawling terms. Certainly more tractable and actually more
interesting is the specific case of the Stdndamental branch, whose dispersion is stipulated solely by the plate
inhomogeneity. In view of these considerations, let us assume that the sagittahplaedincides with a symmetry
plane. One of the upper fundamental branches is thghdhch polarized alonig= m x n. The conventional label
So (Sfor ‘symmetric’) is used for the other branch, in understanding though that it has attributes of a symmetric
branch if and only if the horizontal symmetry plane, presumed in Sedtihris complemented by the symmetry
(evenness) of inhomogeneity profile (§8€]). Keeping the notation = ex(s) = & as in SectiorB.2 specifies
numbering of the brancheg (k) asv, = vsy, andvz = vs,. In the subsequent formulas, the tens@ referred to
the same base as(83) (X1, X2, X3 parallel tom, n, t, respectively).

4.1. So branch

For an orthorhombic inhomogeneous plate with symmetry planes parallel to the boundary €when
sz)(voa)é,g =0,a,8=2,3in (7)) and to the sagittal plane, th% velocity truncated at the leading-order dis-
persion term is defined by

1 1
(1%, = (na) — (QkHY { /. [ [ 6= onienda - [ - i dg] C(s)ds

1 2 1 1 2
/_ 1C(g)dg1 —2(,73)[/_ 1;1)(;)04 . (@2)

2

D(c) = B— (n3)C. B(5) =1z — (n3)—((B) =0). C(c) =2, na(c) =c1y— 22 (43)
(o) €22 €22

with p(¢) andcy;(¢). If the plate is periodic (hencg- -) = % fOT -+ - dy), then with growing numbe of unit cells

(42)tends at a rate- N2 to the static averaging approximation
2
(avrg)2 21 /c12
= 1-(2kH) — ( —= , 44
(2 = (1) [ @i, (22) ] (a4)

which is the exact formula for an ‘effective’ homogeneous plate with the Stroh n{atypseg9].

1 I 2
w [ Bends] codords+
1/

where
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For a simple case of a plate, consisting of two equidistant homogeneous layergip = %), it follows

6 p(Z) ) p(l) @
5(n3) (C(l)z +2cWc@ 4 C(Z)Z) —4 (n _
{ 5 )2 (o

2 (1) 3 2 2
ch— c@ 4 (pn(l) - pn(z’) . I 45
2 o)\ L @ 4o

(P15, = (n3) — (KH)?

X

4.2. SHq branch

Uncoupling of the SH motion due to the sagittal plane being a symmetry plane means that the SH waves are
described by the 2 2 matricant (see, e.§l14]). Vanishing of its left off-diagonal component gives the dispersion
equation for the SH velocity branches in the form

() = (o) + Y _[pP" D A)(2kH)" =0, (46)

m=1
whereu = cs5 — c2c/cas and

1 2m—1
gt [ [ 00~ e eluten) - plean?]

p(2m+l)(v2) —

x -+ caa(Som—1)[1(s2m) — p(s2m)v?] dg dg1 - - - Ag2m. (47)

The fundamental Sgbranchvsy, satisfies the series expansion

(0) 08, = () + > xm(2KkH)?", (48)

m=1

whose coefficients can be found recursively fr@#6) with (47). For instance,

1 s a1 1 2
n=—g [ [ [ adcradsds des =~ [ i) [ atenes| " act<ox

1 3
o= [ o [ a@i ) A s A ds - doy (@)

1 1
i [ 0 (e0 () + A0 (sonea ds desdezi et

where A(¢) = u(s) — (n)p(s)/{p) (so (A) = 0). Obviously, the dispersion of the GHbranch encapsulates its
departure from the static averaging, for, this branch is non-dispersive in a homogeneous plate.

A remarkable trait of the Sgbranch in a periodic plate with an arbitrary (monoclinic) continuously or discretely
inhomogeneous unit cell is that this branch, along with a certain family of the upper SH branches, is independent
of the numbeN of periodsT. It is merely a consequence of thex2 dimension of the ‘SH matricant’ (denote it,
say, byw = {w;;}) and of the simple fact that an off-diagonal comporigof arbitrary power of a 2« 2 matrix is
proportional to the samigth component of the matrix itself. Therefore, the dispersion equatidi{7, 0)]1 = 0
factors out the equation21(7, 0) = 0, and so the spectrumgy(kT) for a plate with any numbeM of unit cells with
a fixed periodr includesN-independent family of branches (incorporating the fundamentaj [®&hch), which is
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Fig. 4. The example explained in SectibnSolid lines represent the exact numerical calculation; dotted lines show the analytical evaluation
for the flexural branch slope (E€B5)) and for the leading-order dispersion of thig (Eq. (42)) and the SKJ (Eq. (49);) branches. The inset
displays the profiles of material properties variation, (&&5.

the intact spectrum for a single traction-free unit cell. Each of these branches corresponds to the Floquet mode with
a complex wavenumber.

5. Numerical example

Fig. 4shows numerically calculated fundamental branches within the long-wave domain and their leading-order
analytical approximations for the orthorhombic inhomogeneous plate with the elastic coefficients and density chosen
as follows:

c11 =100x f1(s), c12=50x fi(s), ce6 =40x f1(s), c22="T75x f2(s),
cas=10x f3(s), cs5=35x fa(s)[allinGPa];  p=8x fs(c)g/cnt. (50)

The functionsfi, . 5(¢), containing ranges of continuous variation (linear, cosine, exponential, Gaussian), constant
plateaus and a stepwise discontinuity, are displayed in the ingégt@. The profiles are intentionally made up

to be rather peculiar, merely for illustrating the potential of analytical and numerical means in handling arbitrary
transverse inhomogeneity (see dl$6]).

6. Conclusions

The coefficients of leading-order dispersion at the origin of the fundamental branches in a transversely inhomo-
geneous anisotropic plate have been studied. The most tractable is the flexural branch. The lineanfdope
flexural velocity branchy (k) in a plate of unrestricted anisotropy is given by the simple formula with only single
integrals of bilinear forms of the Stroh’s matrix block, allowing further sizable simplification in the presence of a
vertical plane of material symmetry parallel or orthogonal to the wave normal. The role of the static averaging has
been elucidated. Given a generic inhomogeneity profile and arbitrary anisotropy, the upper limiting bound for
is +/3 times the static averaging benchmaf®9). If the profile of inhomogeneity is symmetric or antisymmetric
with respect to the midplane, both the upper and the lower boundscam be further specified in terms V1),
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A qualitative insight into some local features of the profile can be gained from compaaimgy (29, This aspect
is exemplified in detail for sandwich and bilayered structures. For the fundamental branches in periodic inhomoge-
neous plates, it is verified that the departure of the leading-order dispersion coefficients from the static averaging
approximation is scaled by /N)?2, whereAr is a measure of variation of the material properties through one
period and\ is the number of periods in a plate. In this context, the exception is the fundamental branch of shear
horizontal waves (Shkibranch), which is altogether independent of the number of unit cells in any periodic plate
regardless of the unit cell properties.

The results obtained for the fundamental branches in a traction-free plate can be engaged for other settings
For instance, the onset of the lowest real branch in a fluid-loaded inhomogeneous plate is related to the leading-:
order term for the flexural branch of this plate free of traction in the same way as in the case of homogeneity:

p{mmersed)_ ., (ee), /T or/(o)kH, wherev{"™®) = 2k H and p is the fluid density. Another application, which

is readily on hand, is concerned with the flexural modes propagating along the tip of a slender wed6é, wéshin

the geometrical-acoustics approach, velocities of these wedge modes are expressed via the long-wave velocity c
the plate flexural wave and thus can be estimated for a transversely inhomogeneous wedge.
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