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Self-turbulent flame speeds
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Abstract This paper reports an experimental investigation of premixed propane and methane-

air flames propagating freely in tubes 1.5 m long and with diameters ranging from 26 to

141 mm. The thermo-acoustic instability was eliminated by means of a novel acoustic ab-

sorber placed at the closed end of the tube. We first remark that the flame can adopt different

shapes either quasi-axisymmetric and normal to the mean direction of propagation, or in-

clined with a larger propagation speed because of the increase in flame surface area. The
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minima of the propagation speeds, corresponding to non-tilted flame propagation, are then

analyzed using analytical models for the self-turbulent flame propagation. The concept of a

cut-off wavelength appears to be relevant to explain the different behaviors observed on the

rich side of methane-air and propane-air flames.

Keywords Premixed combustion · Self-turbulent flame speed · Flame instability

1 Introduction

Since the pioneering work of Mallard and Le Chatelier [1], who determined the flammability

limits and the propagating velocity of various combustible gaseous mixtures, there have been

numerous studies concerning the prediction of turbulent flames speeds and safety limits. The

result is generally written as

UT/UL = 1+(u′/UL)
α , (1)

where UT is the turbulent flame speed, UL the laminar flame speed, u′ the r.m.s. turbu-

lent velocity of the incoming flow and α an exponent whose value varies between 0.5 and

2 depending on the modeling assumptions [2–4]. The low turbulence limit would thus be

UT ≈UL. However it is well-known that laminar flames propagating freely in quiescent mix-

tures propagate at higher velocities due to curvature effects induced by hydrodynamic and

possibly thermo-diffusive instabilities [5–7]. There have been already attempts to incorpo-

rate flame instabilities into such a formula [8, 9] and the very existence of such an universal

formula has been questioned recently on the basis of both experiments and numerical model-

ing [10, 11]. Assuming a semi-cylindrical or hemispherical shape for the cells on the flame

in a 2–D or 3–D configuration, the ratio UT/UL would tend to π/2 or 2 respectively. These

values are similar to the results of recent analytical and numerical investigations for flame
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propagation in narrow tubes that suggest that the maximum velocity ratio is approximately

1.3 for two-dimensional flames, and approximately 1.7 in the three-dimensional case.

These investigations were limited to the case of tubes with an inner diameter smaller

than 4λc, where λc is the cut-off wavelength for flame front instability [8, 12–16]. For tubes

of larger diameter, secondary instabilities occur, possibly leading to a self-similar behavior

of the topology of the flame. Using a fractal dimension obtained for expanding spherical

flames, a corresponding power-law behavior for the flame propagation speed has been pro-

posed [15]:

UT/UL = (Λm/λc)
D (2)

where Λm is the largest characteristic length of the flame and D ≈ 1/3 is an exponent re-

sulting from the fractal dimension of the flame [8, 17, 18]. This relation seems to work

well with weakly turbulent premixed flames [4, 12], but to the best of our knowledge, apart

from the ancient experimental observations of Coward & Hartwell [19] performed in large

horizontal tubes where buoyancy effects are important, such an increase of the flame speed

with the tube radius has never been seen experimentally for flames propagating freely in a

quiescent gas. One probable reason is the occurrence of violent thermo-acoustic instabilities

that completely change the shape and propagation velocity [20, 21] of flames propagating

in tubes.

In this paper, our objective is to observe the dependence of the propagation speed of

cellular flames in a quiescent medium on the characteristic dimensions of the burner. In the

next section we will briefly describe the very “simple” experiment. The results obtained with

propane- and methane-air flames will then be presented and discussed in the last section with

some comments on the way to determine the characteristic lengths Λm and λc.
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Fig. 1 Schematic of the experimental arrangement. The dimensions D0,D1, l,h are explained in the text.

2 Experimental setup and procedure

The propagation velocity of laminar cellular flames is measured in a vertical Pyrex tubes,

1.5 m long, with internal diameters ranging from 26 to 141 mm. The equivalence ratio, φ ,

of the premixed gas is controlled via a PC-interface connected to mass-flow regulators. The

flame propagation is recorded using a video camera. The particularity of this experiment is

related to the bottom part of the burner where an acoustic damper is installed to prevent the

onset of thermo-acoustic instabilities. The damper consists of a small annular slit, of height

h and length l that dissipates acoustic energy by terminating the tube with a real (resistive)

acoustic impedance equal to the characteristic acoustic impedance of free air. The details of

the damper are given in the appendix. An expansion chamber is placed outside of the slit to

avoid mixing of ambient air with the combustible mixture.

The operating procedure is as follows: After each run, the air flow is opened and main-

tained until the tube walls have cooled to ambient temperature. The flow of combustible,

methane or propane, is then adjusted to the desired equivalence ratio and a lightweight plate
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is placed over the open end of the burner. The presence of the plate is sufficient to prevent

mixing with ambient air, but does not prevent exhaust of the premixed gas. The flow is main-

tained for a time corresponding to at least ten fillings of the tube and then stopped by closing

the valve at the bottom of the burner. A delay of at least one minute is allowed before gently

withdrawing the upper plate and igniting the mixture with a lighter.

The video-movie is then digitised and post-processed using ImageJ 1.40 software to

obtain the trajectory of the upstream tip of the flame.

3 Results

The first experimental result is that a given flame does not propagate systematically at a fixed

speed, even if the measured velocity can be constant during all or part of a given experiment

(see fig. 2, left line). Another experiment made in the same conditions with the same equiv-
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Fig. 2 Record of two propane-air flame trajectories in the same tube, diameter 90 mm, equivalence ratio 0.9.

The dotted lines are parallel to the experimental points of the trajectory on the right to highlight the change

in flame speed.
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Fig. 3 Different shapes of propane-air flames during free propagation in tubes. Left: φ = 1.2, Ø tube =

40 mm; Right: φ = 0.9, Ø tube = 140 mm (not the same scale).

alence ratio, φ = 0.9, shows the flame initially propagating at a slightly smaller speed and

then decelerating suddenly (at t ≈ 0.8 s) to reach a still smaller speed of propagation (see

fig. 2, right line). We find that there is almost a continuum of flame speeds related to different

flame shapes, see fig. 3.

It has been found theoretically from the Sivashinsky equation [22] that multiple station-

ary solutions exist for the problem of a flame propagating in a (2–D) tube, including the

two typical flame shapes similar to those we observe in our experiments: a flame inclined

relative to its direction of propagation (fig. 3, bottom), or a slightly asymmetric flame (fig. 3,

top). These two different type of solutions have also been found in direct 2–D numerical

simulations or potential models [8, 12, 13, 23], with a velocity increase ranging from 1.3UL

to 1.58UL. In our experiments we find larger flame velocities, in the range from 1.5UL to
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Fig. 4 Minimum (U−T : dotted lines with open symbols) and maximum (U+
T : solid symbols) methane-air

(left) and propane-air (right) self-turbulent flame speed in tubes of different diameter. UL is the laminar flame

speed. The numerical values in the legend give the tube diameter in mm.

3UL see fig. 4, but it is generally recognized [24] that the velocity increase relative to the

laminar velocity is higher in 3–D than in 2–D. Another important result is that the inclined

flame velocity is larger than the slightly asymmetric one, a property which is not found in the

Sivashinsky equation [22], where these two solutions have the same velocity, but which is

found in a potential model [23]. Increased velocity of inclined flames has been also demon-

strated in direct numerical simulations of flame dynamics[12].

It is generally believed that the fastest solution should dominate at long times, however

this is not clear from our experiments since both slow to fast and fast to slow transitions

were observed, with either a quasi-axisymmetric flame evolving into an inclined flame, or

an inlined flame evolving into a flame normal to the mean direction of propagation. The fact

that both slow to fast, and fast to slow transitions can be observed for flames propagating in

the same mixture and in the same tube indicates that: a) the ignition protocol is not the (only)

factor controlling the onset of slanted propagation, and b) this transition is very sensitive to

very small perturbations.
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The results in figure 4 present the maxima (U+
T ) and minima (U−T ) of the self-turbulent

flame speed in tubes of different diameters. They were obtained from 2 to 4 runs per config-

uration, retaining only events where the flame was propagating uniformly during typically

30% of the tube length, and then adjusting two curves to interpolate between the extrema of

the measured values. In some cases the flame was always inclined, whereas in some other

cases, it was only weakly tilted. More experiments are thus needed, and probably with a

more sophisticated and reproducible igniter, to reproduce the whole range of possible flame

velocities. Nevertheless the range of flame speed spanned by this set of experiments is wide

enough to distinguish clearly the two limits, the scatter of the experimental measurements

on the curve–fits being less than 10%.

The reference speed UL is taken from measurements of Bosshaart & De Goey [25] which

were found to be very close to our own measurements on some planar flames in tubes. The

general trends seem to be the same for both propane- and methane-air flames: the increase

in flame speed near to the extinction limits is only small: for slow flames the stabilising

effect of gravity is important and forces the flame to be almost flat. For faster flames, in the

midrange of equivalence ratios, both the maximum and the minimum flame speeds increase

with tube diameter with no indication of any saturation effect in the largest tube investigated

here (141 mm diameter).

4 Analysis

4.1 Reduced results:

Retaining only the minima of the measured flame speeds, U−T , corresponding to non-tilted

flame propagation, the results are presented in figure 5 as the normalised velocity ratio

U−T /UL. For methane-air flames, there is no dramatic change of the flame speed when the
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Fig. 5 Normalized velocity ratio of methane-air (left) and propane-air (right) flame speed in tubes of different

diameter. The numerical values in the legend give the tube diameter in mm

tube diameter is increased from 26 to 74 mm. The only significant increase in normalised

flame speed occurs for methane flames in the 141 mm tube. It will be seen later that the

largest tube is the only one for which the cut-off wavelength of methane flames is very

much smaller than the tube diameter. However it is also difficult to exclude a bias due to

the fact that it is very difficult to obtain a non-tilted fast methane flame in the smaller tubes,

which have a larger Froude number for the same flame speed. phrase à supprimer :The fact

that the minimum velocity is not always measured is also obvious when considering the

crossing of the two curves with tube diameters respectively of 55 and 74 mm. Nevertheless

all these curves present a maximum on the lean side, the maximum velocity being 2.2UL in

the 141 mm tube near φ ≈ 0.8. This value is also close to the normalised burning velocity

that can be extrapolated to u′/UL = 0 from the experimental data in reference [4].

The normalised velocity ratio drops to a value even less than unity for the richest flames,

φ ≥ 1.4, showing that heat loss effects are significantly strong for these very slow flames

(see also figure 4).
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For propane-air flames, the increase in flame speed with the tube diameter is much more

regular. There is a maximum on the lean side near to φ ≈ 0.8, but there is also a second

maximum on the rich side and the maximum velocity ratio in the largest tube reaches the

value ≈ 2.5 over a large range of equivalence ratios from φ = 0.8 to φ = 1.4. The curves

are truncated at φ = 1.5 because the value of the laminar flame speed, UL is not given in

ref. [25] for equivalence ratios beyond 1.5. However it is clear from fig. 4 that the limiting

value of the velocity ratio will be close to unity.

The reason for the difference in behaviour of rich methane and propane flames is clearly

seen in fig. 6. Rich methane-air flame have large relatively smooth cells, whereas the rich

propane-air flame have numerous secondary cells superimposed on the larger cells, leading

to a greater increase in flame surface area. A usual property of the hydrodynamic instability

is that small cells are convected towards the cusps of the larger cells. They finally merge with

the cusp, thus increasing the amplitude of the larger cell. However for large tubes (compared

to λc) the front is very sensitive to any form of noise in the system (here residual turbulence),

and new small cells are continuously created on the front. A WKB argument [26] suggests

Fig. 6 Rich methane-air (left: φ = 1.3) and propane-air flame (right: φ = 1.4) in a tube 140 mm inner diam-

eter.
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that the order of magnitude of these small cells is the most amplified wavelength (approxi-

mately 2λc), so that a smaller λc leads to the creation of smaller new cells. Furthermore, if

simulations of the Sivashinsky equation are to be believed [22], for wide tubes (versus λc),

very complicated stationary solutions exist, which could be close to the rich propane-air

flame shown in figure 6.

The increase in flame speed in wide tubes is thus related to the cellular instability as

already proposed by several authors [8, 12–16]. Akkerman & Bychkov [15] used mea-

surements of the Markstein lengths taken from the literature [27] to calculate the cut-off

wavelengths and to determine flame propagation speeds resulting from the effect of the

Darrieus-Landau instability. This set of Markstein numbers for propane and methane-air

flames was chosen because it was obtained at the stability limit of planar premixed flames

propagating downwards, in accordance with theoretical simplified models used in their nu-

merical approach. However further work [28] demonstrated that this way of determining

the Markstein number is valid only when the Lewis number is very close to one. Moreover

this work also showed that good agreement between different experimental measurements

of Markstein numbers can be obtained only by correct extrapolation of the flow velocity to

the reaction zone. This work also demonstrated the necessity of application of a corrective

factor when the gas velocity is extrapolated from the burnt gas side, as for instance, when

using measurements on spherically expanding flames.

The value of the Markstein number for different mixture is still a subject of contro-

versy and it is thus interesting to compare relation (2) using different ways to calculate the

characteristic lengths Λm and λc.
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4.2 Characteristic lengths of unstable flames

It can be assumed that the characteristic lengths Λm and λc are related to the extrema of

unstable wavelengths of a reactive mixture determined from linear theory. These one are

given by the roots of the dispersion relation, which in turn depends on the Markstein num-

ber, Ma, of the mixture. In the following we will compare three different ways to obtain

Markstein number. These three estimation of Ma will be denoted by Ma I, Ma II and Ma III

respectively.

According to analytical calculations of the stability of premixed planar flames including

expansion effects, gravity and preferential diffusion [2, 29], the rate of growth, σ , of small

perturbations with a wavenumber k = 2π/Λ is given by

σ = kULΩ , (3)

with

Ω =
E

E−1

{[
E2 +E−1

E
+MadLk(MadLk−2E)− E2−1

E2
g

kU2
L

]1/2

−MadLk−1

}
, (4)

where E is the expansion ratio ρu/ρb, Ma is the Markstein number, dL the laminar flame

thickness and g the acceleration of gravity. The subscripts u and b refer respectively to un-

burnt and burnt gases.

For downward propagating flames above the threshold of cellular instability,

UL >
√

8MadLg/(E−1),

there is a band of unstable wavelengths limited by two neutral wavenumbers:

k±n =
E−1

4EMadL

(
1±

√
1− 8MadLg

(E−1)U2
L

)
. (5)
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At the threshold of stability for a planar flame, k+n = k−n = 2π/Λ ∗M where Λ ∗M is the most

unstable wavelength, and the Markstein number for these mixtures can be determined ex-

perimentally in two ways:

- either by using the critical flame speed U∗L at the stability limit as was done in [27]:

Ma∗I =
(E∗−1)U∗2L

8gd∗L
, (6)

- or by using the critical wavelength measured at the stability limit

Ma∗II =
(E∗−1)

8πE∗
Λ ∗M
d∗L

(7)

In the above expressions, the superscript ∗ denotes values at the threshold of stability.

The second relation has never been used because the published results are relatively

scarce [30, 31], but it can be expected to be more appropriate to the present problem since it

is directly related to the cell size.

However, it is known that changes in the gas expansion ratio can affect the value of the

Markstein number. Since the stability limits of planar flames were measured using diluted

flames with low flame speeds and small expansion ratios, and our measurements were per-

formed for non-diluted flames over a large range of flame speeds and expansion ratios, the

differences in expansion ratio must be taken into account in the evaluation of the character-

istic lengths of the flame. Assuming a hard-sphere model for the gas mixture and a one-step

irreversible Arrhenius reaction, Clavin and Garcia [32] obtained the following analytical

expression for the Markstein number:

Ma =
2E√
E +1

+β (Le−1)

[
2√

E +1
− E

E−1
ln

(√
E +1
2

)]
(8)

where Le is the Lewis number of the limiting reactant and β is the Zeld’ovich number.

This expression can be used to correct the Markstein number for flames with the same

equivalence ratio (and Lewis number), but different expansion ratios (dilutions). Knowing
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the Markstein number at the threshold of stability, the reduced Lewis number β (Le− 1)

can be determined from (8) to calculate ultimately the Markstein number with the actual

expansion ratio E from GASEQ [33]. The Markstein numbers obtained from experimental

measurements of the instability threshold, using relations (6) and (7), corrected using (8),

will be called Ma I and Ma II respectively.

Finally, some values of Markstein numbers obtained by direct numerical simulations of

stretched methane and propane flames with detailed chemical kinetics are available in the

literature [28]. These values from numerical simulation will be called Ma III.

Tables I and II resume the parameters we have used to calculate λc = 2π/k+ and Λm =

2π/k− in order to test equation (2). The flame thickness is taken equal to Dth/UL with Dth =

0.2 cm2s−1.

In these tables, U∗L , Λ ∗M and the expansion ratio at the threshold of instability, E∗, are

taken from [30, 31]. They are used to determine Ma∗ from (6) (7), and the effective value of

β (Le-1) in (8). Rem: il y a redite, doit-on la supprimer ?

It can be seen that the Markstein numbers calculated using equations (6) and (7) are

very close so, for the sake of clarity, only Ma II and Ma III (from ref [28]) will be used to

calculate the characteristic velocities of the flames. The values of λc = 2π/k+n and Λm =

2π/k−n are then calculated using equ. (5). The resulting values are plotted in figure 7. The

longest unstable wavelength, Λm, has a maximum value close to φ ≈ 1.1 and decreases

towards the extinction limits. Λm is larger for propane than for methane/air flames as a

result of a larger laminar flame speed on one part, and because preferential diffusion is less

stabilizing for the rich propane-air flames. In general, the long wavelength cut-off, Λm, is

larger than the diameter of the tube, except for slow flames in large tubes.

For methane flames, the short wavelength cut-off, λc, has a minimum value around sto-

ichiometry with an order of magnitude of 0.5 to 1 cm. The range of unstable wavelengths
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Table 1 Parameters used to calculate characteristic lengths of methane-air flames (units: cm, s).

Labels: ‘*’= results from [31]; ‘I’= equ. (6); ‘II’= equ. (7); ‘III’= results from [28].

φ U∗L Λ ∗M E∗ Ma∗I Ma∗II E Ma I Ma II Ma III UL dL

(U∗L ) (L∗) CH4-air CH4-air CH4-air

0.560 8.40 1.41 5.60 1.74 1.93 5.30 1.55 1.74 - 6.00 0.0333

0.600 9.30 1.53 5.70 2.41 2.34 5.55 2.32 2.25 2.98 7.89 0.0253

0.700 9.50 1.57 5.90 2.68 2.46 5.55 2.48 2.26 3.64 15.1 0.0133

0.800 9.80 1.64 5.90 2.94 2.65 6.65 3.32 3.05 4.69 23.6 0.00847

0.900 10.0 1.69 6.00 3.19 2.79 7.11 3.73 3.36 5.54 31.3 0.00639

0.950 10.2 1.74 6.10 3.45 2.95 7.30 4.01 3.55 - 33.9 0.00589

0.980 10.4 1.80 6.10 3.65 3.11 7.38 4.24 3.73 - 35.6 0.00562

1.000 10.6 1.86 6.10 3.87 3.28 7.42 4.46 3.91 6.20 36.3 0.00551

1.020 10.8 1.93 6.10 4.09 3.46 7.44 4.67 4.08 - 36.8 0.00544

1.050 11.0 2.00 6.10 4.32 3.65 7.44 4.89 4.26 - 37.0 0.0054

1.100 11.1 2.03 6.00 4.36 3.74 7.37 4.93 4.36 6.99 37.0 0.00541

1.200 11.2 2.10 5.90 4.39 3.89 7.12 4.90 4.43 7.96 33.9 0.00589

1.300 11.3 2.10 5.90 4.50 3.92 6.86 4.91 4.35 9.13 26.3 0.0076

1.400 11.5 2.20 5.80 4.65 4.17 6.60 4.98 4.52 6.73 17.5 0.0115

1.500 12.3 2.70 5.70 5.57 5.45 6.35 5.81 5.69 - 11.3 0.0177

is only a factor ≈ 2 for slow flames in small tubes, and ≈ 30 for stoichiometric flames in

the widest tube. Model Ma III predicts cut-off wavelengths that are about 50% larger than

Ma II, with a corresponding decrease in the range of unstable wavelengths.

For propane flames, models Ma I and Ma II predict a short wavelength cut-off that is

quite large (≈ 1.5 cm) for very lean flames, decreasing rapidly to a very small or zero value

for rich flames. This is consistent with the observation that rich propane flames have many

small cells on the flame front. It results from the decrease of the Lewis number as the oxygen

becomes the limiting reactant so that all flames with φ > 1.1 were intrinsically unstable even
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Table 2 Parameters used to calculate characteristic lengths of propane-air flames (units: cm, s).

Labels: ‘*’= results from [31]; ‘I’= equ. (6); ‘II’= equ. (7); ‘III’= results from [28].

φ U∗L Λ ∗M E∗ Ma∗I Ma∗II E Ma I Ma II Ma III UL dL

(U∗L ) (L∗) C3H8-air C3H8-air C3H8-air

0.550 12.3 2.91 5.50 5.34 5.82 5.36 5.28 5.77 - 10.0 0.0200

0.600 11.7 2.38 5.50 4.59 4.53 5.67 4.66 4.61 8.80 12.6 0.0159

0.700 11.5 2.23 5.56 4.42 4.19 6.27 4.72 4.50 8.00 20.7 0.00968

0.800 11.4 2.16 5.60 4.34 4.03 6.81 4.86 4.57 7.75 29.8 0.00670

0.900 11.2 2.03 5.65 4.16 3.73 7.27 4.86 4.46 7.75 37.6 0.00532

0.950 10.8 1.81 5.70 3.77 3.20 7.44 4.55 4.04 - 40.3 0.00496

1.000 10.4 1.62 5.75 3.40 2.77 7.56 4.25 3.68 7.60 42.1 0.00475

1.020 10.1 1.51 5.70 3.09 2.50 7.59 4.00 3.47 - 42.6 0.00469

1.050 9.60 1.35 5.50 2.54 2.12 7.60 3.61 3.24 - 42.9 0.00467

1.080 8.60 1.16 5.40 1.78 1.62 7.58 2.99 2.85 - 42.8 0.00467

1.090 7.50 1.07 5.40 1.18 1.30 7.57 2.46 2.57 - 42.7 0.00468

1.095 6.50 1.05 5.30 0.752 1.10 7.56 2.14 2.44 - 42.6 0.00469

1.096 6.00 1.04 5.20 0.578 1.01 7.56 2.05 2.42 - 42.6 0.00469

1.098 3.80 1.02 5.20 0.147 0.621 7.55 1.67 2.08 - 42.6 0.00470

1.100 - - - - - 7.55 - - 7.04 42.5 0.00470

1.200 - - - - - 7.34 - - 5.96 38.8 0.00515

1.300 - - - - - 7.08 - - 4.40 31.6 0.00632

1.400 - - - - - 6.83 - - 3.14 22.6 0.00886

1.500 - - - - - 6.58 - - 2.00 14.0 0.0143

1.600 - - - - - 6.34 - - 2.14 9.20 0.0217

at the lowest flame speed attainable in the experiments of [27][30]. This is why the further

increase of the cut-off wavelength is not evaluated from these measurements. Model Ma III

predicts a slightly greater value for λc that remains positive for all equivalence ratios, with

a minimum value of ≈ 0.4 cm at an equivalence ratio of 1.4. According to Ma III the range
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Fig. 7 Longest, Λm, and shortest, λc, unstable wavelengths calculated for methane and propane flames using

equ. (5) for the three different methods of evaluating the Markstein length.

of unstable wavelengths varies from ≈ 1.5 for lean propane flames in the smallest tube, to

≈ 35 for rich propane flames in the largest tube.

We should remark that the values Ma III are obtained from numerical measurements

of the speed of stretched planar flames in a divergent flow, whereas the values Ma II were

obtained from the stability limits in a uniform flow. There is numerical and experimental

evidence that the Markstein numbers of curved and stretched flames can be different, [34–

37].

The resulting normalised turbulent flame speeds are then calculated using equ. (2) with

D = 1/3. When the diameter of the tube is smaller than the calculated value of Λm then we

have used the former as the upper limit for Λm. The results are shown in figure 8.

The agreement between experimental results and calculated values is not perfect, but

the general trends are relatively well reproduced. All curves decrease towards unity near the

extinction limits, reflecting the reduced range of unstable wavelengths.

The self-similar flame velocity calculated using Ma II systematically overestimates the

experimental values, particularly for methane flames. However, it successfully predicts a
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Fig. 8 Normalised self-turbulent flame speed of methane- (left) and propane- (right) air flames. The numeri-

cal values in the legend give the tube diameter in mm. Symbols: experimental values; tiny lines: Propagation

speeds calculated using Λm and λc from Ma II [30, 31]; wide lines: Λm and λc from Ma III [28]

velocity maximum on the lean side of methane-air flames. For propane flames, the curves are

truncated beyond φ ≈ 1 because all richer propane-air flames were systematically unstable

and thus it is not possible to obtain a Markstein number or a cut-off wavelength from the

threshold of stability.

The values of Ma III [28] are higher than Ma II, leading to a larger cut-off wavelength.

The velocity maximum on the lean side is less pronounced, but the calculated values of

self-similar flame speed are closer to experimental results.

In fact, as the largest length scale is generally the diameter of the burner, these curves

reproduce the inverse tendency of the cut-off wavelengths of both fuels, see figure 9. Such

measurements of intrinsically unstable flames speed in tubes of different diameters could

thus be used to determine the characteristic cut-off length-scale of combustible mixtures

in a simpler way than by measuring the onset of instability on planar flames or the Mark-

stein number on expanding spherical flames. However, the calculated increase of the flame

speed with the tube diameter is still larger than that observed experimentally, particularly

for methane-air flames. We have used results of the linear theory of flame stability to cal-
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Fig. 9 Cut-off wavelengths for propane- and methane-air flames.

culate the largest possible flame scale and we generally obtain values much larger than the

tube diameter. The largest cells should thus have the dimension of the tube diameter. This

prediction is not confirmed by visual observation of the flames, particularly for the case of

rich propane-air flames (see fig. 6) where the maximum cell size seems to be approximately

1/3 of the tube diameter. This observation implies that relation (2) overestimates the self

turbulent flame speed.

A better characterisation of the flame geometry is probably needed to determine char-

acteristic length scales. Nevertheless, there is sufficient agreements between theory and ex-

periment to support the influence of cut-off wavelengths on the speed of flame propagation

in wide tubes.
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5 Conclusion

The propagation velocities of self-turbulent premixed flames propagating in quiescent mix-

tures were measured in tubes having diameters ranging from 26 to 141 mm in order to test

the assumption of a self-similar behaviour in wide tubes.

An unexpected and striking result is that the free flame can propagate with different

velocities in a given configuration, depending on the angle of tilt of the front with respect

to the burner axis. Propagation velocities as high as 3.5 UL were measured. This could be a

relevant result for determining the limits of flash-back.

Supposing that the minimum value of the measured flame velocity is close to the funda-

mental self-turbulent flame speed, the experimental results were compared to a simple model

equation for the propagation speed of cellular flames using two different sets of Markstein

numbers. There is a reasonable qualitative agreement, and the calculated cut-off wavelengths

explain the differences observed between rich methane- and propane-air flames. However,

the predicted values of propagation velocity are generally significantly larger than the mea-

sured values. This difference is probably related to an overestimation of the largest charac-

teristic lengths of the flame as evidenced by the topology of rich propane-air flames (fig. 6)

and, we may also question the validity of determining cut-off wavelengths from a linear

model of stability of planar flames. Moreover, the fractal exponent D≈ 1/3 was determined

from experiments on large freely expanding spherical laminar flames. There is no solid ar-

gument to justify that flames in tubes will have exactly the same fractal exponent than freely

expanding spherical flames, so the agreement is surprisingly good.
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Appendix - The acoustic damper

The purpose of the acoustic damper is to eliminate thermo-acoustic instabilities by absorbing

acoustic perturbations arriving at the base of the tube. This is done by introducing a viscous

loss (real acoustic impedance) at the base of the tube equal to the acoustic impedance of the

gas in the tube. When this condition is fulfilled, propagating acoustic perturbations are dissi-

pated at the base and not reflected. The principle is a transposition of that used in electronic

transmission lines (e.g. 50 and 75 ohm cables) where reflection of the signal is eliminated

by terminating the line with a real resistance whose value is equal to the impedance of the

cable.

The characteristic impedance of the gas in the tube, Z = p′/u′, is equal to iρc, where p′,

u′ are the respectively acoustic pressure and displacement velocity, ρ is the density of the

gas, and c is the speed of sound. For the mixtures used here, this impedance is very close to

that of free air and has a value approximately equal to 410 Pa.s/m. The pressure p′ and the

velocity u′ are in phase quadrature, so the impedance is imaginary and there is negligible

energy dissipation.

A thin annular slit of height h and length l is introduced at the base of the tube, see figure

1. An acoustic pressure perturbation p′ introduces flow through the slit with an unsteady ve-

locity us. The amplitude and phase of this flow will be determined by the viscous resistance

to flow in the slit (in-phase or real component) and by the inertia of the gas in the slit (phase

quadrature, or imaginary component)

The acoustically induced flow velocity in the annular slit is higher than the acoustic

displacement velocity at the base of the tube. If the tube diameter is small compared to the

acoustic wavelength, mass conservation imposes that the mean acoustic velocity u′ at the

base of the tube (diameter Ø = D0) and the mean flow velocity us in the annular slit (Ø =
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D1) are related by

us(t)πD1h = u′(t)
πD2

0
4

(9)

Assuming a Poiseuille flow in the slit, the mean velocity us is just 2/3 the maximum velocity,

us = 2/3umax, and the viscous contribution to the instantaneous pressure drop across the slit,

p′(t) = p̂cos(ωt), is then given by [38]

p̂cos(ωt) =
12µl

h2 ûs cos(ωt), (10)

where µ is the shear viscosity and p′/l is the pressure gradient across the slit. Since the flow

is unsteady, there is also a contribution arising from the inertia of the fluid in the slit. The

mass of fluid in the slit is m = ρπD1hl and its instantaneous acceleration is −ωus sin(ωt).

Equating the total force on the gas in the annular slit to the unsteady force required to

overcome the viscous and inertial resistance of the flow, and in the approximation that the

inertial contribution is small, we obtain

p̂cos(ωt) =
12µl

h2 ûs cos(ωt)−ρlω ûs sin(ωt), (11)

where u′ can be substituted for us from equ. (9) to give the acoustic impedance:

Z =
p′

u′
=

D2
0l

hD1

(
3µ

h2 − iω
ρ

4

)
(12)

Equating the real part of the impedance at the bottom of the tube, Re[Z], to the imaginary

part of the impedance of air, ρc, leads to the relation:

h =

(
3µD2

0l
ρcD1

)1/3

. (13)

For the acoustic damper to be effective, the imaginary part of the impedance of the slit

(inertial contribution) must be negligible compared to the real part, i.e.

|Im[Z]|
|Re[Z]|

� 1, (14)
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which implies

h�
(

12µ

ρω

)1/2

, (15)

and from equ. (13) this also imposes

l� 8cD1

D2
0

√
3µ

ρω3 . (16)

Relation (16) imposes that the length of slit be relatively short, l ≈ 1mm, and according to

(13), the height of slit has to be tuned to a value that is a function of both the slit length l

and the tube diameter, D0. Typically h ≈ 0.2mm. Despite the short dimensions of the slit,

the Poiseuille approximation appears to be sufficient and this device has proved to be very

efficient in suppressing the thermo-acoustic instability otherwise encountered with premixed

flames propagating in tubes.
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